Antianginal drugs

Nitrates β blockers Ca⁺⁺ channel blockers Metabolism modifiers

What is the cause of angina?

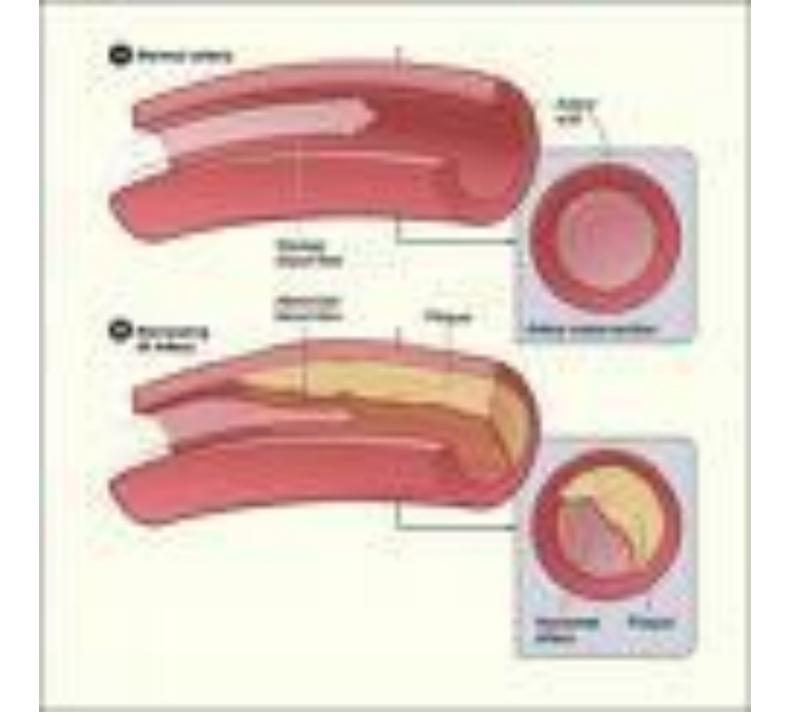
- Coronary insufficiency
- Angina occurs when O₂ demand exceeds O₂ supply
 - 1. Prerload
 - 2. Afterload
 - 3. Heart Rate & cardiac contractility

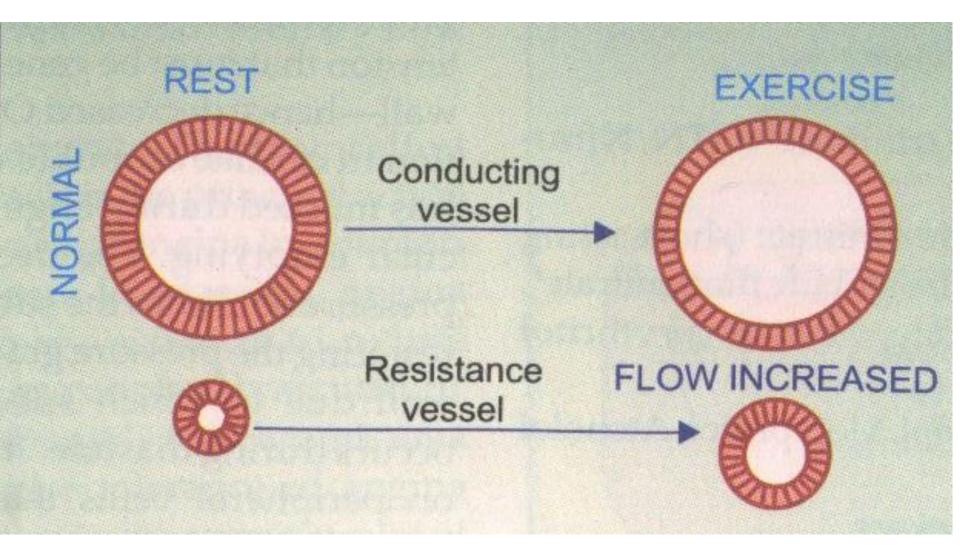
• Preload (diastolic filling pressure)

- Blood volume
- Venous tone---controlled by sympathetic outflow

Afterload

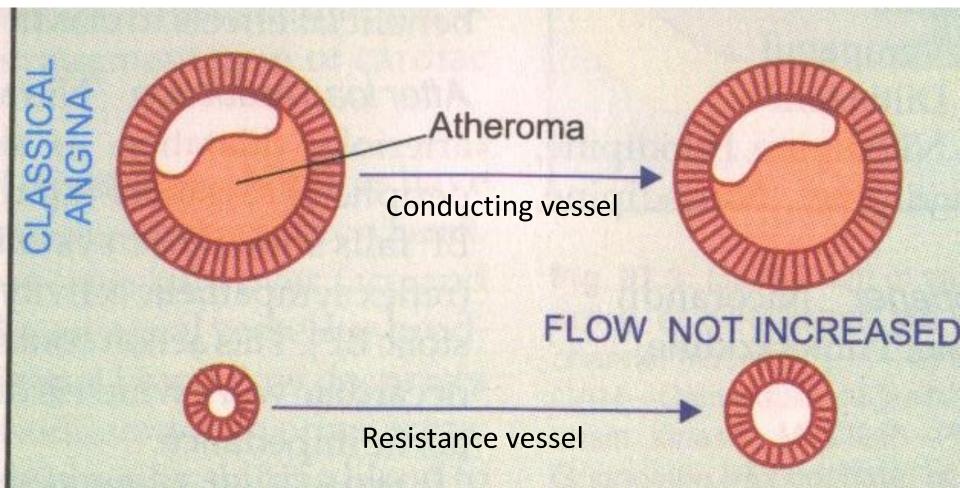
- Peripheral resistance
- Arterial stiffness, Arterial BP
- Heart rate --- At faster rate
 - Diastole is abbreviated --- coronary flow is \downarrow
 - Fiber spend more time at systolic tension levels

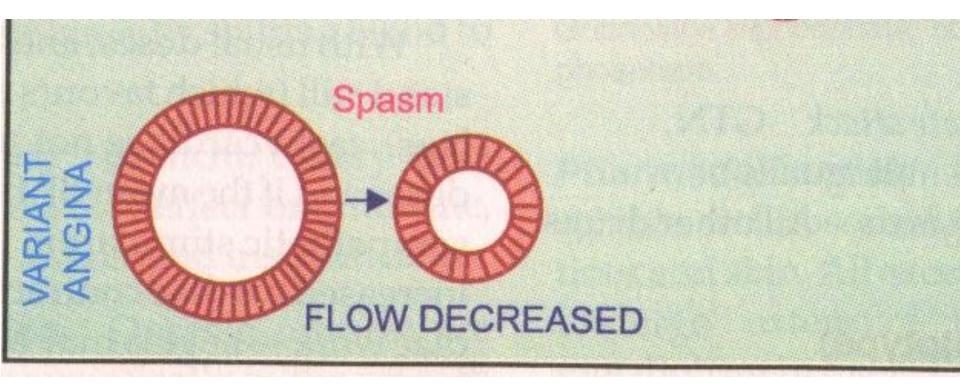

TYPES OF ANGINA


1. ATHEROSCLEROTIC ANGINA

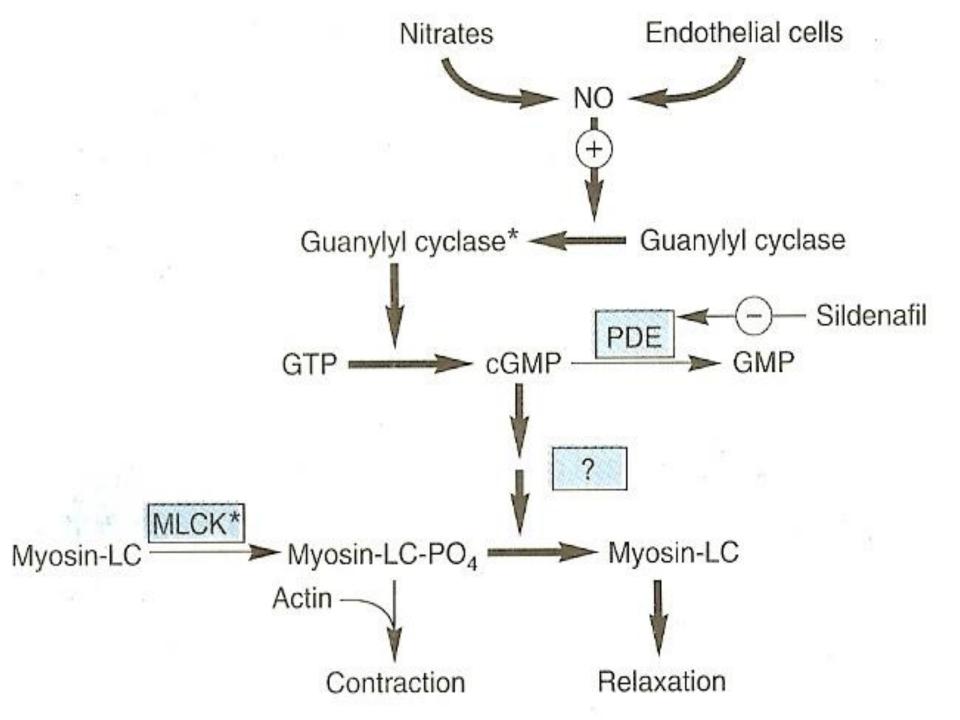
(Atheromatous plaques occlude coronary arteries)

- 2. VASOSPASTIC ANGINA --- VARIANT ANGINA (Constriction of coronary arteries)
- 3. UNSTABLE ANGINA


(Thrombus with atherosclerosis and vasospasm of coronary arteries)



Exercise


ATHEROSCLEROTIC ANGINA (Atheromatous plaques occlude coronary arteries)

VASOSPASTIC ANGINA (Constriction of coronary arteries)

Nitrates are potent vasodilators

- Dilation of the large veins -----This reduces preload (venous return) and reduces the work of the heart
 - → myocardial oxygen demand/consumption
 because of ↓ cardiac work
- Dilates coronary vessels
 - \downarrow coronary vasoconstriction or vasospasm and \uparrow perfusion of myocardium

Toxicity/ precaution

- Vasodilation
 - Tachycardia (baroreceptor reflex)
 - Orthostatic hypotension (effect of vasodilation)
 - Throbbing headache (meningeal artery vasodilation), facial flushing
 - Precautions with other hypotensive agents
- Sildenfil potentiate the action of nitrates
 - Synergestic relaxation of vascular smooth muscle with potential dangerous hypotension and hypoperfusion of critical organ
 - Sidenafil (or other PDE5 inhibitors) should not be given with nitrates

Tolerance

- Develops rapidly
 - Loss of effect of a nitrate vasodilator when exposure is prolonged beyond 10 to 12 hours
- A daily "Nitrate free interval" to restore sensitivity to drug
 - Typically 10 to 12 hours interval, usually at night
- In patients of variant angina Nitrate-free interval should occur in the late afternoon
 - Variant angina worsen early in the morning (个 catecholamine surges)

β blockers

- Reduce work and myocardial O2 demand, both at rest and especially on exertion
 - -Ve ionotropic effect and -Ve chronotropic effect
 - Low heart rate is associated with an increase in diastolic perfusion time of myocardium
- Cardioselective β blockers are preferred
 - Atenolol, Metoprolol
 - All β blockers are nonselective at high doses
 - Agents with intrinsic sympathomimetic activity (e.g., Pindolol) are less effective and should be avoided in angina

β blockers

- β blockers are of **no value in an acute attack**
- Used for **prophylactic therapy** of angina
 - Effective in preventing exercise induced angina
 - Reduce the frequency and severity of anginal attacks
- Ineffective in against the vasospastic angina
 - May aggravate coronary artery spasm
- β blockers + nitrate combination is useful ---undesirable effects of nitrates (tachycardia) are reduced by the β blockers

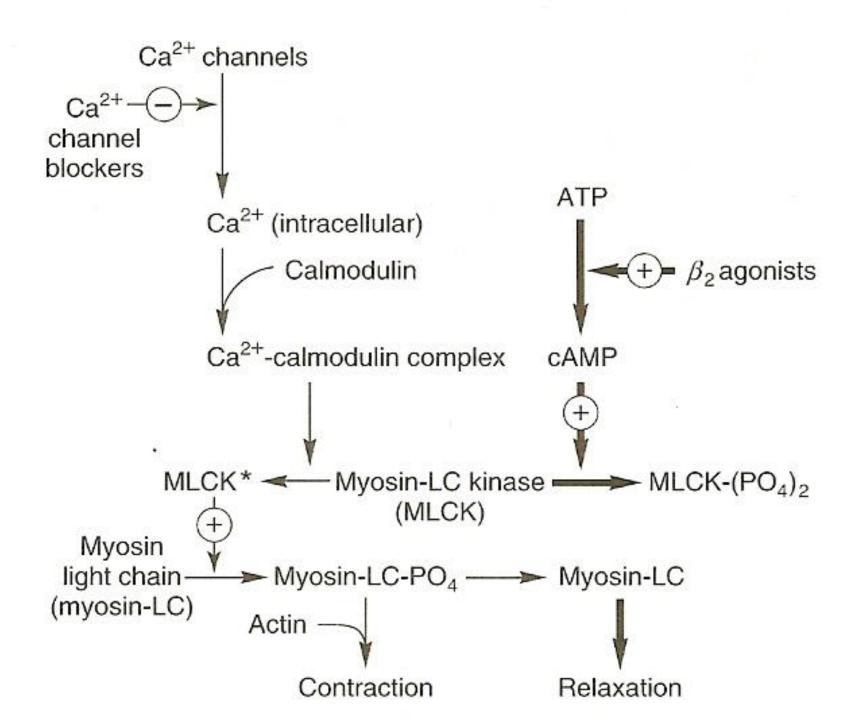
β blockers

- Used in secondary prevention
 - Drugs of choice in patients with previous MI and has been shown to prolong survival
- It is important not to discontinue β blockers therapy abruptly
- The dose should be gradually tapered off over 5 to 10 days to avoid rebound angina or hypertension

β blockers + Nitrates

- Increase exercise duration and tolerance
- Tachycardia due to nitrate is blocked by the β blockers
- The tendency of β blockers to cause ventricular dilatation is counteracted by nitrates
- The tendency of β blockers to reduce total coronary flow is opposed by nitrates

Contraindications


- Bradycardia
- AV block
- Asthma/COPD
- Peripheral vascular disease

Calcium channel blockers

- Reduce oxygen demand of myocardium
 - Relax coronary arteries
 - Reduce **afterload** by causing peripheral vasodilatation
 - Reduce force of LV contraction
- The non-dihydropyridines (diltiazem and verapamil) also reduce heart rate
 - Particularly useful antianginal agents, but should be used with caution in combination with beta blockers
 - Verapamil + β blocker combination is contraindicated

Calcium channel blockers -- Nifedipine

- Short acting dihydropyridines (nifedipine) can cause reflex tachycardia
 - High dose nifedipine is associated with adverse effects
 - Slow release preparations + 3rd generation agents(amlodipine)
 - have smooth profile of action
 - No significant effect on heart rate
 - No significant negative ionotropic effect

Calcium channel blockers

- Ca⁺⁺ channel blockers do not reduce the risk of MI in unstable angina
- The use of ditiazem or verapamil should be reversed for patients resistant to treatment with beta blockers
- Sudden withdrawal of calcium channel blockers may be associated with an exacerbation of angina
 - Rebound worsening of angina on withdrawal is less than with beta blockers

Uses -- Angina pectoris, arrhythmia

- Safe to be used in patients with
 - COPD and peripheral vascular diseases in whom beta blockers are contraindicated
- Arrhythmia --- verapamil
 - (ditiazem to a lesser extent) is highly effective in PSVT and
 - for control of ventricular rate in supraventricular
 (VT) arrhythmias

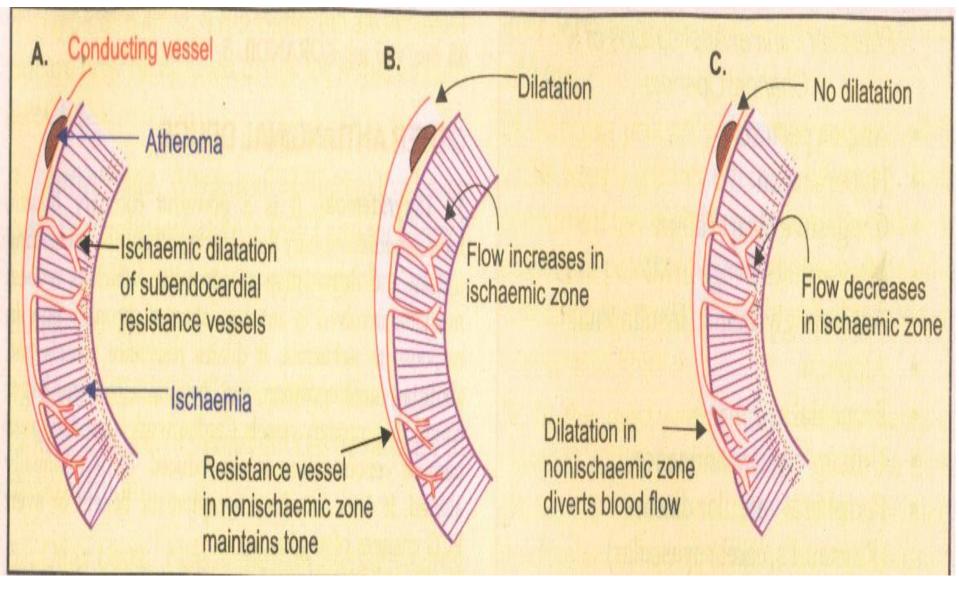
Rational drug combinations

- When monotherapy is unable to provide adequate relief, 2 or more drugs may be given
- β blockers + long acting nitrate
- Slow acting DHP+β blockers
 - Contraindicated ---- β blockers + verapamil
 - To be used with caution β blockers + diltiazem
- Nitrates + CCBs
 - Especially useful in vasospastic angina

Nicorandil

- Nicorandil has two components
 - K+ channel activator
 - Nitrate component
- It has both arterial and venous dilating properties
- Not used as first-line drug
 - Used when there are contraindication to use of other drugs and
 - In refractory unstable angina

Metabolism modifiers (trimetazidine)


- Used as additional medication to conventional therapy in angina and post MI
- Improves cellular tolerance to ischemia
 - Decrease fatty acid metabolism and increasing glucose metabolism in mitochondria by inhibiting mitochondrial lon chain 3 ketoacyl Co A(3KAT) thiolase
 - Limit intracellular acidosis and Na⁺, Ca⁺⁺ accumulation during ischemia
 - Protect against O+ free radical induced membrane damage

Dipyridamole

- A powerful coronary dilator, increases total coronary flow
- It inhibits platelets aggregation
 - By potentiating PGI2 and increasing cAMP in platelets
- Dipyrimidole The pharmacological success but therapeutic failure
- Coronary steal
 - By dilating resistance vessels in non ischemic zone as well, it diverts the already reduced blood flow from the ischaemic zone

Angina pectoris

Coronary steal by Dipyridamol

Nitrates

Treatment of angina

- Risk factor evaluation and correction
 - Smoking, hypercholestrolaemia
 - Weight reduction, regular exercise
- Management of coexistent conditions – DM, HTN
- Medical therapy
- Revascularization
 - CABG
 - Angioplasty

Medical treatment

- Prognostic therapies
 - Aspirin --- 75 mg daily
 - Lipid lowering therapy
 - Low fat diet
 - Statins (HMG-Co A reductase inhibitors)
 - Fibrate (if TGs >3.5 mmol/l)
- Symptomatic treatment
 - Nitrates
 - β blockers
 - Nicorandil

- C C Bs,
- Trimetazidine

Medical treatment

Prognostic therapies

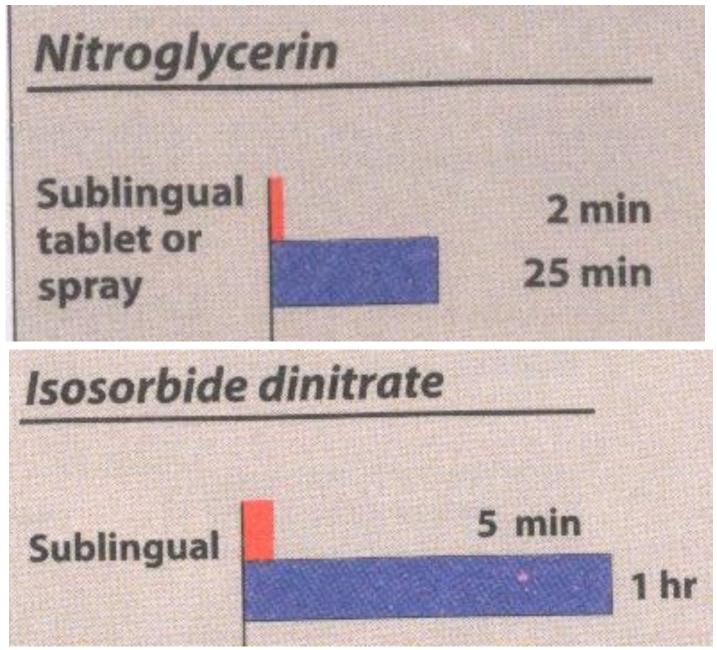
- Aspirin
 - 75 300 mg daily
- Lipid lowering therapy
 - Low fat diet
 - Statins (HMG-Co A reductase inhibitors)
 - Fibrate (if TGs >3.5 mmol/l)

Symptomatic treatment

- Nitrates
- β blockers
- C C Bs,
- Nicorandil
- Trimetazidine

Treatment of angina with concomitant disease

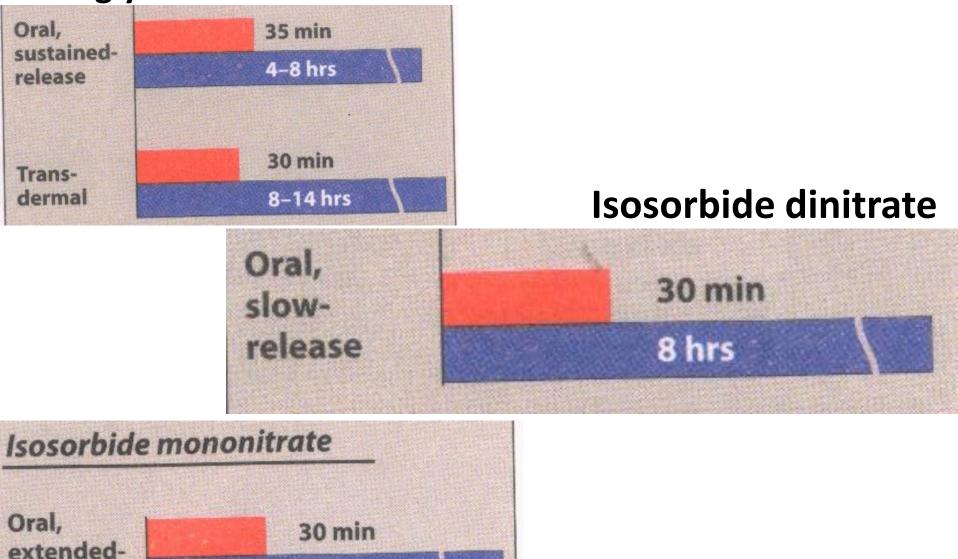
- None
 - Long acting **nitrates**, **β blockers**, **C C Bs**
- Recent MI
 - Long acting **nitrates**, **β blockers**
- Asthma/COPD
 - Long acting **nitrates, C C Bs**


Treatment of angina with concomitant disease

- HTN
 - β blockers, C C Bs
 - Long acting nitrates (less effective)
- DM
 - Long acting **nitrates**, C C Bs
- CRF
 - Long acting **nitrates, C C Bs**
 - β blockers (less effective)

Treatment of acute anginal pain

- Sublingual --- Tablets or spray
- S/L nitroglycerine is the drug of choice
- For prompt relief of an acute attack of angina precipitated by exercise or emotional stress


Onset of action + duration of action

Chronic stable angina

Nitroglycerine

release

12 hrs

Treatment of angina

- Transdermal GTN (ointmenr or patch) last up to 24 hours
 - Symptomatic relief & Prophylactic therapy
 - Tolerance develops after 8-10 hours
 - Patch to be removed after 10-12 hours to allow recovery of sensitivity to the drug
- Long acting nitrates(Isosorbide mononitrate)
 - Once daily preparation are available
 - Smooth phamacokinetic profile and avoid the problem of tolerance

Rational drug combinations

- When monotherapy is unable to provide adequate relief, 2 or more drugs may be given
- β blockers + long acting nitrate
- Slow acting DHP+β blockers
 - Contraindicated ---- β blockers + verapamil
 - To be used with caution β blockers + diltiazem
- Nitrates + CCBs
 - Especially useful in vasospastic angina

Severe and resistant cases of angina

- Nitrates + β blockers + CCBs
- Nitrates decrease preload
- CCBs reduce afterload + ↑ coronary flow
- β blockers decrease cardiac work by –Ve ionotropic and chronotropic action on heart
 - Verapamil and diltiazem is to be avoided in such combinations

Acute coronary syndromes

ST-elevation MI (STEMI) Non ST-elevation MI (NSTEMI) Unstable angina

ACS

- 02
- Aspirin/clopidogril
- Opioid analgesic
- Morphine 10-20 mg I/V
- β blockers
- GTN
- plaque stabilization /ventricular remoduling
 - HMG Co A reductase inhibitors

– ACE I

ACS-(For non-STEMI)

- Anti-thrombin
 - Low molecular weight heparin
- Glycoprotein IIB/IIIA
 - Abciximab
 - Eptifibatide
 - tirofiban

ACS-(For STEMI)

- Thrombolysis
 - Streptokinase

or

– Alteplase (rt-PA)

or

- Tenecteplase (TNKase)

or

Reteplase

Pharmacological therapy in acute coronary syndromes

- O2 therapy 6- 10 liters / minute – 35-50 %
- Antiplatelet
 - Aspirin
 - Chewable or soluble
 - 150 -300 mg stat then 75-100 mg daily
 - Clopidogril
 - Loading dose 300 mg orally

Then 75 mg daily

Analgesia

- Opioid analgesic + antiemetic
- Morphine
 - 10-20 mg l/V or
- Pathedine or
 - 50-100 mg I/V
- antiemetic, metoclopramide 10 mg I/V

Myocardial energy consumption(β blockers)

- Atenolol
 - 5 mg I/V repeated after 15 minutes, then
 - 25-50 mg p.o. daily or
- Metoprolol
 - 5 mg I/V repeated to a maximum of 15 mg, then
 - 25 50 mg p.o. daily
- Contraindications
 - Avoid in asthma, COPD, heart failure, hypotension, bradyarrhythmias

Coronary vasodilatation

- Glyceryl trinitrate
- 2-10 mg I/V infusion, or sublingual
- Maintain systolic BP > 90 mm Hg

Plaque stabilization / ventricular remodelling

- Statins (HMG-Co A reductase inhibitors)
 - Simavastatin 20-40 mg P.O. daily
 - Pravastatin 20-40 mg P.O. daily
 - Atorvastatin 80 mg P.O. daily
- ACR I
 - Ramipiril 2.5-10 mg P.O. daily
 - Lisinopril 5-10 mg P.O. daily
 - Monitor renal function

Plus for NSTEMI

Antithrombin

- Low molecular weight heparin
- Enoxaparin 1mg/ Kg S.C twice daily
- Glycoprotein IIB/IIIA inhibitors
- If coronary intervention likely within 24 hours
- Abciximab
 - 0.25 mg/Kg I/V bolus, then 0.125 mg/Kg /min up to 10 mg / minute I/V for 12 hours
- Indicated in high risk patients managed without coronary intervention or during PCI
- Eptifibatide
 - 180 mg/Kg I/v bolusthen 2 mg /Kg /minute I/V for 72 hours
- Tirofiban
 - 0.4 mg/Kg/min I/V for 30 min, then 0.1 mg/Kg /min for 48-108 hours

Plus for ST- elevation myocardial infarction (thrombolysis)

- Streptokinase or
- Alteplase (rt-PA) or
- Tenecteplase (TNKase) or
- Reteplase
- Streptokinase
 - 1.5 mega units (1,500,000) I/V over 60 minutes
 - Antibodies appear after 4 days, which reduce effectiveness

Contraindications to thrombolysis

- Absolute
 - Haemorhagic stroke
 - Ischaemic stoke in preceding 6 months
 - CNS neoplasm
 - Recent(3months) major trauma, surgery, head injury
 - GIT bleeding within the last month
 - Known bleeding disorder
 - Aortic dissection

Contraindications to thrombolysis

- Relative
 - TIA in preceding 6 months
 - Oral anticoagulant therapy
 - Pregnancy or within one week postpartum
 - Refractory HTN(systolic BP > 180 mmHg)
 - Advance liver disease
 - Infective endocarditis
 - Non-compressible punctures
 - Traumatic resuscitation

Vasoconstrictor drugs

Vasoconstrictor drugs

- Sympathomimetic amines
 - (direct and indirect)
- Peptides
 - Angiotensin II
 - Antidiuretic Hormones (ADH) and
 - Endothelin (no clinical use)
- 5-HT_{1D} receptor agonists
 - Dihydroergotamine
 - Triptans
- Eicosanoids (thrombaxone A2)- no clinical use

Clinical uses -- vasoconstrictors

- Local application
 - Nasal decongestion
 - Coadministration with local anesthetics
- Circulatory shock
 - Sympathetic amines
- Anaphylactic shock & cardiac arrest
 - Adrenaline
- To stop esophageal bleeding in patients with portal hypertension caused by CLD
 - ADH (A posterior pituitary hormone)
 - Octreotide ---- a long acting analogue of somatostatin

Vasopressin – ADH

• Antidiuretic action on the kidney

- Mediated via $\rm V_2$ receptors and involve Activation of adenylate cyclase in renal collecting ducts
- Occurs at low plasma concentration of ADH

• A powerful vasoconstrictor --- generalized vasoconstriction

- Mediated through V₁ receptors
- Require higher concentration and involve activation of phospholipase C
- Used to treat patients with bleeding esophageal varices and portal hypertension
- It also affects other smooth muscles GIT and uterine abdominal cramps

Vasodilators

- Arteriolar dilators (↓ after-load)
 - Hydralazine, Minoxidil, Ca⁺⁺ channel blockers
 - Fenoldopam (dopamine D1 receptor activator)
- Venodilators (↓ pre-load)

– Nitrates

- Mixed dilators(\$\sqrt{pre}\$ pre and after load)
 - ACE inhibitors, ARB
 - Nitroprusside

Main uses of vasodilators

- Antihypertensive therapy
 - ACE I, AT_1 antagonists (ARB), CCB and α_1 antagonists
- Treatment and prophylaxis of angina pectoris

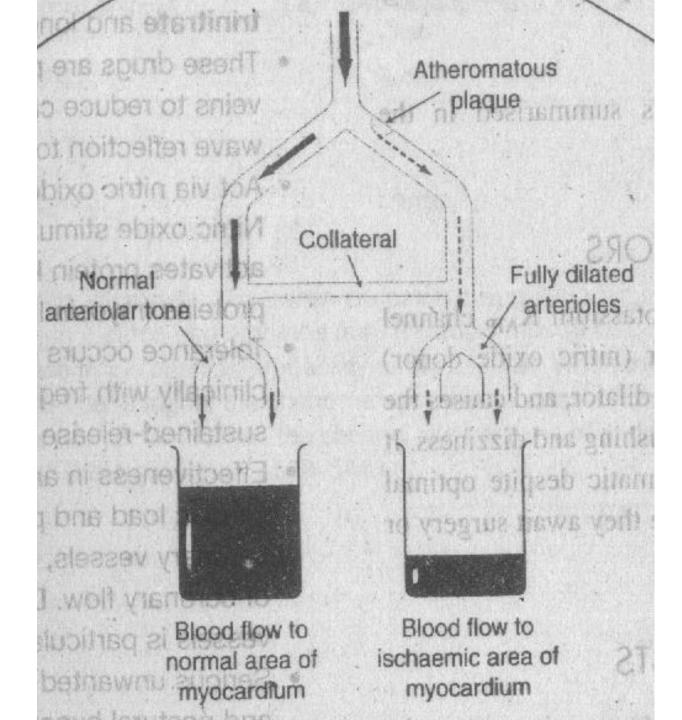
 CCB, Nitrates
- Treatment of cardiac failure
 ACE I, ARB

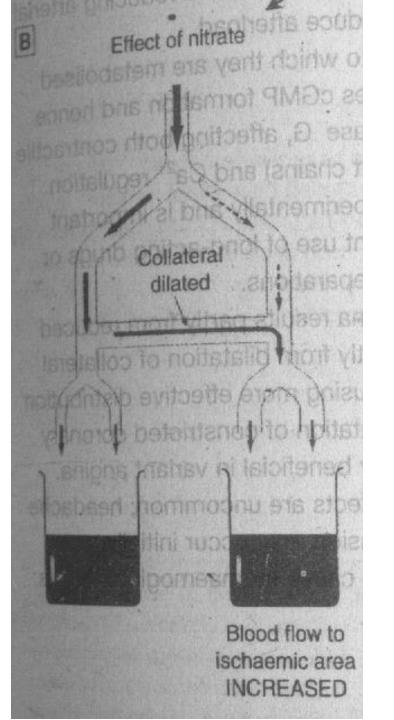
B

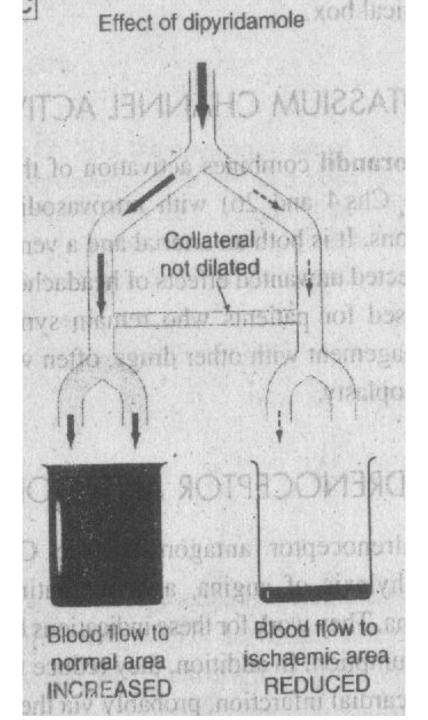
Atheroma Coronary artery

Perforating vessels

5 mm Hg (End diastolic pressure)


Left ventricular wall


Ischaemic Subendocardial zone


25 mm Hg

IN BETWEEN ATTACK

DURING ANGINA

Subendocardial crunch

- Blood flow to the subendocardial region occurs only during diastole
- Due to inadequacy of ischemic L V, the end diastolic L V pressure rises from 5 to about 25 mmHg ----produces subendocardial crunch during diastole

В

Atheroma Coronary artery

Perforating vessels

5 mm Hg (End diastolic pressure)

Left ventricular wall

IN BETWEEN ATTACK

Subendocardial crunch DURING ANGINA

Ischaemic

zone

Subendocardial

25 mm Hg