Math 2331 - Linear Algebra 4.1 Vector Spaces \& Subspaces

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

4.1 Vector Spaces \& Subspaces

- Vector Spaces: Definition
- Vector Spaces: Examples
- 2×2 matrices
- Polynomials
- Subspaces: Definition
- Subspaces: Examples
- Determining Subspaces

Vector Spaces

Many concepts concerning vectors in \mathbf{R}^{n} can be extended to other mathematical systems.

We can think of a vector space in general, as a collection of objects that behave as vectors do in \mathbf{R}^{n}. The objects of such a set are called vectors.

Vector Space

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all \mathbf{u}, \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

1. $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.

Vector Spaces (cont.)

Vector Space (cont.)

3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector (called the zero vector) $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each \mathbf{u} in V, there is vector $-\mathbf{u}$ in V satisfying $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. $c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $(c d) \mathbf{u}=c(d \mathbf{u})$.
10. $1 \mathbf{u}=\mathbf{u}$.

Vector Spaces: Examples

Example

Let $M_{2 \times 2}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d\right.$ are real $\}$
In this context, note that the $\mathbf{0}$ vector is [\quad.

Example

Let $n \geq 0$ be an integer and let

$$
\mathbf{P}_{n}=\text { the set of all polynomials of degree at most } n \geq 0 .
$$

Members of \mathbf{P}_{n} have the form

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and t is a real variable. The set \mathbf{P}_{n} is a vector space.

We will just verify $\mathbf{3}$ out of the $\mathbf{1 0}$ axioms here. Let $\mathbf{p}(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ and $\mathbf{q}(t)=b_{0}+b_{1} t+\cdots+b_{n} t^{n}$. Let c be a scalar.

Vector Spaces: Polynomials (cont.)

Axiom 1:
The polynomial $\mathbf{p}+\mathbf{q}$ is defined as follows:
$(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)$. Therefore,

$$
\begin{aligned}
& (\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)
\end{aligned}
$$

which is also a \qquad of degree at most \qquad . So
$\mathbf{p}+\mathbf{q}$ is in \mathbf{P}_{n}.

Vector Spaces: Polynomials (cont.)

Axiom 4:

$$
\begin{gathered}
\mathbf{0}=0+0 t+\cdots+0 t^{n} \\
\left(\text { zero vector in } \mathbf{P}_{n}\right. \text {) }
\end{gathered}
$$

$$
\begin{gathered}
(\mathbf{p}+\mathbf{0})(t)=\mathbf{p}(t)+\mathbf{0}=\left(a_{0}+0\right)+\left(a_{1}+0\right) t+\cdots+\left(a_{n}+0\right) t^{n} \\
=a_{0}+a_{1} t+\cdots+a_{n} t^{n}=\mathbf{p}(t) \\
\text { and so } \mathbf{p}+\mathbf{0}=\mathbf{p}
\end{gathered}
$$

Vector Spaces: Polynomials (cont.)

Axiom 6:
which is in \mathbf{P}_{n}.

The other 7 axioms also hold, so \mathbf{P}_{n} is a vector space.

Subspaces

Vector spaces may be formed from subsets of other vectors spaces. These are called subspaces.

Subspaces

A subspace of a vector space V is a subset H of V that has three properties:
a. The zero vector of V is in H.
b. For each \mathbf{u} and \mathbf{v} are in $H, \mathbf{u}+\mathbf{v}$ is in H. (In this case we say H is closed under vector addition.)
c. For each \mathbf{u} in H and each scalar $c, c \mathbf{u}$ is in H. (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.

Subspaces: Example

Example

Let $H=\left\{\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right]: a\right.$ and b are real $\}$. Show that H is a subspace of \mathbf{R}^{3}.

Solution: Verify properties a, b and c of the definition of a subspace.
a. The zero vector of \mathbf{R}^{3} is in H (let $a=\ldots \ldots$ and $b=\ldots \ldots$._-_-_.
b. Adding two vectors in H always produces another vector whose second entry is _-_-_ and therefore the sum of two vectors in H is also in H. (H is closed under addition)
c. Multiplying a vector in H by a scalar produces another vector in H (H is closed under scalar multiplication).
Since properties a, b, and c hold, V is a subspace of \mathbf{R}^{3}.

Subspaces: Example (cont.)

Note
Vectors $(a, 0, b)$ in H look and act like the points (a, b) in \mathbf{R}^{2}.

Graphical Depiction of H

Subspaces: Example

Example

Is $H=\left\{\left[\begin{array}{c}x \\ x+1\end{array}\right]: x\right.$ is real $\}$ a subspace of \square
l.e., does H satisfy properties a, b and c ?

Solution: For H to be a subspace of \mathbf{R}^{2}, all three properties must hold

Property (a) is not true because
Therefore H is not a subspace of \mathbf{R}^{2}.

Subspaces: Example (cont.)

Another way to show that H is not a subspace of \mathbf{R}^{2} :
Let

$$
\mathbf{u}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \text { then } \mathbf{u}+\mathbf{v}=[\square
$$

and so $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, which is _--- in H. So property (b) fails and so H is not a subspace of \mathbf{R}^{2}.

A Shortcut for Determining Subspaces

Theorem (1)

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof: In order to verify this, check properties a, b and c of definition of a subspace.
a. \mathbf{O} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ since

$$
\mathbf{0}=\mathbf{N}_{1}+\ldots-\ldots \mathbf{v}_{2}+\cdots+\ldots-\ldots \mathbf{v}_{p}
$$

b. To show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ closed under vector addition, we choose two arbitrary vectors in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$:

$$
\begin{gathered}
\mathbf{u}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{p} \mathbf{v}_{p} \\
\quad \text { and } \\
\mathbf{v}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p} .
\end{gathered}
$$

A Shortcut for Determining Subspaces (cont.)

Then

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{p} \mathbf{v}_{p}\right)+\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}\right) \\
=\left(\ldots \mathbf{v}_{1}+\ldots \mathbf{v}_{1}\right)+\left(\ldots-\mathbf{v}_{2}+\ldots-\mathbf{v}_{2}\right)+\cdots+\left(\ldots-\ldots \mathbf{v}_{p}+\ldots--\mathbf{v}_{p}\right) \\
=\left(a_{1}+b_{1}\right) \mathbf{v}_{1}+\left(a_{2}+b_{2}\right) \mathbf{v}_{2}+\cdots+\left(a_{p}+b_{p}\right) \mathbf{v}_{p} .
\end{gathered}
$$

So $\mathbf{u}+\mathbf{v}$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
c. To show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ closed under scalar multiplication, choose an arbitrary number c and an arbitrary vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$:

$$
\mathbf{v}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}
$$

A Shortcut for Determining Subspaces (cont.)

Then

$$
\begin{aligned}
& c \mathbf{v}=c\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}\right) \\
& =
\end{aligned}
$$

So $c \mathbf{v}$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
Since properties a, b and chold, $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Determining Subspaces: Recap

Recap

(1) To show that H is a subspace of a vector space, use Theorem 1.
(2) To show that a set is not a subspace of a vector space, provide a specific example showing that at least one of the axioms a, b or c (from the definition of a subspace) is violated.

Determining Subspaces: Example

Example

Is $V=\{(a+2 b, 2 a-3 b): \quad a$ and b are real $\}$ a subspace of \mathbf{R}^{2} ?
Why or why not?

Solution: Write vectors in V in column form:

$$
\begin{gathered}
{\left[\begin{array}{c}
a+2 b \\
2 a-3 b
\end{array}\right]=\left[\begin{array}{c}
a \\
2 a
\end{array}\right]+\left[\begin{array}{c}
2 b \\
-3 b
\end{array}\right]} \\
\quad=----\left[\begin{array}{l}
1 \\
2
\end{array}\right]+---\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
\end{gathered}
$$

So $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and therefore V is a subspace of \qquad by Theorem 1.

Determining Subspaces: Example

Example

Is $H=\left\{\left[\begin{array}{c}a+2 b \\ a+1 \\ a\end{array}\right]: a\right.$ and b are real $\}$ a subspace of \mathbf{R}^{3} ?
Why or why not?

Solution: $\mathbf{0}$ is not in H since $a=b=0$ or any other combination of values for a and b does not produce the zero vector. So property ___-_ fails to hold and therefore H is not a subspace of \mathbf{R}^{3}.

Determining Subspaces: Example

Example

Is the set H of all matrices of the form $\left[\begin{array}{cc}2 a & b \\ 3 a+b & 3 b\end{array}\right]$ a subspace of $M_{2 \times 2}$? Explain.

Solution: Since

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 a & b \\
3 a+b & 3 b
\end{array}\right]=\left[\begin{array}{ll}
2 a & 0 \\
3 a & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & b \\
b & 3 b
\end{array}\right]} \\
\quad=a[
\end{gathered}
$$

Therefore $H=\operatorname{Span}\left\{\left[\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right]\right\}$ and so H is a subspace of $M_{2 \times 2}$.

