i 2D Transformations

i 2D Transformation

= Given a 2D object, transformation is to

change the object’s
= Position (translation)
= Size (scaling)

= Orientation (rotation)
= Shapes (shear)

= Apply a sequence of matrix multiplication to
the object vertices

i Point representation

= We can use a column vector (a 2x1 matrix) to
represent a 2D point | X
Y

= A general form of /inear transformation can
be written as:

X"=ax + by +c

= <X

oo 9w
= 0

=< X

OR

oo

y=dx+ey+f

i Translation

= Re-position a point along a straight line

= Given a point (X,y), and the translation
distance (tx,ty)

The new point: (X, y") X,y

X =X+ tx :
y =y +ty /ty

OR P" =P + T where P'=‘X:‘ p=‘X‘T=H:;(‘
y Y

i 3x3 2D Translation Matrix

X ‘ +
)4

1
0
0

X7 |
y' ty

Use 3 x 1 vector
0

X' tx X
y'| = 1 ty| * |y
1 0 1 1

= Note that now it becomes a matrix-vector multiplication

i Translation

vertices?

[]

>

Translate individual

vertices

= How to translate an object with multiple

¢¢¢¢¢¢

/

i 2D Rotation

= Default rotation center: Origin (0,0)

[]
7’
’

ﬁ e 0> 0 : Rotate counter clockwise

L
’
7

ﬂ . 6< 0 : Rotate clockwise

Rotation

+

(x,y) -> Rotate about the origin by 6 |

- (X7 Y)

How to compute (X', y’) ?

0

(X}y)

® Xy

X = rcos(¢) y=rsin ()

14

X"= rcos(p+6) y=rsin (¢ +06)

ﬁ Rotation

X = rcos(¢) y=rsin(9)
X"= rcos(p+6) y=rsin (¢ +06) 0. o (X,y)

(X}y)

¢
X" = rcos (¢ +0) >
~ o) cox) SR s

= X €cos(6) —y sin(6)
.

rsin (¢ + 0)
ﬂ cos(0) +-)sin(6)

y cos(0) + x sin(0)

* Rotation
! ()

Matrix form?

I

X
Y

14

_ | cos(6) -sin(6)
~ | sin(@) cos(0)

X
y

3 x 37?

i 3x3 2D Rotation Matrix

XI
yl

cos(0)
sin(0)

cos(0)
sin(0)
0

-sin(0)

J

cos(0)

-sin(0)
cos(0)
0

X
y

0
0
1

0

x5y’

o (Xy)

X
y
1

i Rotation

vertices?

[]

= How to rotate an object with multiple

>

Rotate individual
Vertices

-~ -~

|||||

||||||

7’

* 2D Scaling

Scale: Alter the size of an object by a scaling factor

(Sx, Sy), i.e.

-

(1,1)

(2,2)

Sx=2,Sy =2
——

Sx 0
0 Sy

(2,2)

v

(4/4)

‘_h 2D Scaling

(44)

(2,2) Sx=2,5y =2

(2,2)

(1,1)

= Not only the object size is changed, it also moved!!
= Usually this is an undesirable effect
= We will discuss later (soon) how to fix it

& 3x3 2D Scaling Matrix

i Put it all together

= Translation: | X'| = | x| 4 | tX
y’ y ty

= Rotation: X'| _|cos(B) -sin(B) |« |X
y' sin(6) cos(6) y

= Scaling: X'| _ | SX 0 | , | X
y 0 Sy y

i Or, 3x3 Matrix representations

= [ranslation: | X 1 0 tx X
y| = ‘ 0 1 ty|* |y
1 0 0 1 1
= Rotation: X" | _|cos(6) -sin(6) O X
y’ sin(0) cos(6) O] *|vy
1 0 0 1 1
_ X' Sx 0 0 X
= Scaling: y | =] 0 Sy 0|*|y
1 0 0 1 1

Why use 3x3 matrices?

i Why use 3x3 matrices?

= So that we can perform all transformations
using matrix/vector multiplications

= This allows us to pre-multiply all the matrices
together

= The point (X,y) needs to be represented as
(x,y,1) -> this is called Homogeneous
coordinates!

i Rotation Revisit

= T he standard rotation matrix is used to

rotate about the origin (0,0)

cos(0)
sin(0)
0

-sin(0)
cos(0)
0

0

0
1

)

©

7’
’
’
7’
’
’
’
,'\ _-V
’ -7
’ _2-"
4 -
»
»

= What if I want to rotate about an

arbitrary center?

B

i Arbitrary Rotation Center

= To rotate about an arbitrary point P (px,py)
by 6:

= Translate the object so that P will coincide with
the origin: T(-px, -py)

= Rotate the object: R(6)

= Translate the object back: T(px,py)

T (px,pY)
- ©
> B

©

i Arbitrary Rotation Center

= Translate the object so that P will coincide with the
origin: T(-px, -py)

= Rotate the object: R(6)

= Translate the object back: T(px,py)

s Put in matrix form: T(px,py) R®) T(-px, -py) * P

X’ 10 px cos(6) -sin(6) O 1 0 -px| |X
vii= (01 py sin(6) cos(6) O 01 -py| |V
1 00 1 0 0 1 00 1 1

i Scaling Revisit

= The standard scaling matrix will only

anchor at (0,0)

.,
.

.,

: |

= What if I want to scale about an arbitrary
pivot point? @

Sx 0 O
0 Sy O I
0 O 1

‘_h Arbitrary Scaling Pivot

= [0 scale about an arbitrary pivot point P
(PXx,py):
= Translate the object so that P will coincide with the
origin: T(-px, -py)
= Rotate the object: S(sx, sy)
= Translate the object back: T(px,py)

@ (px,pY) @
e ‘ ‘ ‘

i Affine Transformation

= Translation, Scaling, Rotation, Shearing are all affine
transformation

= Affine transformation — transformed point P’ (X’,y’) is
a linear combination of the original point P (x,y), i.e.

mll ml2 mil3
m21 m22 m23
0 0 1

XI
yI
1

X

Y
1

= Any 2D affine transformation can be decomposed
into a rotation, followed by a scaling, followed by a
shearing, and followed by a translation.
Affine matrix = translation x shearing x scaling x rotation

i Composing Transformation

= Composing Transformation — the process of applying
several transformation in succession to form one
overall transformation

= If we apply transform a point P using M1 matrix first,
and then transform using M2, and then M3, then we
have:
(M3 x (M2 x (M1 xP))) =M3xM2xM1xP

(pre-multiply) | v
M

i Composing Transformation

= Matrix multiplication is associative
M3 xM2xM1=(M3xM2)xMl=M3x(M2xMl)

= Transformation products may not be commutative AxB !=B

X A
= Some cases where AXB =B x A
A B
translation translation
scaling scaling
rotation rotation
uniform scaling rotation

(sx = sy)

ﬁ Transformation order matters!

= Example: rotation and translation are not
commutative

Translate (5,0) and then Rotate 60 degree
/

OR

Rotate 60 degree and then translate (5,0)??

’ . Rotate and then translate !!

i Three-Dimensional Graphics

= A 3D point (X,y,z) — X,y, and Z coordinates

= We will still use column vectors to represent
points

= Homogeneous coordinates of a 3D point
(X,¥,z,1)

= Transformation will be performed using 4x4
matrix

> X
z/

i Right hand coordinate system
s XxY=2Z,YXZ=X, ZXX=Y,

YA

Y

+Z]
. X
- Left hand coordinate system

Not used in this class and
Right hand coordinate system Not in OpenGL

i 3D transformation

= Very similar to 2D transformation
= Translation

X'=X+tx;y=y+ty, 2 =72+ 1z

t

X

= N < X
o = O O

X
Y
Z
1

\ homogeneous coordinates

0
1
0
0

O O O =

i 3D transformation

= Scaling
X' =X*Sx; Y =Y*Sy;, 2'=7Z*65z

n

X

o O
= O O O

0
)4

0]

= N < X
)]
N

X
Y
Z
1

o O O
o O
o

i 3D transformation

= 3D rotation is done around a rotation axis

= Fundamental rotations — rotate about x, y, or
Z aXes

= Counter-clockwise rotation is referred to as
positive rotation (when you

look down negative axis)

ﬁz

Iy
T

T A
-

‘_L 3D transformation

= Rotation about Z — similar to 2D rotation
X" = x cos(0) —y sin(0)
y' = x sin(6) + y cos(6)
Z' =2

Ay

0 0 1
0 0 0

cos(6) -sin(6) 0 O Z %
sin(@) cos(®)0 O _

0

1

e OpenGL - glRotatef(6, 0,0,1)

& 3D transformation

= Rotation abouty (z->vy, y -> X, Xx->2)
Z' = z cos(6) — x sin(6)
X" =z sin(0) + x cos(0)
y' =y

cos(6) 0 sin(6) O
0 1 0O O
-sin(6) 0 cos(6) O

0 0 0 1

><= OQQ

+
e OpenGL - glRotatef(6, 0,1,0) fﬁ"%

& 3D transformation

= Rotation about x (z -> X, y -> z, x->y)
y' =y cos(0) — z sin(0)
Z' =y sin(0) + z cos(0)
X' =X
0 0 0
cos(6) -sin(6) O

sin(6) cos(6) 0
0

O OO -

N; OQQ

0O 1
+
e OpenGL - glRotatef(6, 1,0,0) ﬁx %

i Composing Transformation

= You can think of object transformations
as moving (transforming) its local
coordinate frame

= All the transformations are performed
relative to the current coordinate frame
origin and axes

ﬁ Translate Coordinate Frame

Translate (3,3)?

IIIIIIIIIIII
IIIIIIIIIIII

IIIIIIIIIIII
IIIIIIIIIIII

ﬁ Translate Coordinate Frame (2)

Translate (3,3)?

& Rotate Coordinate Frame

Rotate 30 degree?

30 degree > R

i Scale Coordinate Frame

Scale (0.5,0.5)?

B
| | | | | | | | | | | L S S N

i Compose Transformations

Transformations?

Answer:

1. Translate(7,9)
2. Rotate 45
3. Scale (2,2)

i Another example

C1

C2

\Ao o

(5,3)

How do you transform from C1 to C2?

Translate (5,5) and then Rotate (60)
OR

Rotate (60) and then Translate (5,5) ???

Answer: Translate(5,5) and then
Rotate (60)

‘-L Another example (cont'd)

—q

If you Rotate(60) and then Translate(5,5) ...

C1

C2

MOO

(o0
NG

N
S
N

You will be translated (5,5)
relative to C2!!

i Transform Objects

= What does moving coordinate frames have
anything to do with object transformation?

= YOU can view transformation as to tie the
object to a local coordinate frame and
move that coordinate frame

‘_h Compose transformation

C1

M1
(c,d)

C
'y

(

%
]

c,d)

>—>

Multiply the matrix from left

to right

M1 (move C1 to C2)

M2 (move C2 to C3’, without
rotation)

M3 (rotate C3’ to C3)

P’s final coordinates =

M1xM2 xM3xP

