University of Wisconsin - Madison
ECE/Comp Sci 352 Digital Systems Fundamentals
Charles R. Kime
Section 2 - Fall 2001

Logic and Computer Design Fundamentals
 Chapter 2 - Combinational Logic Circuits - Part 7

Charles Kime \& Thomas Kaminski
© 2001 Prentice Hall, Inc

NAND and NOR Implementation

- We found that we could implement general Boolean equations with these three primitives:
- AND
- OR
- NOT
- In this section we will find that either of two gates, the NAND gate or the NOR gate can be used to implement arbitrary logic functions.
- We use the Positive Logic Convention (where all signals are active high) and a small circle to on a symbol to represent NOT or invert.

NAND Gates

- The basic positive logic NAND gate is denoted by the following symbol:
- AND-Invert (NAND)

- NAND comes from NOT AND, I. e., the AND function with a NOT applied. We call this symbol for a NAND gate an AND-Invert. The small circle represents the invert function.
- If we apply DeMorgan's Law we get:

$$
\underset{\text { Fudamentals }}{\mathbf{X} \cdot \mathbf{Z}}=\overline{\mathbf{X}}+\overline{\mathbf{Y}}+\overline{\mathbf{Z}}
$$

NAND Gates (Cont.)

- Applying DeMorgan's Law gives:
- Invert-OR (NAND)

- We call this symbol for a NAND gate the Invert OR since all inputs are inverted, followed by the OR function.
- Both symbols represent the NAND gate - it is sometimes more logically descriptive to use one form over the other.
- A NAND gate with one input degenerates to an inverter.

NAND Function Implementation

- NAND gates can implement a simplified Sum-ofProducts form. Constructing two level NAND-NAND gate circuit:

- The first level is two 2-input NAND gates using ANDInvert. The second level is one 2 -input NAND gate using Invert-OR. Using the NAND relationship, we have:

$$
\begin{aligned}
\mathbf{G}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) & =\overline{\overline{\mathbf{A} \cdot \mathbf{B}} \cdot \overline{\overline{\mathbf{C} \cdot \mathbf{D}}}} \\
& =\overline{\overline{\mathbf{A} \cdot \mathbf{B}}}+\overline{\overline{\mathbf{C} \cdot \mathbf{D}}} \\
& =\mathbf{A} \cdot \mathbf{B}+\mathbf{C} \cdot \mathbf{D}
\end{aligned}
$$

NAND Implementation (Cont.)

In the implementation, note that the bubbles are on opposite ends of the same line.
Thus, they can be combined and deleted:

This form of the implementation is the Sum-of-Products form.

NAND Implementation (Cont.)

- In the implementation, the bubbles are on opposite ends of the same line.
- By $\mathbf{X}=\overline{\mathbf{X}}$, they can be combined and deleted:

- A sum-of-products (SOP) form results
- To implement an equation like: $\mathbf{F}(\mathbf{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}+\mathrm{BC}$, the NAND for A degenerates to a NOT since there is only one input

Degenerate AND Term

- The degenerate NAND becomes an inverter:

- To implement the complement of F using

NAND gates, add an inverter to the output:

NAND-NAND Example

- Implement: $\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})=\overline{\mathbf{y}} \overline{\mathbf{z}}+\overline{\mathbf{w}} \overline{\mathbf{x}}+\overline{\mathrm{x}} \overline{\mathbf{y}}+\overline{\mathbf{w}} \overline{\mathbf{z}}$

$\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})$

$\mathbf{F}^{\prime}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})$

Summary: Two-Level NAND Circuits

- Find minimum literal SOP form for F and F
- Select SOP form with smallest literal count
- Convert selected form to NAND circuit using AND-invert (inverters for single literal AND terms) and invert-OR symbols
- If SOP form for \mathbf{F} used, add inverter to circuit output.

NOR Gates

The basic positive logic NOR gate ($\mathbf{N o t - O R}^{\text {(}}$) is denoted by the following symbol:

OR-Invert (NOR)

This is called the OR-Invert, since it is logically an OR function followed by an invert. By DeMorgan's Law we have the following Invert-AND symbol for a NOR gate:

Invert-AND

A single-input NOR gate is an inverter, too.

NOR Gates

- The basic positive logic NOR gate is denoted by the following symbol:
- OR-Invert (NOR)

- NOR comes from NOT OR, I. e., the OR function with a NOT applied. We call this symbol for a NOR gate an OR-Invert. The small circle represents the invert function.
- If we apply DeMorgan's Law we get:

$$
\overline{\mathbf{X}+\mathbf{Y}+\mathbf{Z}}=\overline{\mathbf{X}} \quad \overline{\mathbf{Y}} \quad \overline{\mathbf{Z}}
$$

NOR Gates (Cont.)

- Applying DeMorgan's Law gives:
- Invert-AND (NOR)

- We call this symbol for a NOR gate the InvertAND since all inputs are inverted, followed by the AND function.
- Both symbols represent the NOR gate - it is sometimes more logically descriptive to use one form over the other.
- A NOR gate with one input degenerates to an inverter.

NOR Function Implementation

- NAND gates can implement a simplified Sum-of-

Products form. Constructing two-level NOR-NOR circuit:

- The first level is two 2-input NOR gates using OR-

Invert. The second level is one 2 -input NOR gate using Invert-AND.

- Using the NOR relationship, we have:

$$
\begin{aligned}
\mathbf{G}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) & =(\overline{\overline{\mathbf{A}+\mathbf{B}}+(\overline{\mathbf{C}+\mathbf{D}})} \\
& =\overline{(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})} \\
& =(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})
\end{aligned}
$$

Useful Transformations

From Involution (i.e. $\left.\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathbf{A}\right)$ and DeMorgan's Law, we get the following useful equivalences:

$$
\begin{aligned}
(\mathbf{A} \bullet \mathbf{B})=\left((\mathbf{A} \bullet \mathbf{B})^{\prime}\right)^{\prime} & \Leftrightarrow & \left(\mathbf{A}^{\prime}+\mathbf{B}^{\prime}\right)^{\prime} \\
(\mathbf{A}+\mathbf{B})= & \Leftrightarrow & \left(\mathbf{A}^{\prime} \bullet \mathbf{B}^{\prime}\right)^{\prime} \\
\left((\mathbf{A}+\mathbf{B})^{\prime}\right)^{\prime} & & \\
(\mathbf{A} \cdot \mathbf{B})^{\prime} & \Leftrightarrow & \left(\mathbf{A}^{\prime}+\mathbf{B}^{\prime}\right) \\
(\mathbf{A}+\mathbf{B})^{\prime} & \Leftrightarrow & \left(\mathbf{A}^{\prime} \bullet \mathbf{B}^{\prime}\right)
\end{aligned}
$$

These simple transformations can be used to manipulate a two level network.

Graphical Transformations

The relations from the previous slide lead to the following transformations:

$(\mathbf{A} \bullet \mathbf{B})=\left((\mathbf{A} \bullet \mathbf{B})^{\prime}\right)^{\prime} \Leftrightarrow \quad\left(\mathbf{A}^{\prime}+\mathbf{B}^{\prime}\right)^{\prime}$
$(\mathbf{A}+\mathbf{B})=\Leftrightarrow \quad\left(\mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}\right)^{\prime}$ $\left((\mathbf{A}+\mathbf{B})^{\prime}\right)^{\prime}$

$$
\begin{array}{ccc}
(\mathbf{A} \bullet \mathbf{B})^{\prime} \Leftrightarrow & \left(\mathbf{A}^{\prime}+\mathbf{B}^{\prime}\right) \\
(\mathbf{A}+\mathbf{B})^{\prime} & \Leftrightarrow & \left(\mathbf{A}^{\prime} \bullet \mathbf{B}^{\prime}\right)
\end{array}
$$

Recall that two bubbles in series can be removed from the circuit

General Two-level Implementations

We need to consider whether the form of a two-level implementation is to be:

1. $\mathbf{S O P}$ (AND-OR) or
2. POS (OR-AND).

Complemented output functions (i.e. AND-NOR or ORNAND) can be handled by complementing the function.

Given a function F expressed as a Karnaugh Map, we can use the same general procedures we have used before to minimize the function and express it in SOP or POS form.

General Implementations (Cont.)

Given a two level implementation desired, use the previous transfromations to get it into one of the below forms. Then follow the steps to transform the function to the desired form:

For Type:	Use:
AND-OR (SOP Form)	Circle 1's in the K-Map and minimize (Also use for NAND-NAND)
AND-NOR (SOP complemented)	Circle 0's in the K-Map and minimize
OR-AND (POS Form)	Circle 0's in the K-Map and minimize SOP. Use DeMorgan's to transform to POS. (Also use for NOR-NOR)
OR-NAND (POS complemented)	Circle 1's in the K-Map and minimize SOP. Use DeMorgan's to transform to POS.

Implementation Example 1

Implement the function in NOR-OR.

We can remove the "Inverter" and replace it with the complement of the input variable

Implementation Example 2

Implement the function in AND-NOR.

Multi-level NAND Implementations

- Add inverters in two-level implementation into the cost picture
- Attempt to "combine" inverters to reduce the term count
- Attempt to reduce literal + term count by factoring expression into POSOP or SOPOS

Multi-level NAND Example 1

- $\mathbf{F}=\mathbf{A} \mathbf{B}^{\prime}+\mathbf{A} \mathbf{C}^{\prime}+\mathbf{B} \mathbf{A}^{\prime}+\mathbf{B} \mathbf{C}^{\prime} 15$ inputs and 8 gates*

$$
=\mathbf{A} \mathbf{A}^{\prime}+\mathbf{A} \mathbf{B}^{\prime}+\mathbf{A} \mathbf{C}^{\prime}+\mathbf{B} \mathbf{A}^{\prime}+\mathbf{B} \mathbf{B}^{\prime}+\mathbf{B} \mathbf{C}^{\prime}
$$

$$
=A\left(A^{\prime}+B^{\prime}+C^{\prime}\right)+B\left(A^{\prime}+B^{\prime}+C^{\prime}\right)
$$

[^0]
Multilevel NAND Example 2

$\mathbf{P}^{\mathbf{F}}=\mathbf{A B}+\mathrm{AD}^{\prime}+\mathbf{B C}+\mathrm{CD}^{\prime}$

[^0]: * Counting inverters (NOTS) as 1 input and 1 gate

