Functional Analysis

Spring 2020

Week 8-10

Instructor: Dr. Azhar Hussain

Topic: Normed Spaces

Definition 0.1 Let X be a vector space (real or complex). A real-valued function $\|\cdot\|: X \to \mathbb{R}$ is said to be a norm on X if

N1: $||x|| \ge 0;$

N2: $||x|| = 0 \iff x = 0;$

N3: $\|\alpha x\| = \alpha \|x\|$;

N4: $||x + y|| \le ||x|| + ||y||$,

for all $x, y \in X$ and for all scalar α .

Remark 0.2 The norm generalizes the concept of length of a vector in \mathbb{R}^3 to a general vector space X. In this case we write |x| = ||x||.

Definition 0.3 A metric d on a vector space X can be defined by using the norm on X as

$$d(x,y) = \|x-y\|.$$

The metric obtained in this way is called the metric induced by the norm.

 $\begin{array}{l} \text{M1:} \ d(x,y) = \|x-y\| \geq 0 \ (by \ N1), \ so \ d(x,y) \geq 0; \\ \\ \text{M2:} \ d(x,y) = \|x-y\| = 0 \ \Leftrightarrow \ x-y = 0 \ (by \ N2), \ \Leftrightarrow \ x = y; \\ \\ \\ \text{M3:} \ d(x,y) = \|x-y\| = \|-(y-x)\| = |-1|\|y-x\| = d(y,x) \ (by \ N3); \end{array}$

M4:

$$egin{array}{rcl} d(x,y) = \|x-y\| &= \|x-z+z-y\| \ &\leq \|x-z\|+\|z-y\| \ &= d(x,z)+d(z,y), \end{array}$$

for all $x, y, z \in X$. Therefore, d(x, y) = ||x - y|| is a metric on X. Hence (X, d) is a metric space.

Remark 0.4 Every normed space is a metric space but the converse is not true in general.

Example 0.5 Consider $X = \{x : x \text{ is bounded or unbounded sequence}\}$ and the metric d on X is given by

$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|},\tag{1}$$

where $x = (\xi_i)$ and $y = (\eta_i)$. It is easy to verify that d is a metric on X. Now suppose that d is induced by norm $\|\cdot\|$ on X, i.e. $d(x,y) = \|x - y\|$. Then

$$\|x\| = d(x,0) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i|}{1+|\xi_i|}.$$
(2)

Now

$$\|\alpha x\| = \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{|\alpha \xi_{i}|}{1 + |\alpha \xi_{i}|}$$

$$\neq |\alpha| \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{|\xi_{i}|}{1 + |\xi_{i}|}$$

$$= |\alpha| \|x\|.$$
(3)

This implies $\|\alpha x\| \neq \alpha \|x\|$. Therefore, X is not a normed space.

Definition 0.6 A normed space is complete if it is complete as metric space. A complete norm space is called a Banach space.

2.2-2 Euclidean space \mathbb{R}^n and unitary space \mathbb{C}^n. These spaces were defined in 1.1-5. They are Banach spaces with norm defined by

(3)
$$||\mathbf{x}|| = \left(\sum_{j=1}^{n} |\xi_j|^2\right)^{1/2} = \sqrt{|\xi_1|^2 + \cdots + |\xi_n|^2}.$$

In fact, \mathbf{R}^n and \mathbf{C}^n are complete (cf. 1.5-1), and (3) yields the metric (7) in Sec. 1.1:

$$d(x, y) = ||x - y|| = \sqrt{|\xi_1 - \eta_1|^2 + \cdots + |\xi_n - \eta_n|^2}.$$

We note in particular that in \mathbf{R}^3 we have

$$\|x\| = |x| = \sqrt{\xi_1^2 + \xi_2^2 + \xi_3^2}.$$

This confirms our previous remark that the norm generalizes the elementary notion of the length |x| of a vector.

2.2-3 Space l^p . This space was defined in 1.2-3. It is a Banach space with norm given by

(4)
$$||x|| = \left(\sum_{j=1}^{\infty} |\xi_j|^p\right)^{1/p}$$
.

In fact, this norm induces the metric in 1.2-3:

$$d(x, y) = ||x - y|| = \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j|^p\right)^{1/p}.$$

Completeness was shown in 1.5-4.

2.2-4 Space l^{∞} . This space was defined in 1.1-6 and is a Banach space since its metric is obtained from the norm defined by

$$\|\mathbf{x}\| = \sup_{j} |\xi_j|$$

and completeness was shown in 1.5-2.

2.2-5 Space C[a, b]. This space was defined in 1.1-7 and is a Banach space with norm given by

(5)
$$||x|| = \max_{t \in J} |x(t)|$$

where J = [a, b]. Completeness was shown in 1.5-5.

Lemma 0.7 Show that a metric d induced by a norm on a normed space X satisfy

1. d(x + a, y + a) = d(x, y);

2.
$$d(\alpha x, \alpha y) = |\alpha| d(x, y)$$

for all $x, y, a \in X$ and for any scalar α . Proof: 1. Since d is induced by the norm $\|\cdot\|$, therefore,

$$d(x,y) = \|x-y\|.$$

Now,

4

$$egin{array}{rcl} d(x+a,y+a) &=& \|x+a-y-a\| \ &=& \|x-y\| = d(x,y). \end{array}$$

2. For any scalar α

$$egin{array}{rcl} d(lpha x, lpha y) &=& \|lpha x - lpha y\| \ &=& |lpha|\|x-y\| \ &=& |lpha|d(x,y). \end{array}$$

1 Properties of Normed Spaces

Definition 1.1 Let X be a normed space and Y a nonempty subset of X. We say that Y is a subspace of X if it is a subspace as a vector space with the norm obtained by restricting the norm on X to the subset Y. The norm on Y is said to be induced by the norm on X.

Note 1.2 If Y is closed in X, then Y is a called a closed subspace of X.

Remark 1.3 A subspace Y of a Banach space X is a subspace of X considered as a normed space. i.e. the completeness of Y is not essential.

Theorem 1.4 Show that a subspace Y of a Banach space X is complete if and only if the set Y is closed in X.

Proof: Suppose that Y is complete. We show that Y is closed. For this, we show that $Y = \overline{Y}$.

Let $y \in \overline{Y}$, then there is a sequence (y_n) in Y such that $y_n \to y$ as $n \to \infty$. Now, the sequence (y_n) being convergent is Cauchy and Y is complete, so (y_n) converges in y. That is, $y \in Y$. Hence $\overline{Y} \subseteq Y$. But $Y \subseteq \overline{Y}$. Therefore, $Y = \overline{Y}$. Hence Y is closed.

Conversely, suppose that Y is closed. We show that Y is complete. For this, let (y_n) be a Cauchy sequence in Y. Then it is Cauchy in X (as Y is subspace of X). But X is complete, so there is $y \in X$ such that $y_n \to y$. That is, Y contains infinite number of terms of the sequence (y_n) . This shows that y is a limit point of Y, i.e. $y \in \overline{Y}$. Since Y is closed, so $y \in \overline{Y} = Y$. Hence Y is complete.

By using the concept of metric induced by norm, we now define the convergence of a sequence in normed spaces.

Definition 1.5 A sequence (x_n) in a normed space X

1. is convergent to a point $x \in X$ if

$$\lim_{n \to \infty} \|x_n - x\| = 0.$$
⁽⁴⁾

We write it as $x_n \to x$ as $n \to \infty$.

2. is Cauchy if for every $\epsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that for all $m, n > n_0$, we have

$$\|\boldsymbol{x}_m - \boldsymbol{x}_n\| < \boldsymbol{\epsilon}. \tag{5}$$

 \boldsymbol{d}

Definition 1.6 Let x_n be a sequence in a normed space X. Associate with (x_n) , a sequence (S_n) of partial sums

$$S_n = x_1 + x_2 + \dots + x_n,$$

where $n = 1, 2, 3, \cdots$. If (S_n) is convergent, say

$$S_n o s,$$
 that is $\|S_n - s\| o 0,$

then the series

$$\sum_{n=1}^{\infty} x_n = x_1 + x_2 + \cdots$$
 (6)

is said to converge or to be convergent, s is called the sum of the series and we write

$$s=\sum_{n=1}^\infty x_n=x_1+x_2+\cdots.$$

Remark 1.7 If $||x_1|| + ||x_2|| + \cdots$ converges, the series (6) is said to be absolutely convergent. This happens only in case of \mathbb{R} or \mathbb{C} . In other words,

$$\sum_{n=1}^{\infty} \|x_n\| < \infty \Rightarrow \sum_{n=1}^{\infty} x_n < \infty.$$

But note that, in a normed space X, this is not true in general. That is, absolute convergence does not implies convergence. However, absolute convergence implies convergence if and only if X is complete.

We can use the concept of convergence of a series to define a "basis" of normed space.

Definition 1.8 Let (e_n) be a sequence in normed space X such that for every $x \in X$ there is a unique sequence of scalars (α_n) such that

$$\|x - (\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n)\| \to 0 \quad as \quad n \to \infty,$$
⁽⁷⁾

then (e_n) is called a Schauder basis (or basis) for X. The series

$$\sum_{k=1}^{\infty} \alpha_k e_k \tag{8}$$

which has the sum x is then called the expansion of x with respect to (e_n) , and we write

$$x = \sum_{k=1}^{\infty} \alpha_k e_k \tag{9}$$

Example 1.9 Consider the normed space l^p , The Schauder basis (e_n) of l^p space are given by

$$e_n = \delta_{nj} = \begin{cases} 1 & n = j \\ 0 & n \neq j \end{cases}$$
(10)

that is, (e_n) is the sequence whose nth term is 1 and all other terms are zero. Thus, we have

$$e_1 = (1, 0, 0, 0, \cdots)$$

 $e_2 = (0, 1, 0, 0, \cdots)$
 $e_3 = (0, 0, 1, 0, \cdots)$
...

Exercise 1.10 Show that if a normed space X has a Schauder basis, then X is separable.

Definition 1.11 Let $(X, \|.\|)$ and $(X', \|*\|$ be two normed spaces. A mapping T of X into X' is said to be isometric or an isometry if T preserves norm, that

is, if for all $x, y \in X$,

$$||Tx, Ty|| = ||x, y||.$$
 (11)

Theorem 1.12 Let (X, ||||) be a normed space. Then show that there is a Banach space X and an isometry A from X onto a subspace W of X which is dense in X. The space X is unique, except for isometries. Proof:

2 Finite Dimensional Normed Spaces and Subspaces

In this section, we will study some properties of finite dimensional normed spaces. First recall that a normed space X is called finite dimensional if it is that of as vector space and it is well known that a vector space is finite dimensional if there are finite number of linearly independent vectors in the spanning set of X. We start with the following important lemma:

Lemma 2.1 Let $\{x_1, \dots, x_n\}$ be a linearly independent set of vectors in a normed space X (of any dimension). Then there is a number c > 0 such that for every choice of scalars $\alpha_l, \dots, \alpha_n$, we have

$$\|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|).$$
⁽¹²⁾

Proof: For simplicity, put $s = |\alpha_1| + \cdots + |\alpha_n|$. If s = 0, then $\alpha_j = 0$ for all $j = 1, 2, \cdots, n$. So that (12) holds for all c > 0. Assume now that s > 0. Then dividing (12) by on both sides, we get

$$\frac{1}{s} \|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c.$$
⁽¹³⁾

Since s > 0, putting $\frac{\alpha_j}{s} = \beta_j$ in (13), we have

$$\|\beta_1 x_1 + \dots + \beta_n x_n\| < c, \tag{14}$$

where

$$\sum_{j=1}^n |eta_j| = \sum_{j=1}^n rac{|lpha_j|}{s} = 1 \quad \ \ as \ \ s = |lpha_1| + \cdots |lpha_n|.$$

Now in order to show that (12) holds, it is enough to show that (13) holds for every c > 0 and for every n-tuple of scalars β_1, \dots, β_n with $\sum_{j=1}^n |\beta_j| = 1$. Suppose on contrary that

$$\|\beta_1 x_1 + \dots + \beta_n x_n\| \le c. \tag{15}$$

Then there exists a sequence (y_m) of vectors

$$y_m = \beta_1^m x_1 + \dots + \beta_n^m x_n \tag{16}$$

with $\sum\limits_{j=1}^n |eta_j^m| = 1, \ such \ that$

$$\|y_m\| \to 0 \quad as \quad m \to \infty.$$
 (17)

Now since, $\sum_{j=1}^{n} |\beta_{j}^{m}| = 1$, so we have $|\beta_{j}^{m}| \leq 1$. Hence for each fixed j the sequence

$$(\beta_j^m) = (\beta_j^1, \beta_j^2, \cdots)$$

is bounded. Consequently, by the Bolzano-Weierstrass theorem, (β_1^m) has a convergent subsequence. Denote by β_1 , the limit of the sequence (β_1^m) and let $(y_{1,m})$ denote the corresponding subsequence of (y_m) .

By the same argument, $(y_{l,m})$ has a subsequence $(y_{2,m})$ for which the corresponding subsequence of scalars (β_2^m) converges and let β_2 is the limit of (β_2^m) . Continuing in this way, after n steps we obtain a subsequence $(y_{n,m}) = (y_{n,1}, y_{n,2}, \cdots)$ of (y_m) whose terms are of the form

$$y_{n,m} = \sum_{j=1}^{n} \gamma_j x_j, \qquad \sum_{j=1}^{n} |\gamma_j^m| = 1$$
 (18)

with scalars γ_j satisfying $\gamma_j \rightarrow \beta_j$ as $m \rightarrow \infty$. Hence

$$y_{n,m} \to y = \sum_{j=1}^{n} \beta_j^m x_j, \tag{19}$$

where $\sum_{j=1}^{n} |\beta_{j}^{m}| = 1$, so that not all β_{j} can be zero. Since $\{x_{1}, \dots, x_{n}\}$ is a linearly independent set, we thus have $y \neq 0$. Now, since

$$y_{n,m}
ightarrow y,$$

this by the continuity of norm implies

$$\|y_{n,m}\| \to \|y\|.$$

Now since, $y_{n,m}$ is a subsequence of (y_m) and from (17), we have $||y_m|| \to 0$, therefore, $||y_{n,m}|| \to 0$. By the uniqueness of limit, we have ||y|| = 0, so that y = 0. Which is a contradiction to the fact that $y \neq 0$. Hence our assumption in (15) is wrong. Consequently,

$$\|\beta_1 x_1 + \dots + \beta_n x_n\| \ge c, \tag{20}$$

which corresponds

$$\|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|)$$
⁽²¹⁾

for every c > 0.

Theorem 2.2 Every finite dimensional subspace Y of a normed space X is complete. In particular, every finite dimensional normed space is complete. Proof: Suppose that (y_m) is a Cauchy sequence in Y. Since Y is a finite dimen-

sional subspace of a normed space. Assume that $\dim(Y) = n$ and $\{e_1, \dots, e_n\}$ any basis for Y. Then each y_m has a unique representation of the form

$$y_m = \alpha_1^m e_1 + \dots + \alpha_n^m e_n. \tag{22}$$

Since (y_m) is a Cauchy sequence, for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that for all m, r > N, we have

$$\|\boldsymbol{y}_m - \boldsymbol{y}_r\| < \boldsymbol{\epsilon}. \tag{23}$$

Now, by Lemma 2.1, there is a c > 0 such that

$$\epsilon > \|y_m - y_r\| = \left\| \sum_{i=1}^n \alpha_j^m e_j - \sum_{i=1}^\infty \alpha_j^r e_j \right\|$$
$$= \left\| \sum_{i=1}^n (\alpha_j^m - \alpha_j^r) e_j \right\|$$
$$\ge c \sum_{i=1}^n |\alpha_j^m - \alpha_j^r|.$$
(24)

This gives

$$\sum_{i=1}^{n} |\alpha_j^m - \alpha_j^r| < \frac{\epsilon}{c}, \qquad (m, r > N),$$
(25)

which implies

$$|\alpha_j^m - \alpha_j^r| \le \sum_{i=1}^n |\alpha_j^m - \alpha_j^r| < \frac{\epsilon}{c} \qquad (m, r > N).$$
⁽²⁶⁾

Hence

$$|\alpha_j^m - \alpha_j^r| < \frac{\epsilon}{c}, \qquad (m, r > N).$$
⁽²⁷⁾

This shows that each of the n sequences

$$(lpha_j^m)=(lpha_j^1,lpha_j^2,\cdots) \qquad j=1,2,\cdots,n$$

is Cauchy in \mathbb{R} or \mathbb{C} . By the completeness of \mathbb{R} or \mathbb{C} , it converges and let α_j denotes the limit. Using these n limits a_1, \dots, a_n , we define

$$y=lpha_1e_1+\dots+lpha_ne_n.$$

Clearly, $y \in Y$. Furthermore, since $\alpha_j^m \to \alpha_j$, we have

$$\|y_m - y\| = \left\| \sum_{i=1}^n \alpha_j^m e_j - \sum_{i=1}^\infty \alpha_j e_j \right\|$$
$$= \left\| \sum_{i=1}^n (\alpha_j^m - \alpha_j) e_j \right\|$$
$$\leq \sum_{i=1}^n |\alpha_j^m - \alpha_j| \|e_j\| \to 0.$$
(28)

That is, $y_m \to y$. This shows that (y_m) is convergent in Y. Since (y_m) was an arbitrary Cauchy sequence in Y, this proves that Y is complete.

Theorem 2.3 Show that every finite dimensional subspace Y of a normed space X is closed in X.

Proof: We have proved that

"Every finite dimensional subspace Y of a normed space X is complete."

Also we know that

"A subspace Y of a complete normed space X is itself complete if and only if the set Y is closed in X."

Therefore, we conclude that

"every finite dimensional subspace Y of a normed space X is closed in X".

Note 2.4 In case of infinite dimensional subspace, Theorem 2.3 need not to be true.

Example 2.5 Let X = C[O, 1] and the norm $\|\cdot\|$ is defined by

$$\|x(t)\| = \max_{t \in [0,1]} |x(t)|.$$

Under this norm X is complete. Let $Y = Span(1, t, t^2, \dots)$ be the set of polynomials. Let (y_n) be a sequence in Y such that

$$y_n=1+t+rac{t^2}{2!}+\cdots+rac{t^n}{n!}+\cdots.$$

Now

$$\lim_{n o\infty}y_n=\lim_{n o\infty}1+t+rac{t^2}{2!}+\dots+rac{t^n}{n!}+\dots=e^t
ot\in Y$$

This shows that Y is not closed and hence not complete.

3 Equivalent Norm

Definition 3.1 A norm $\|\cdot\|$ on a vector space X is said to be equivalent to a norm $\|\cdot\|_0$ on X if there are positive numbers a and b such that for all $x \in X$ we have

$$a \|x\|_{0} \le \|x\| \le b \|x\|_{0}.$$
⁽²⁹⁾

Note 3.2 Equivalent norms on X define the same topology for X.

Theorem 3.3 Show that on a finite dimensional vector space X, any norm $\|\cdot\|$ is equivalent to any other norm $\|\cdot\|_0$.

Proof: Suppose dim(X) = n and $\{e_1, e_2, \dots, e_n\}$ any basis for X. Then every $x \in X$ has a unique representation

$$\boldsymbol{x} = \boldsymbol{\alpha}_1 \boldsymbol{e}_1 + \dots + \boldsymbol{\alpha}_n \boldsymbol{e}_n \tag{30}$$

for any scalars $\alpha_1, \dots, \alpha_n$. Then by Lemma, there is a positive constant c such that

$$\|x\| = \|\alpha_1 e_1 + \dots + \alpha_n e_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|).$$

$$(31)$$

On the other hand

$$||x||_{0} = ||\alpha_{1}e_{1} + \dots + \alpha_{n}e_{n}||_{0}$$

$$\leq ||\alpha_{1}e_{1}||_{0} + ||\alpha_{2}e_{2}||_{0} + \dots + ||\alpha_{n}e_{n}||_{0}$$

$$= |\alpha_{1}|||e_{1}||_{0} + |\alpha_{2}|||e_{2}||_{0} + \dots + |\alpha_{n}|||e_{n}||_{0}$$

$$= \sum_{j=1}^{n} |\alpha_{j}||e_{j}||_{0}$$

$$\leq k \sum_{j=1}^{n} |\alpha_{j}|, \qquad (32)$$

where $k = \max_{j} \|e_{j}\|_{0}$. This gives

$$\|x\|_{0} \leq k(|\alpha_{1}| + |\alpha_{2}| + \dots + |\alpha_{n}|).$$
(33)

From (33) and (31), we have

$$\|x\|_{0} \le k(|\alpha_{1}| + |\alpha_{2}| + \dots + |\alpha_{n}|) \le \frac{k}{c} \|x\|$$
(34)

implies

$$\frac{c}{k} \|\boldsymbol{x}\|_0 \le \|\boldsymbol{x}\|. \tag{35}$$

Hence

$$a \|x\|_0 \le \|x\|,$$
 (36)

where $a = \frac{c}{k} > 0$.

Again, by interchanging the role of $\|\cdot\|$ and $\|\cdot\|_0$ in above arguments, we get that

$$\|\boldsymbol{x}\| \le \boldsymbol{b} \|\boldsymbol{x}\|_{\boldsymbol{0}}.\tag{37}$$

Combining (36) and (37), we have that

$$a\|x\|_{0} \leq \|x\| \leq b\|x\|_{0}.$$
(38)

4 Compactness and Finite Dimension

Definition 4.1 A metric space X is said to be compact if every sequence in X has a convergent subsequence. A subset M of X is said to be compact if M is compact considered as a subspace of X, that is, if every sequence in M has a convergent subsequence whose limit is an element of M.

Lemma 4.2 Show that a compact subset M of a metric space is closed and bounded.

Proof: Suppose that M is a compact subset of a metric space X. We first show that M is closed. For this, we show that $M = \overline{M}$.

Let $x \in \overline{M}$, then there is a sequence (x_n) in M such that $x_n \to x$. Since M is

compact and (x_n) is a convergent subsequence of itself, so $x \in M$, But $x \in \overline{M}$. So,

$$\bar{M} \subseteq M$$

But

$$M \subseteq \overline{M}.$$

Hence

 $M = \overline{M}.$

Therefore, M is closed.

To show that M is bounded, assume that it is not. Then there is an unbounded sequence (y_n) in M such that $d(y_n, b) > n$, where b is any fixed element. So, there exist no convergent subsequence of (y_n) because convergent subsequence must be bounded. Which is a contradiction. Hence M is bounded.

Theorem 4.3 Show that in a finite dimensional normed space X, any subset $M \subset X$ is compact if and only if M is closed and bounded.

Proof: Suppose that M is a compact subset of a metric space X. We first show that M is closed. For this, we show that $M = \overline{M}$.

Let $x \in \overline{M}$, then there is a sequence (x_n) in M such that $x_n \to x$. Since M is compact and (x_n) is a convergent subsequence of itself, so $x \in M$, But $x \in \overline{M}$. So,

 $\bar{M} \subset M$.

But

$$M \subseteq M$$

Hence

 $M = \overline{M}.$

 $Therefore, \ M \ is \ closed.$

To show that M is bounded, assume that it is not. Then there is an unbounded sequence (y_n) in M such that $d(y_n, b) > n$, where b is any fixed element. So,

there exist no convergent subsequence of (y_n) because convergent subsequence must be bounded. Which is a contradiction. Hence M is bounded.

Conversely: Suppose now that M is closed and bounded subset of a finite dimensional normed space X. Let dim(X) = n and $\{e_1, e_2, \dots, e_n\}$ any basis for X. Let (x_m) be a sequence in M then each x_m has a representation

$$\boldsymbol{x_m} = \boldsymbol{\alpha_1^m} \boldsymbol{e_1} + \dots + \boldsymbol{\alpha_n^m} \boldsymbol{e_n}. \tag{39}$$

Since M is bounded, so is the sequence (x_m) . Then there is k > 0 such that for all m, we have

$$\|\boldsymbol{x}_{\boldsymbol{m}}\| \leq \boldsymbol{k}.\tag{40}$$

From (39), (40) and by Lemma, we have

$$k \ge \|x_m\| = \|\alpha_1^m e_1 + \dots + \alpha_n^m e_n\| \ge c \sum_{j=1}^n |\alpha_j^m|, \tag{41}$$

where c > 0. This gives

$$\sum_{j=1}^{n} |\alpha_j^m| \le \frac{k}{c}.$$
(42)

Hence the sequence of numbers (α_j^m) is bounded and, by the Bolzano-Weierstrass theorem, has a point of accumulation α_j , $1 \leq j \leq n$. Therefore, (x_m) has a subsequence (z_m) which converges to $z = \sum \alpha_j e_j$. Since M is closed, $z \in M$. This shows that the arbitrary sequence (x_m) in M has a subsequence which converges in M. Hence M is compact.