Properties of Matrix Transformations

Theorem 4.9.1: For every matrix A the matrix transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the following properties for all vectors u and v in \mathbb{R}^{n} and for every scalar k :
(a) $T_{A}(0)=0$
(b) $T_{A}(k u)=k T_{A}(u)$ (Homogeneity property)
(c) $T_{A}(u+v)=T_{A}(u)+T_{A}(v)$ (Additivity property)
(d) $T_{A}(u-v)=T_{A}(u)-T_{A}(v)$

Note: We can extend part (c) of Theorem 4.9.1 to three or more vectors.

$$
T_{A}\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} T_{A}\left(v_{1}\right)+c_{2} T_{A}\left(v_{2}\right) \quad \text { (Exercise: show this is true) }
$$

In fact if $v_{1}, v_{2}, \ldots, v_{k}$ are vectors in \mathbb{R}^{n} and $c_{1}, c_{2}, \ldots, c_{k}$ are any scalars then

$$
T_{A}\left(c_{1} v_{1}+\ldots+c_{k} v_{k}\right)=c_{1} T_{A}\left(v_{1}\right)+\ldots+c_{k} T_{A}\left(v_{k}\right)
$$

Theorem 4.10.2 $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation if and only if the following relationships hold for all vectors u and v in \mathbb{R}^{n} and for each scalar k :
(a) $\mathrm{T}(\mathrm{u}+\mathrm{v})=\mathrm{T}(\mathrm{u})+\mathrm{T}(\mathrm{v})$ (Additivity property)
(b) $\mathrm{T}(\mathrm{ku})=\mathrm{kT}(\mathrm{u})$ (Homogeneity property)

Theorem 4.9.2: If $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $T_{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are matrix transformations, and if $T_{A}(x)=T_{B}(x)$ for every vector x in \mathbb{R}^{n}, then $\mathrm{A}=\mathrm{B}$.

Given a matrix transformation we can find the matrix representing the transformation

Standard Matrix for a matrix transformation:

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a matrix transformation. To find the matrix A such that $T(x)=A x$, consider the standard basis vectors of $\mathbb{R}^{n}, e_{1}, e_{2}, \ldots, e_{n}$. Next calculate the image of these vectors under the transformation T_{A}, that is $T_{A}\left(e_{1}\right)=A e_{1}, T_{A}\left(e_{2}\right)=$ $A e_{2}, \ldots, T_{A}\left(e_{n}\right)=A e_{n}$. Then matrix A is found by

$$
A=\left[T_{A}\left(e_{1}\right)|\ldots| T_{A}\left(e_{n}\right)\right]
$$

Examples:

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $T(x)=2 x$. Find the standard matrix for this transformation.
Solution: $e_{1}=(1,0), e_{2}=(0,1)$ standard basis vectors of $\mathbb{R}^{2} . T\left(e_{1}\right)=(2,0), T\left(e_{2}\right)=$ $(0,2)$, then

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

2. Find the standard matrix for the transformation defined by the equations

$$
\begin{array}{r}
w_{1}=3 x_{1}+5 x_{2}-x_{3} \\
w_{2}=4 x_{1}-x_{2}+x_{3} \\
w_{3}=3 x_{1}+2 x_{2}-x_{3} \tag{1}
\end{array}
$$

Solution: Note that domain and codomain of transformation are \mathbb{R}^{3}. Standar basis vectors of \mathbb{R}^{3} are e_{1}, e_{2}, e_{3}.

$$
\begin{aligned}
T\left(e_{1}\right) & =(3,4,3) \\
T\left(e_{2}\right) & =(5,-1,2) \\
T\left(e_{3}\right) & =(-1,1,-1) \\
{[T]=A } & =\left[\begin{array}{ccc}
3 & 5 & -1 \\
4 & -1 & 1 \\
3 & 2 & -1
\end{array}\right]
\end{aligned}
$$

Geometry of Matrix Transformations:

Rotation: Let θ be a fixed angle. Let T be an operator that rotates each vector x in \mathbb{R}^{2} about the origin through the angle θ We can calculate the standard matrix $[T]=\left[\begin{array}{ll}T\left(e_{1}\right) & T\left(e_{2}\right)\end{array}\right]$

Hence standard matrix of the rotation operator on \mathbb{R}^{2}

$$
[T]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Example: Use matrix multiplication to find the image of the vector $x=(3,4)$ under the rotation of $\frac{\pi}{4}$ about the origin.

Solution: $\cos \frac{\pi}{4}=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} .[T]=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$. Then

$$
T(x)=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{7}{\sqrt{2}}
\end{array}\right]
$$

One can also write standard matrix for rotation operators in \mathbb{R}^{3} :
$\begin{aligned} & \text { 1)Counterclockwise rotation about the positive x-axis through an angle } \theta \\ & {[T]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right]} \\ & \text { 2)Counterclockwise rotation about the positive y-axis through an angle } \theta\end{aligned}[T]=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$
Example: Use matrix multiplication to find the image of the vector $(-2,1,2)$ if it is rotated
(a) -30° about the x-axis
(b) 90° about the y-axis
(c) -45° about the z-axis

Solution: Recall trigonometric summation and substraction formulas

$$
\begin{aligned}
& \cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B) \\
& \sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (A)
\end{aligned}
$$

1. To use the angle in the standard matrix formula we need positive angle, thus consider $\cos \left(2 \pi-\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right), \sin \left(2 \pi-\frac{\pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)$. Then

$$
T_{\pi / 6}(-2,1,2)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
0 & -\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
\frac{\sqrt{3}+2}{2} \\
\frac{2 \sqrt{3}-1}{2}
\end{array}\right]
$$

2.

$$
T_{\pi / 2}(-2,1,2)=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

3. $\cos \left(2 \pi-\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right), \sin \left(2 \pi-\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)$

$$
T_{\pi / 4}(-2,1,2)=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{-3 \sqrt{2}}{2} \\
\frac{-\sqrt{2}}{2} \\
2
\end{array}\right]
$$

