Functional Analysis Spring 2020

Week 8-10

Instructor: Dr. Azhar Hussain Topic: Normed Spaces

Definition 0.1 Let X be a vector space (real or complex). A real-valued function

|| - ]| : X = R is said to be a norm on X if

NI flz]| > 0;
N2: ||z|| =0 < x =0;
N3: [laz|| = af|z|l;

N4: [z +yl| < |l=ll + [[yl],

for all x,y € X and for all scalar .

Remark 0.2 The norm generalizes the concept of length of a vector in R3 to a

general vector space X. In this case we write |x| = ||z||.

Definition 0.3 A metric d on a vector space X can be defined by using the norm

on X as
d(z,y) = [l — yl|.
The metric obtained in this way is called the metric induced by the norm.
M1: d(z,y) = |lz — y|| > 0 (by N1), so d(z,y) > 0;
M2: d(z,y) =[lz —y|| =0 & z—y=0 (by N2), & = =y;

M3: d(z,y) = |lz —yll = || — (y — )| = | = 1|ly — z|| = d(y,x) (by N3);



M4:

d(z,y) = ||z — y| |l —2z+2z—yl|
< lz =zl + ||z — vyl

d(z, z) 4 d(2,y),

for all x,y,z € X. Therefore, d(x,y) |l — y|| s a metric on X. Hence

(X,d) is a metric space.

Remark 0.4 FEvery normed space is a metric space but the converse is not true

in general.

Example 0.5 Consider X = {z :  is bounded or unbounded sequence} and the

metric d on X is given by

1 &=
d(z,y) = ;Em, (1)

where x = (&;) and y = (n;). It is easy to verify that d is a metric on X. Now

suppose that d is induced by norm || - || on X, i.e. d(xz,y) = ||z — y||. Then
— 1 &
z|| = d(x,0) = 2
foll = d@,0) = 3= i Pl )
Now
— 1 |ag&|
az|| =
[tezd] 22214_'0‘51'
— 1 &l
7 |2211+|£,
= el (3)

This implies ||ax|| # a|x||. Therefore, X is not a normed space.

Definition 0.6 A normed space is complete if it is complete as metric space. A

complete norm space is called a Banach space.



2.2-2 Eudidean space R" and unitary space C". These spaces were
defined in 1.1-5. They are Banach spaces with norm defined by

0 - (X 167) " ~viEF+ - +IeP.

In fact, R™ and C" are complete {cf. 1.5-1), and (3) yields the metric
(7) in Sec. 1.1:

d(x, y) =|x —yl=VI& —mf+- - HE -]

We note in particular that in R® we have

= x| = V&2 + &2+ &2

This confirms our previous remark that the norm generalizes the
clementary notion of the length |x| of a vector.

2.2-3 Space I". This space was defined in 1.2-3. It is a Banach space
with norm given by

@) b= (% 16"

=1

In fact, this norm induces the metric in 1.2-3:
o ip
at ) =hr-sl=(Z le—mt) "

Completeness was shown in 1.5-4.



2.2-4 Space I”. This space was defined in 1.1-6 and is a Banach
space since its metric is obtained from the norm defined by

= sup ]

and completeness was shown in 1.5-2.

2.2-5 Space C[a, b]. This space was defined in 1.1-7 and is a Banach
space with norm given by

) Jx] =max )

el

where J=[a. b]. Completeness was shown in 1.5-3.

Lemma 0.7 Show that a metric d induced by a norm on a normed space X

satisfy

1. d(x +a,y + a) = d(z,y);
2. d(az, ay) = |ald(z,y),

for all x,y,a € X and for any scalar . Proof: 1. Since d is induced by the

norm || - ||, therefore,
d(z,y) = [lz — yl|.
Now,
dx+a,y+a) = |lt+a—y—al
= |z —yll = d(z,y).

2. For any scalar o

d(az,ay) = |lax— oyl

= |afllz -yl

= |ajd(z,y).



1 Properties of Normed Spaces

Definition 1.1 Let X be a normed space and Y a nonempty subset of X. We
say that Y is a subspace of X if it is a subspace as a vector space with the
norm obtained by restricting the norm on X to the subset Y. The norm onY

1s said to be induced by the norm on X.
Note 1.2 If Y s closed in X, then Y is a called a closed subspace of X.

Remark 1.3 A subspace Y of a Banach space X is a subspace of X considered

as a normed space. i.e. the completeness of Y is not essential.

Theorem 1.4 Show that a subspace Y of a Banach space X is complete if and
only if the set Y 1is closed in X.

Proof: Suppose that Y is complete. We show that Y is closed. For this, we
show thatY =Y.

Let y € Y, then there is a sequence (y,) in Y such that y, — y as n — oo.
Now, the sequence (y,) being convergent is Cauchy and'Y is complete, so (yn,)
converges in y. That is, y € Y. Hence Y C Y. ButY C Y. Therefore,
Y =Y. HenceY is closed.

Conversely, suppose that Y is closed. We show that' Y is complete. For this,
let (yn) ba a Cauchy sequence in'Y. Then it is Cauchy in X (asY is subspace
of X). But X is complete, so there is y € X such that y, — y. That is, Y
contains infinite number of terms of the sequence (y,). This shows that y is
a limit point of Y, i.e. y €Y. Since Y is closed, soy €Y =Y. HenceY is

complete. [ ]

By using the concept of metric induced by norm, we now define the convergence

of a sequence in normed spaces.

Definition 1.5 A sequence (x,) in a normed space X



1. is convergent to a point x € X if

lim ||z, — x| = 0. (4)

n—oo

We write it as x,, — * as n — oo.

2. is Cauchy if for every € > 0 there is an ng € N such that for all m,n > ny,

we have

||wm - :Bn” < €. (5)

Definition 1.6 Let x,, be a sequence in a normed space X. Associate with (x,),

a sequence (S,) of partial sums
Sp =21+ T2+ -+ Tn,
where n = 1,2,3,---. If (S,) is convergent, say
Sn — S, that is ||Sn — s|| — O,

then the series

an=$1+l‘2+”' (6)

n=1

is said to converge or to be convergent, s is called the sum of the series and

we write

SZZmn:az1+w2+---.

n=1

Remark 1.7 If ||x1|| + ||x2]|+- - - converges, the series (6) is said to be absolutely

convergent. This happens only in case of R or C. In other words,

oo oo
Z |zn| < co = Zazn < oo.
n=1 n=1

But note that, in a normed space X, this is not true in general. That is, abso-
lute convergence does not implies convergence. However, absolute convergence

implies convergence if and only if X is complete.



We can use the concept of convergence of a series to define a “basis” of normed

space.

Definition 1.8 Let (e,) be a sequence in normed space X such that for every

x € X there is a unique sequence of scalars (o) such that
| — (a1e1 + azeas + -+ ane,)|| =0  as n — oo, (7)

then (e,) is called a Schauder basis (or basis) for X. The series

Z [ 9 (8>

which has the sum x is then called the expansion of x with respect to (e,), and

we write

r = Z ageg (9)
k=1

Example 1.9 Consider the normed space P, The Schauder basis (e,) of IP space

are given by

enzénj: (10)
0 n#j

that is, (e,) is the sequence whose nth term is 1 and all other terms are zero.
Thus, we have

€ = (170a070a"')

€z = (07170707"')

€3 = (090a190a"')

Exercise 1.10 Show that if a normed space X has a Schauder basis, then X is

separable.

Definition 1.11 Let (X, ||.||) and (X', || * || be two normed spaces. A mapping T

of X into X’ is said to be isometric or an isometry if T preserves norm, that



is, if for all x,y € X,
Tz, Ty|| = ||, yl|- (11)

Theorem 1.12 Let (X, ||||) be a normed space. Then show that there is a Banach
space X and an isometry A from X onto a subspace W of X which is dense

in X. The space X 1s unique, except for isometries. Proof: [ ]

2 Finite Dimensional Normed Spaces and Subspaces

In this section, we will study some properties of finite dimensional normed
spaces. First recall that a normed space X is called finite dimensional if it
is that of as vector space and it is well known that a vector space is finite dimen-
sional if there are finite number of linearly independent vectors in the spanning

set of X. We start with the following important lemma:

Lemma 2.1 Let {x,::- ,x,} be a linearly independent set of vectors in a normed
space X (of any dimension). Then there is a number ¢ > 0 such that for every

choice of scalars oy, -+ ,,, we have
oy + -« + ann|| 2 c(lea| + - + |an]). (12)

Proof: For simplicity, put s = |o| + -+ + |a,|. If s = 0, then aj = 0 for all
j=12,---,n. So that (12) holds for all ¢ > 0. Assume now that s > 0.
Then dividing (12) by on both sides, we get

1
;”alml + -+ anmn” Z C. (13)
Since s > 0, putting % = B; in (13), we have
||ﬁ1w1 + ° + /Bnmnll < C, (14)

where

Z|5j|zz SJ =1 as s=|a|+ - |an|



Now in order to show that (12) holds, it is enough to show that (13) holds for
every ¢ > 0 and for every n-tuple of scalars By, ,3, with ) |3;| = 1.
j=1

Suppose on contrary that

||ﬁ1w1 + -+ /Bna:n” S C. (15)

Then there exists a sequence (y.,) of vectors

with > [8"| =1, such that

Jj=1

|ym|| =0 as m — oco. (17)

n

Now since, Y |[3;”| = 1, so we have |ﬁ;“| < 1. Hence for each fixed j the
j=1

sequence

(B7") = (Bj5855+++)
ts bounded. Consequently, by the Bolzano- Weierstrass theorem, (387*) has a
convergent subsequence. Denote by (31, the limit of the sequence (B7*) and let
(y1,m) denote the corresponding subsequence of (Ym)-
By the same argument, (yi,,) has a subsequence (y2.,) for which the cor-
responding subsequence of scalars (B3') converges and let (3, is the limit of
(B7). Continuing in this way, after n steps we obtain a subsequence (Ynm) =

(Yn,15Yn,25* ) of (ym) whose terms are of the form

n n
Ynm = > Vi =1 (18)
j=1 j=1

with scalars «v; satisfying v; — B; as m — oco. Hence

Ynm 7 Y = Zﬁ;nmja (19)
Jj=1
where ) |ﬁ]m| = 1, so that not all 3; can be zero. Since {x1,::-,x,} is a
i=1

linearly independent set, we thus have y # 0. Now, since

Ynm — Y,



10

this by the continuity of norm implies

Yn,mll — lyll-

Now since, Yn,m s a subsequence of (y,,) and from (17), we have ||yn| — O,
therefore, ||Ynm| — 0. By the uniqueness of limit, we have ||y|| = 0, so that
y = 0. Which is a contradiction to the fact that y # 0. Hence our assumption

in (15) is wrong. Consequently,

[B11 + - -+ + Bnzn|| 2 ¢, (20)

which corresponds
oy + - -+ + anen|| 2 c(loa| + -+ + |an]) (21)
for every c > 0. ]

Theorem 2.2 Fvery finite dimensional subspace Y of a normed space X is com-
plete. In particular, every finite dimensional normed space is complete.

Proof: Suppose that (y,,) is a Cauchy sequence in'Y . Since Y is a finite dimen-
stonal subspace of a normed space. Assume that dim(Y )= n and {e1, - ,e,}

any basis for Y. Then each y,, has a unique representation of the form
Ym = a'e; + -+ ey, (22)

Since (yn,) ts a Cauchy sequence, for every € > 0 there is an N € N such that

for all m,r > N, we have
1Ym — yell <e. (23)

Now, by Lemma 2.1, there is a ¢ > 0 such that

n o
€> [|ym —yrll = Za;’nej - Za;?ej

n
= Z(a;” — aj)e;
i=1

> cZ|a;.n—a;|. (24)
i=1
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This gives .
Z|a§”—a;| < E, (m,r > N), (25)
i=1
which implies
laf* — o §Z|a;”—a;| <§ (m,r > N). (26)
=1
Hence
™ — o] < Z (m,r > N). (27)

This shows that each of the n sequences
(a’;‘):(ajl.,ajz.,---) j=12,---,n

ts Cauchy in R or C. By the completeness of R or C, it converges and let o;

denotes the limit. Using these n limits a{,--+ ,a,, we define
Y =ouey + -+ Qpenp.

Clearly, y € Y. Furthermore, since o — oy, we have

n o0
lym —yll = D ale; =) aje;

n
= |[D_(a]" — ay)e;
=1

< D laft — agllle;ll — 0. (28)
=1

That is, Y, — y. This shows that (y,,) is convergent in Y. Since (y.,) was an

arbitrary Cauchy sequence in Y, this proves that Y is complete. [ ]

Theorem 2.3 Show that every finite dimensional subspace Y of a normed space
X 1s closed in X.
Proof: We have proved that

“Fvery finite dimensional subspace Y of a normed space X is complete.”
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Also we know that

“A subspace Y of a complete normed space X is itself complete if and only if

the set'Y is closed in X.”

Therefore, we conclude that

“every finite dimensional subspace Y of a normed space X is closed in X ”.

Note 2.4 In case of infinite dimensional subspace, Theorem 2.3 need not to be

true.

Example 2.5 Let X = C[O, 1] and the norm || - || is defined by

)| = t)|.
la(t)| = maox ()|
Under this norm X is complete. Let Y = Span(1,t,t?,---) be the set of

polynomials. Let (y,) be a sequence in' Y such that

t? t"
Yn=14+t+ =+ 4+ —4---
2! n!
Now ,
limy,=lm1l4+t+—-+.--+—+-.-=€" €Y.

This shows that Y is not closed and hence not complete.
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3 Equivalent Norm

Definition 3.1 A norm || - || on a vector space X is said to be equivalent to a
norm || - |lo on X if there are positive numbers a and b such that for all x € X
we have

allzllo < |lz|| < bl|zlo- (29)

Note 3.2 Equivalent norms on X define the same topology for X.

Theorem 3.3 Show that on a finite dimensional vector space X, any norm || - ||
is equivalent to any other norm || - ||o.
Proof: Suppose dim(X) =n and {e;,ea,:-- ,e,} any basis for X. Then every

x € X has a unique representation

Tr=oe;+ -+ a,e, (30)
for any scalars ay,-++ ,,. Then by Lemma, there is a positive constant c
such that
2|l = llares + -+ - + anen|| 2 e(|as]| + - + |an]). (31)
On the other hand
[zlle = llaes + -+ + anenllo
< Jlaaerllo + ||azezllo + -+ - + |[anen]lo
= |oulllexllo + |az|llezllo + - - - + |owm|llen]lo

> laglllesllo
j=1
n
< k) layl, (32)
j=1
where k = max ||ej||o. This gives
j

zllo < k(laa| + |az| + -+ + |an]). (33)
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From (33) and (31), we have

lzllo < k(lou| + |az| + -+ + [an]) < gllwll (34)

implies

Zlizllo < lll (35)
Hence

allzllo < [zl (36)
where a = 7 > 0.
Again, by interchanging the role of || - || and || - ||o in above arguments, we get
that

|| < bllz|lo- (37)

Combining (36) and (37), we have that

allzllo < [[z]| < bl[zl|o- (38)

4 Compactness and Finite Dimension

Definition 4.1 A metric space X is said to be compact if every sequence in X
has a convergent subsequence. A subset M of X is said to be compact if M 1is
compact considered as a subspace of X, that is, if every sequence in M has a

convergent subsequence whose limit is an element of M.

Lemma 4.2 Show that a compact subset M of a metric space is closed and
bounded.

Proof: Suppose that M is a compact subset of a metric space X. We first
show that M is closed. For this, we show that M = M.

Let x € M, then there is a sequence (x,,) in M such that =, — x. Since M is



compact and (x,) is a convergent subsequence of itself, so x € M, But x € M.

So,

M C M.
But

MCM
Hence

M=M

Therefore, M 1is closed.

To show that M is bounded, assume that it is not. Then there is an unbounded
sequence (y,) in M such that d(y,,b) > n, where b is any fized element. So,
there exist no convergent subsequence of (y,) because convergent subsequence

must be bounded. Which is a contradiction. Hence M is bounded. ]

Theorem 4.3 Show that in a finite dimensional normed space X, any subset
M C X is compact if and only if M is closed and bounded.

Proof: Suppose that M is a compact subset of a metric space X. We first
show that M is closed. For this, we show that M = M.

Let x € M, then there is a sequence (x,) in M such that x,, — x. Since M is
compact and (x,) is a convergent subsequence of itself, sox € M, But x € M.

So,

M C M.
But

M C M
Hence

M=M

Therefore, M 1is closed.
To show that M is bounded, assume that it is not. Then there is an unbounded

sequence (y,) in M such that d(y,,b) > n, where b is any fized element. So,



16

there exist no convergent subsequence of (y,) because convergent subsequence
must be bounded. Which is a contradiction. Hence M 1is bounded.

Conversely: Suppose now that M 1is closed and bounded subset of a finite
dimensional normed space X. Let dim(X) = n and {e;, ez, -+ ,e,} any basis

for X. Let (x,,) be a sequence in M then each x,, has a representation
Tm =al'er + -+ alle,. (39)

Since M 1is bounded, so is the sequence (x,,). Then there is k > 0 such that

for all m, we have

|lzm|| < k. (40)

From (39), (40) and by Lemma, we have

k> |lzmll = llaf"er + -+ + ajtenl > ¢ ) laf, (41)

j=1

where ¢ > 0. This gives

(42)

ol

n

m
Z o] <
=1

Hence the sequence of numbers (a;.n ) is bounded and, by the Bolzano- Weierstrass
theorem, has a point of accumulation o, 1 < j < n. Therefore, (x,,) has a
subsequence (z,,) which converges to z = ) aje;. Since M is closed, z € M.
This shows that the arbitrary sequence (x,,) in M has a subsequence which

converges in M. Hence M is compact. [ ]



