I I I .-I Galileo versus Maxwell

| am convinced that the philosophers have had a harmful effect
upon the progress of scientific thinking in removing certain
fundamental concepts from the domain of empiricism, where
they are under our control, to the intangible heights of the a
priori. . . . This is particularly true of our concepts of time and
space, which physicists have been obliged by the facts to bring
down from the Olympus of the a priori in order to adjust them
and put them in a serviceable condition.

—A. Einstein!

Galilean transformation

Goback to the prelude, in which Galileo’s ship was updated to Einstein’s train. The observer
on the train, Ms. Unprime, ascribed to some event the spatial coordinates (x, y, z) and
temporal coordinate ¢. To the same event, the observer on the ground, Mr. Prime, assigns
the coordinates (x/, y’, z’) and #’. Denote the speed of the train by u, and choose the axis
so that the train moves along the x-axis. Then the two sets of coordinates are related by

=t

x' =x+ut

Y=y
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a set of relations known as the Galilean transformation. Consider a point on the train with
x = 0. Plugging this into (1), we see that, for Mr. P on the ground, this point moves along
according to x" = ur = ut’.

The innocuous looking equalities y' =y and z’ =z actually represent an important
consequence of Galileo’s relativity principle. Call the y direction the vertical direction. We
can supply sticks of a standard length L to Ms. U and Mr. P to build a fence.

To make sure that the sticks supplied to the two observers are identical, we can arrange
for the woodcutter to ride in a train going by at speed Ju relative to Mr. P and —3u
relative to Ms. U. In other words, the coordinates of the woodcutter are given by t' =1,
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and x' = x,, + %utw. As far as the woodcutter is concerned, he is at rest, and Mr. P and
Ms. U are going by him at the same speed but in opposite directions.? The woodcutter
can toss the pre-cut sticks in identical ways to the two observers and their helpers. This
long-winded digression is to answer any objection that the tossing of sticks from Mr. P to
Ms. U, say, could have done something to the lengths of the sticks.

The top of the two fences is then given by y = L and y’ = L, respectively. The two lengths
must agree, because as the two fences sweep past each other, the two observers could see
whether one fence is taller than the other. In either case, Galileo’s relativity principle,
stating that two observers in relative uniform motion could not decide who is moving
relative to the other, would be violated. Thus, we must have y’ = y. Similarly, z/ = z. The
coordinates perpendicular to the direction of motion are unaffected by the motion.

The relation x" = x + ut certainly does not violate Galileo’s principle, since x = x’ +
(—u)t’. To Ms. U, she is at rest, but relative to her, Mr. P, sitting at x” = 0, is moving with
speed —u in the x direction.

We have set up the coordinates so that when t' = =0, we have x’ = x = 0. Just as
in chapter 1.3, we can avoid having to line up the origins of the two coordinate systems
by considering the separation between two events E; and E, in spacetime located at
(t1, X1, Y1, 21)> (t{, xi, yi, z’l), (ty, X3, ¥2, 29), and (té, xé, yé, z’z). Writing At =1, — t;, Ax =
x, — x1, and so on, and At' =1 —t;, Ax" = x), — x}, and so forth, we have

At = At

Ax" = Ax + uAt

Ay = Ay

Az = Az (2)

Since the y and z coordinates are just going along for the ride, we omit writing the
transformation equations for them henceforth. Again, just as for rotations in chapter 1.3,
we can replace the finite differences Az, Ax, and so on by infinitesimals d¢, dx, and so
forth:

di' =dt
dx'=dx + udrt (3)
Adding velocities

The addition of velocities is so physically intuitive that almost everybody grasps it in
everyday life. You are in a car speeding down the highway at 70 miles an hour. A fly trapped
in the car flies forward at 3 miles an hour. To a hitchhiker standing by the roadside, the fly
evidently moves forward at 70 + 3 = 73 miles an hour, even though flies normally can't fly
that fast. Indeed, if the hitchhiker also sees the fly moving forward at 3 miles an hour, it
would have smashed into the rear window in an instant.

To formalize this intuitively obvious understanding, let us go back to the train. Ms. U
tosses an object forward with velocity v; in other words, the object’s trajectory is described
by x = vt. (See figure 1, showing Ms. U as a stoker on Einstein’s train.)
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Figure 1 A lump of coal is tossed forward on a moving train. (Illustration adapted from
Fearful.)

Simply plug this into (1) and we obtain, very slowly and carefully, the velocity seen by
Mr. P:

v’s%:%(x—l—ut):i—:—i-u:v—ku 4)
We just add the velocity of the object to the velocity of the train, as everybody would have
felt intuitively. We can obtain the same result, perhaps a tad quicker, by going to (3) and
dividing dx’ by dt’ to obtain

, dx’  dx+4udr dx
= ——= — = — = 5

Y dr’ dt dt+u v ®)

The calculus book I read in high school warns the reader sternly that ‘fl—’; is a holistic
(but of course that word did not become fashionable until much later) symbol of a single
mathematical entity and is not to be thought of as dx divided by d¢. I am telling you that
at the level of rigor of theoretical physics it is okay. Just think of the differential dx as
the difference Ax, divide by At, and then take the Newton-Leibniz limit. When we get to
general relativity, we will be constantly manipulating differentials.

We now see that the invariance of Newtonian mechanics under the Galilean transfor-
mation follows merely because Newton’s law involves the second derivative, so that

dzx’_ i(d_x ) d%x

m——=m +u)l=m— 6
dt’? dt’ \ dt dt? (©)

An important point here is that this derivation even tells us when Galilean invariance
of Newtonian mechanics fails. If u changes in magnitude or in direction (we had chosen
u to point in the x direction, but 4 is really a vector!), then (6) is changed to

- . . dii
F' =ma' =ma+m—
dt

)

An ancient part of our brains interprets this extra term as an apparent additional force:
our body feels it when the driver of the car (remember, the one with the fly trapped in it)
speeding down the highway suddenly slams on the brake or zips around a sharp curve.



162 | Ill. Space and Time Unified

Even someone as dumb as a fly would feel the additional force m ‘fl—‘z as it smashes into the
windshield. Unfortunate as well as dumb.

But for now, what the fly knows is advanced stuft for us; we will get to it when we discuss
gravity. Let us check that the action for Newtonian mechanics is Galilean invariant. First,

for simplicity, look at the action for a single free particle in one dimension:
dx"\* dx 2
S= | dr'im|— :/dtlm <—+ >
/ 2 (dz’) M\ T
Ix\* dx
= [ dtim (—> + /dtm—+ 2/dtlm 8
/ 2 <dt ! a 2 )

The extra term linear in u in the Lagrangian is proportional to the integral of the derivative
‘fl—f. With fixed initial and final conditions, it is just an irrelevant additive constant. The
term quadratic in u is also an additive constant. In other words, the change in the action
S is just some additive constant whose variation vanishes.

This simple demonstration can be immediately generalized to the many-particle case

with

2
S:/dt > im, (‘Z“) =D Vi, —x) 9)

a a#b

Note that it is necessary for the interaction potential to depend on the difference x, — x; =
x, — x;. The generalization to higher dimensional space is trivial.

Incidentally, you might have noticed that implicitin the argument is the assumption that
the two observers in relative motion agree on the same mass. I have underlined this by
writing m explicitly in (6) and (8). There is no m’'. Galilean relativity requires that different
observers measure the same mass.

Contrary to what the guy in the street might think, the principle of relativity did not start
with Einstein, but, in a sense, was reestablished by Einstein’s special relativity.

Showdown between Galileo and Maxwell

While the addition of velocities (4) is so intuitively obvious, even to a layperson not versed
in physics (as in my everyday example of a speeding car), it came to play a central role
in the looming crisis that confronted physics toward the end of the 19th century. In his
monumental work, Maxwell finally gave a precise elucidation of the mystery of light,
revealing it to be an undulating electromagnetic field. An electric field varying in space
and time generates a magnetic field varying in space and time, which in turn generates an
electric field varying in space and time, and thus the wave propagates through space and
time. The speed of propagation ¢ depends only on how oscillating electric and magnetic
fields generate each other, and that, as the reader may recall or have heard, does not depend
on the observer.

On that occasion with the fly in the car, I was riding in the back seat, and I had a camera®

with me. T took a picture of a friend riding in the front seat next to the driver and the
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flash went off. Telling my friend that the speed of light is* 186,000 x 3,600 = 669,600,000
miles per hour, I asked my friend how fast a hitchhiker standing by the roadside would
have seen the flash of light go by. Her answer, indeed the only intuitively reasonable and
incontrovertible answer, was 70 + 669,600,000 = 669,600,070 miles per hour.

But this contradicts Maxwell’s equations.

To read this book, for the most part you do not need to have completely mastered
Maxwell’s theory of electromagnetism (although it would help). I will even derive it later.
At this point in our development, the single most important point is that light does not
obey the law of addition of velocities (4) that everyone took to be totally obvious. For light,
both observers measure the same speed:

c=c (10)

As I mentioned in chapter 1.1, in the showdown between these two equations, (4) and (10),
the law of addition of velocities blinked and had to be modified.

This great antinomy made him stuck

Various eminent physicists in the late 19th century realized that they could reconcile
the contradiction between Maxwell’s theory and the law of addition of velocities if they
postulated that light, just like sound, had to propagate in a medium, an ether pervading
the universe. The speed of light ¢ determined by Maxwell’s theory is the speed of light as
seen by an observer at rest with respect to the ether. As the earth moves through the ether,
the speed of light measured on earth would vary.

Notice that the existence of the ether would have profound implications for the foun-
dation of physics, namely, that absolute rest could be defined as rest with respect to the
ether. Ms. U and Mr. P could determine who is at rest and who is moving.

As you may have heard, the experimental evidence was against the infamous ether.
In 1887 (when Einstein was 8 years old), Michelson and Morley performed a famous
experiment to detect the ether and failed. By the way, Einstein claimed that he was guided
solely by Maxwell’s equations and had never heard of the experiment.

Indeed, Einstein even contemplated his own experimental setup to look for the ether.
In an impromptu speech given in December 1922 in Kyoto, Japan, describing how he had
discovered special relativity, he said that he had not doubted the existence of the ether
and that he had even thought of an experiment using two thermocouples to measure the
difference in the heat generated by two light rays, one moving in the same direction as the
earth, the other in the opposite direction.

A pair of thermocouples to measure the difference in the heat generated by the two
light rays, yeah right! You might have smiled: good old Albert was a far better theorist
than experimentalist. Michelson and Morley had a far better idea, to interfere the two light
rays. Putting that aside, you could sense Einstein’s frustration. In 1922, he said something

* Since this true story took place in southern California, we use “royal” rather than “revolutionary” units here.



