Experiment No. 6

CONFIGURE TRUNKING AND NATIVE VLAN FOR TRUNKING PORTS (Part-B)

LEARNING ObJECTIVE:

Upon completion of this lab, you will be able to:

- Cable a network according to the topology diagram
- Erase the startup configuration and reload a switch to the default state
- Perform basic configuration tasks on a switch
- Create VLANs
- Assign switch ports to a VLAN
- Add, move, and change ports
- Verify VLAN configuration

TOPOLOGY:

ADDRESSTING TABLE:

Device (Hostname)	Interface	IP Address	Subnet Mask	Default Gateway
S1	VLAN 99	172.17 .99 .11	255.255 .255 .0	N/A
S2	VLAN 99	172.17 .99 .12	255.255 .255 .0	N/A
S3	VLAN 99	172.17 .99 .13	255.255 .255 .0	N/A
PC1	NIC	172.17 .10 .21	255.255 .255 .0	172.17 .10 .1
PC2	NIC	172.17 .20 .22	255.255 .255 .0	172.17 .20 .1
PC3	NIC	172.17 .30 .23	255.255 .255 .0	172.17 .30 .1
PC4	NIC	172.17 .10 .24	255.255 .255 .0	172.17 .10 .1
PC5	NIC	172.17 .20 .25	255.255 .255 .0	172.17 .20 .1
PC6	NIC	172.17 .30 .26	255.255 .255 .0	172.17 .30 .1

INITIAL/PORT ASSIGNMENT:

Ports	Assignment	Network
Fa0/1-0/5	802.1q Trunks (Native VLAN 99)	$172.17 .99 .0 / 24$
Fa0/6-0/10	VLAN 30 - Guest (Default)	$172.17 .30 .0 / 24$
Fa0/11-0/17	VLAN 10 - Faculty/Staff	$172.17 .10 .0 / 24$
Fa0 $/ 18-0 / 24$	VLAN 20 - Students	$172.17 .20 .0 / 24$

OVERVIEW OF VLAN:

A VLAN is a group of devices on one or more LANs that are configured to communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments. Because VLANs are based on logical instead of physical connections, they are extremely flexible.

VLANs define broadcast domains in a Layer 2 network. A broadcast domain is the set of all devices that will receive broadcast frames originating from any device within the set. Broadcast domains are typically bounded by routers because routers do not forward broadcast frames. Layer 2 switches create broadcast domains based on the configuration of the switch. Switches are multiport bridges that allow you to create multiple broadcast domains. Each broadcast domain is like a distinct virtual bridge within a switch.

You can define one or many virtual bridges within a switch. Each virtual bridge you create in the switch defines a new broadcast domain (VLAN). Traffic cannot pass directly to another VLAN (between broadcast domains) within the switch or between two switches. To interconnect two different VLANs, you must use routers or Layer 3 switches. See the "Overview of Layer 3

Interfaces" section on page 23-1 for information on inter-VLAN routing on Catalyst 4500 series switches.

Figure 10-1 shows an example of three VLANs that create logically defined networks.

Task 3: Configure VLANs on the Switch

Step 7: Configure trunking and the native VLAN for the trunking ports on all switches.
Trunks are connections between the switches that allow the switches to exchange information for all VLANS. By default, a trunk port belongs to all VLANs, as opposed to an access port, which can only belong to a single VLAN. If the switch supports both ISL and 802.1Q VLAN encapsulation, the trunks must specify which method is being used. Because the 2960 switch only supports 802.1Q trunking, it is not specified in this lab.

A native VLAN is assigned to an 802.1Q trunk port. In the topology, the native VLAN is VLAN 99. An 802.1Q trunk port supports traffic coming from many VLANs (tagged traffic) as well as traffic that does not come from a VLAN (untagged traffic). The 802.1Q trunk port places untagged traffic on the native VLAN. Untagged traffic is generated by a computer attached to a switch port that is configured with the native VLAN. One of the IEEE 802.1Q specifications for Native VLANs is to maintain backward compatibility with untagged traffic common to legacy LAN scenarios. For the purposes of this lab, a native VLAN serves as a common identifier on opposing ends of a trunk link. It is a best practice to use a VLAN other than VLAN 1 as the native VLAN.

Use the interface range command in global configuration mode to simplify configuring trunking.

S1(config)\#interface range fa0/1-5
S1(config-if-range)\#switchport mode trunk
S1(config-if-range)\#switchport trunk native vlan 99
S1(config-if-range)\#no shutdown
S1(config-if-range)\#end
S2(config)\# interface range fa0/1-5
S2(config-if-range)\#switchport mode trunk
S2(config-if-range)\#switchport trunk native vlan 99
S2(config-if-range)\#no shutdown
S2(config-if-range)\#end
S3(config)\# interface range fa0/1-5
S3(config-if-range)\#switchport mode trunk
S3(config-if-range)\#switchport trunk native vlan 99
S3(config-if-range)\#no shutdown
S3(config-if-range)\#end

Verify that the trunks have been configured with the show interface trunk command.

S1\#show interface trunk

Step 9: Ping several hosts from PC2.
Ping from host PC2 to host PC1 (172.17.10.21). Is the ping attempt successful? \qquad no Ping from host PC2 to the switch VLAN 99 IP address 172.17.99.12. Is the ping attempt successful? \qquad no
Because these hosts are on different subnets and in different VLANs, they cannot communicate without a Layer 3 device to route between the separate subnetworks. Ping from host PC2 to host PC5. Is the ping attempt successful? \qquad yes
Because PC2 is in the same VLAN and the same subnet as PC5, the ping is successful.
Step 10: Move PC1 into the same VLAN as PC2.
The port connected to PC2 ($\mathrm{S} 2 \mathrm{Fa} 0 / 18$) is assigned to VLAN 20, and the port connected to PC1 ($\mathrm{S} 2 \mathrm{Fa} 0 / 11$) is assigned to VLAN 10. Reassign the S2 Fa0/11 port to VLAN 20. You do not need to first remove a port from a VLAN to change its VLAN membership. After you reassign a port to a new VLAN, that port is automatically removed from its previous VLAN.

S2\#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
S2(config)\#interface fastethernet 0/11
S2(config-if)\#switchport access vlan 20
S2(config-if)\#end
Ping from host PC 2 to host PC 1 . Is the ping attempt successful? \qquad no

Even though the ports used by PC1 and PC2 are in the same VLAN, they are still in different subnetworks, so they cannot communicate directly.

Step 11: Change the IP address and network on PC1.

Change the IP address on PC1 to 172.17.20.22. The subnet mask and default gateway can remain the same. Once again, ping from host PC2 to host PC1, using the newly assigned IP address. Is the ping attempt successful? \qquad yes
Why was this attempt successful?

CONCLUSION \& COMMENTS:

