METABOLISM OF CARBOHYDREATES

Stages of Metabolism – 4 stages

Carbohydrate Metabolism

*Controlled enzymes catalyzing irreversible steps

Definition: <u>Glycolysis</u>

- Glycolysis means oxidation of glucose to give pyruvate (in the presence of oxygen) or lactate (in the absence of oxygen).
- It is a cascade of reactions that converts glucose into two pyruvate molecules or into lactate aiming at production of ATP and other intermediates.
- It is also utilized in its opposite direction in gluconeogenesis.

Intracellular site and tissue distribution:

• It occurs in the cell cytosol of all tissues of the body.

But it is of physiological importance in:

- Tissues with no mitochondria: mature RBCs, cornea and lens.
- Tissues with few mitochondria: Testis, leucocytes, medulla of the kidney, retina, skin and gastrointestinal tract.
- Tissues undergo frequent oxygen lack: skeletal muscles especially during exercise.

Biological importance (Functions) of glycolysis:

- Glucose <u>oxidation producing</u> ATP.
 - a) anaerobic glycolysis gives 2 ATP.
 - b) aerobic glycolysis gives 8 ATP.
- It is the major <u>source of energy in</u> <u>certain tissues</u>, e.g., RBCs and skeletal muscles.
- <u>Production of 2,3-DPG</u> that is important in tissue oxygenation.

Biological importance (Functions) of glycolysis:

- It provides <u>pyruvic acid for Krebs' cycle</u>.
- Provides important intermediates:
 - a) Dihydroxyacetone phosphate: can give glycerol-3phosphate, which is used for synthesis of triacylglycerols and phospholipids (lipogenesis).
 - b) 3 Phosphoglycerate: which can be used for synthesis of amino acid serine.
 - c) Pyruvate: which can be used in synthesis of amino acid alanine.

Biological importance (Functions) of glycolysis:

- It is the major <u>source of lactic acid</u> that is gluconeogenic.
- Reversal of glycolysis is gluconeogenesis, an important source of glucose.
- Main <u>pathway of metabolism of fructose</u> from the diet.
- <u>Genetic diseases</u> (a small number) occur due to deficiency in activity of enzymes of glycolysis –mainly manifested as hemolytic anemia.
- Cancer cells are glycolytic producing large amount of lactate, favoring a relatively acidic local pH in the tumor.

Steps of Glycolysis

Steps of Glycolysis (a)

Steps of Glycolysis (b)

Major Glucose Transporters in Human Cells

Name	Tissues	<i>K_m</i> , Glucose	Functions
GLUT 1	Most tissues (brain, red cells)	~1 mM	Basal uptake of glucose
GLUT 2	Liver Pancreatic β-cells	~15 mM	Uptake and release of glucose by the liver β-cell glucose sensor
GLUT 3	Most tissues	~1 mM	Basal uptake
GLUT 4	Skeletal muscle Adipose tissue	~5 mM	Insulin-stimulated glucose uptake; stimulated by ex- ercise in skeletal muscle

Normal blood glucose concentration is 4-6 mM (72-110 mg/dL).

Stages of Glycolysis

- Stages on the basis of energy consumption
- 1. Stage one (the energy requiring stage):
- a) One molecule of glucose is converted into two molecules of glycerosldhyde-3-phosphate.
- b) These steps requires 2 molecules of ATP (energy loss)
- 2. Stage two (the energy producing stage):
- a) The 2 molecules of glyceroaldehyde-3-phosphate are converted into pyruvate (aerobic glycolysis) or lactate (anaerobic glycolysis).
- b) These steps produce ATP molecules (energy production).

Steps of Glycolysis

Energy requiring stage

Energy producing stage

- In the energy investment phase, ATP provides activation energy by phosphorylating glucose.
 - This requires 2 ATP per glucose.
- In the energy payoff phase, ATP is produced by substrate-level phosphorylation and NAD⁺ is reduced to NADH.
- 2 ATP (net) and 2 NADH are produced per glucose.

All cells

LIVER

	<u>Glucokinase</u>	<u>Hexokinase</u>
Km	High (10mM)	Low (<0.1mM)
Affinity	Low affinity	High affinity
Vmax	High	Low
Tissue distribution	Liver, pancreas	muscle and other tissues
Glu6PO4	Is not inhibited	Inhibited
Insulin	Is regulated by insulin	Is not regulated by insulin

INSULIN DEPENDENT

All cells

Covalent modulation of PK:

Elevated glucagon ->

increase cAMP ->

phosphorylation/inactivation PK ->

No glycolysis + gluconeogenesis

Dephosphorylation of PK -> Reactivation of the enzyme.

Substrate-level Phosphorylation

An enzyme transfers phosphate from substrate to ADP

Example from glycolysis in cellular respiration

The Aller converting of a first and a real of the second of the second and an ever provided and the second s

*Controlled enzymes catalyzing irreversible steps

Effect of Diabetes:

No Insulin \rightarrow No PFK2 \rightarrow PFK1 Inhibited \rightarrow Glycolysis Inhibited

Incr. F6P \rightarrow Incr. G6P \rightarrow Hexokinase Inhibited

High Carb. Meal \rightarrow more ATP in cells \rightarrow Glycolysis Inhibited \rightarrow Hyperglycemia

- These pathways must be coordinated
- There is sophisticated communication system
- Regulatory signals
 - Hormones
 - Neurotransmitter
 - Product of the reaction

A. Key regulatory enzymes:

are those enzymes that catalyze the irreversible steps of glycolysis that include three steps as follows:

1-Phosphofructokinase:

It is an allosteric enzyme stimulated by high levels of fructose-6- phosphate, fructose-2,6-diphosphate (in liver), ADP and AMP, Pi, and ammonia.

It is inhibited allosterically by ATP, AMP and citrate.

2-Hexokinase:

Accumulation of glucose-6-phosphate and inhibition of phosphofructokinase results in accumulation of fructose-6-phosphate and glucose-6-phosphate that allosterically inhibit hexokinase.

3-Pyruvate kinase: It is inhibited also by excess ATP, fatty acids, and acetyl-CoA

and is stimulated by fructose-1,6-diphosphate, ADP and AMP

It is regulated by cAMP-dependent phosphorylationdephosphorylation mechanism

B. Hormonal regulation:

1. Insulin:

- Stimulates synthesis of glucokinase, phosphofructokinase and pyruvate kinase, so it stimulates glycolysis.
- It also induces glucose transporters to provide cells with glucose for glycolysis.

2-Adrenaline and glucagon

inhibitory by inhibiting pyruvate kinase.

TABLE 8.1	1 Allosteric Regulation of Glycolysis	
Enzyme	Activator	Inhibitor
Hexokinase		Glucose-6-phosphate, ATP
PFK-1	Fructose-2,6-bisphosphate, AMP	Citrate, ATP
Dumunta kinona	Emotora 1.6 biophosphota AMD	A astyl Co & ATD

Thanks for your attention!