
1

MySQL and SQL

2

Topics

 Introducing Relational Databases
 Terminology
 Managing Databases

MySQL and SQL

3

Introducing Relational Databases

 A relational database manages data in tables.
 Databases are managed by a relational

database management system (RDBMS).
 An RDBMS supports a database language to

create and delete databases and to manage and
search data.

 The database language used in almost all
DBMSs is SQL.

MySQL and SQL

4

Introducing Relational Databases

 After creating a database, the most common
SQL statements used are
 INSERT to add data
 UPDATE to change data
 DELETE to remove data
 SELECT to search data

 A database table may have multiple columns, or
attributes, each of which has a name.

 Tables usually have a primary key, which is one
or more values that uniquely identify each row in
a table
(Figure 3.1.)

MySQL and SQL

5

Introducing Relational Databases

MySQL and SQL

Figure 3-1. An example of relational database containing two related tables

6

Introducing Relational Databases

 A database is modeled using entity-relationship
(ER) modeling.
(Figure 3.2.)

MySQL and SQL

Figure 3-2. An example of relational model of the winery database

7

Terminology

 Database
 A repository to store data.

 Table
 The part of a database that stores the data. A table

has columns or attributes, and the data stored in
rows.

 Attributes
 The columns in a table. All rows in table entities have

the same attributes. For example, a customer table
might have the attributes name, address, and city.
Each attribute has a data type such as string, integer,
or date.

MySQL and SQL

8

Terminology

 Rows
 The data entries in a table. Rows contain values for

each attribute. For example, a row in a customer
table might contain the values "Matthew Richardson,"
"Punt Road," and "Richmond." Rows are also known
as records.

 Relational model
 A model that uses tables to store data and manage

the relationship between tables.

 Relational database management system
 A software system that manages data in a database

and is based on the relational model.

MySQL and SQL

9

Terminology

 SQL
 A query language that interacts with a DBMS. SQL is

a set of statements to manage databases, tables,
and data.

 Constraints
 Restrictions or limitations on tables and attributes.

For example, a wine can be produced only by one
winery, an order for wine can't exist if it isn't
associated with a customer, having a name attribute
could be mandatory for a customer.

MySQL and SQL

10

Terminology

 Primary key
 One or more attributes that contain values that

uniquely identify each row. For example, a customer
table might have the primary key of cust ID. The cust
ID attribute is then assigned a unique value for each
customer. A primary key is a constraint of most
tables.

 Index
 A data structure used for fast access to rows in a

table. An index is usually built for the primary key of
each table and can then be used to quickly find a
particular row. Indexes are also defined and built for
other attributes when those attributes are frequently
used in queries.

MySQL and SQL

11

Terminology

 Entity-relationship modeling
 A technique used to describe the real-world data in

terms of entities, attributes, and relationships.

 Normalized database
 A correctly designed database that is created from an

ER model. There are different types or levels of
normalization, and a third-normal form database is
generally regarded as being an acceptably designed
relational database.

MySQL and SQL

12

Managing Databases

 The Data Definition Language (DDL) is the set of
SQL statements used to manage a database.

MySQL and SQL

13

Managing Databases

 Creating Databases
 The CREATE DATABASE statement can create a

new, empty database without any tables or data.
mysql> CREATE DATABASE winestore;

mysql> use winestore

Example 3.1.

MySQL and SQL

14

Managing Databases

 Creating Tables
 After issuing the use Database command, you then

usually issue commands to create the tables in the
database.

CREATE TABLE customer (

cust_id int(5) DEFAULT '0' NOT NULL auto_increment,

surname varchar(50) NOT NULL,

firstname varchar(50) NOT NULL,

……

PRIMARY KEY (cust_id),

KEY names (surname,firstname)

);

MySQL and SQL

15

Managing Databases

 Altering Tables and Indexes
 Indexes can be added or removed from a table after

creation.
 To add an index to the customer table, you can issue

the following statement:
ALTER TABLE customer ADD INDEX cities (city);

 To remove an index from the customer table, use the
following statement:
ALTER TABLE customer DROP INDEX names;

MySQL and SQL

16

Managing Databases

 Displaying Database Structure with SHOW
 Details of databases, tables, and indexes can be

displayed with the SHOW command.
 The SHOW command isn't part of the SQL standard

and is MySQL-specific.
 SHOW DATABASES

» Lists the databases that are accessible by the MySQL
DBMS.

 SHOW TABLES
» Shows the tables in the database once a database has

been selected with the use command.

MySQL and SQL

17

Managing Databases

 SHOW COLUMNS FROM tablename
» Shows the attributes, types of attributes, key information,

whether NULL is permitted, defaults, and other information
for a table.

 SHOW INDEX FROM tablename
» Presents the details of all indexes on the table, including the

PRIMARY KEY.

 SHOW STATUS
» Reports details of the MySQL DBMS performance and

statistics.

MySQL and SQL

18

Managing Databases

 Inserting, Updating, and Deleting Data
 The Data Manipulation Language (DML)

encompasses all SQL statements used for
manipulating data. There are four statements that
form the DML statement set:
» SELECT
» INSERT
» DELETE
» UPDATE

MySQL and SQL

19

Managing Databases

 Inserting Data
 Having created a database and the accompanying

tables and indexes, the next step is to insert data.
 Inserting a row of data into a table can follow two

different approaches.
» First approach:

»INSERT INTO customer

»VALUES (NULL,'Marzalla','Dimitria', 'F','Mrs',
»'171 Titshall Cl','','','St Albans','WA',
»'7608','Australia','(618)63576028','',
»'dimitria@lucaston.com','1969-11-08',35000);

MySQL and SQL

20

Managing Databases
»Second approach:

INSERT INTO customer

SET surname = 'Marzalla',

firstname = 'Dimitria',

initial='F',

title='Mrs',

addressline1='171 Titshall Cl',

city='St Albans',

state='WA',

zipcode='7608',

country='Australia',

phone='(618)63576028',

email='dimitria@lucaston.com',

birthdate='1969-11-08',

salary=35000;

MySQL and SQL

21

Managing Databases
»The first approach can actually be varied to function in a
similar way to the second by including parenthesized
attribute names before the VALUES keyword.

INSERT INTO customer (surname,city) VALUES ('Smith','Sale');

MySQL and SQL

22

Managing Databases

 Deleting Data
 There is an important distinction between dropping

and deleting in SQL.
» DROP is used to remove tables or databases.
» DELETE is used to remove data.

DELETE FROM customer;

DELETE FROM customer WHERE cust_id = 1;

MySQL and SQL

23

Managing Databases

 Updating Data
 Data can be updated using a similar syntax to that of

the INSERT statement.
UPDATE customer SET email = lower(email);

UPDATE customer SET title = 'Dr' WHERE cust_id = 7;

MySQL and SQL

24

Managing Databases

 Querying with SQL SELECT
 The SELECT statement is used to query a database

and for all output operations in SQL.
SELECT surname, firstname FROM customer;

SELECT * FROM region WHERE region_id<=3;

MySQL and SQL

25

Managing Databases

 Sorting and Grouping Output
 ORDER BY

» The ORDER BY clause sorts the data after the query has been
evaluated.

SELECT surname, firstname FROM customer

WHERE title='Mr'

AND city = 'Portsea'

ORDER by surname;

MySQL and SQL

26

Managing Databases

 GROUP BY
» The GROUP BY clause is different from ORDER BY

because it doesn't sort the data for output. Instead, it sorts
the data early in the query process, for the purpose of
grouping or aggregation.
SELECT city, COUNT(*) FROM customer

GROUP BY city;

MySQL and SQL

27

Managing Databases
» There are several functions that can be used in aggregation

with the GROUP BY clause. Five particularly useful functions
are:

AVG()

Finds the average value of a numeric attribute in a set

MIN()

Finds a minimum value of a string or numeric attribute in a
set

MAX()

Finds a maximum value of a string or numeric attribute in a
set

SUM()

Finds the sum total of a numeric attribute

COUNT()

Counts the number of rows in a set

MySQL and SQL

28

Managing Databases

 HAVING
» The HAVING clause permits conditional aggregation of data

 into groups.

SELECT city, count(*), max(salary)

FROM customer

GROUP BY city

HAVING count(*) > 10;

MySQL and SQL

29

Managing Databases

 DISTINCT
» The DISTINCT operator presents only one example of each

row from a query.

SELECT DISTINCT surname FROM customer;

MySQL and SQL

30

Managing Databases

 Join Queries
 Cartesian Product

» A join query is a querying technique that matches rows from
two or more tables based on a join condition in a WHERE
clause and outputs only those rows that meet the condition.

SELECT winery_name, region_name FROM winery, region

ORDER BY winery_name, region_name;
» The query produces all possible combinations of the four

region names and 300 wineries in the sample database! In
fact, the size of the output can be accurately calculated as
the total number of rows in the first table multiplied by the
total rows in the second table. In this case, the output is 4 x
300 = 1,200 rows.

MySQL and SQL

31

Managing Databases

 Elementary Natural Joins
» A cartesian product isn't the join we want. Instead, we want

to limit the results to only the sensible rows.
SELECT winery_name, region_name

FROM winery, region

WHERE winery.region_id = region.region_id

ORDER BY winery_name;

MySQL and SQL

32

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE wine (

wine_id int(5) DEFAULT '0' NOT NULL auto_increment,

wine_name varchar(50) DEFAULT '' NOT NULL,

winery_id int(4),

type varchar(10) DEFAULT '' NOT NULL,

year int(4) DEFAULT '0' NOT NULL,

description blob,

PRIMARY KEY (wine_id),

KEY name (wine_name)

KEY winery (winery_id)

);

MySQL and SQL

33

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE winery (

winery_id int(4) DEFAULT '0' NOT NULL auto_increment,

winery_name varchar(100) DEFAULT '' NOT NULL,

region_id int(4),

description blob,

phone varchar(15),

fax varchar(15),

PRIMARY KEY (winery_id),

KEY name (winery_name)

KEY region (region_id)

);

MySQL and SQL

34

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE region (

region_id int(4) DEFAULT '0' NOT NULL auto_increment,

region_name varchar(100) DEFAULT '' NOT NULL,

description blob,

map mediumblob,

PRIMARY KEY (region_id),

KEY region (region_name)

);

MySQL and SQL

35

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE customer (
cust_id int(5) NOT NULL auto_increment,
surname varchar(50) NOT NULL,
firstname varchar(50) NOT NULL,
initial char(1),
title varchar(10),
addressline1 varchar(50) NOT NULL,
addressline2 varchar(50),
addressline3 varchar(50),
city varchar(20) NOT NULL,
state varchar(20),
zipcode varchar(5),
country varchar(20),
phone varchar(15),
fax varchar(15),
email varchar(30) NOT NULL,
birth_date date(),
salary int(7),
PRIMARY KEY (cust_id),
KEY names (surname,firstname)
);

MySQL and SQL

36

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE users (

cust_id int(4) DEFAULT '0' NOT NULL,

user_name varchar(50) DEFAULT '' NOT NULL,

password varchar(15) DEFAULT '' NOT NULL,

PRIMARY KEY (user_name),

KEY password (password)

);

MySQL and SQL

37

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE grape_variety (

variety_id int(3),

variety_name varchar(20),

PRIMARY KEY (variety_id),

KEY var (variety)

);

MySQL and SQL

38

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE inventory (

wine_id int(5) DEFAULT '0' NOT NULL,

inventory_id int(3) NOT NULL,

on_hand int(5) NOT NULL,

cost float(5,2) NOT NULL,

case_cost float(5,2) NOT NULL,

dateadded timestamp(12) DEFAULT NULL,

PRIMARY KEY (wine_id,inventory_id)

);

MySQL and SQL

39

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE orders (

cust_id int(5) DEFAULT '0' NOT NULL,

order_id int(5) DEFAULT '0' NOT NULL,

date timestamp(12),

discount float(3,1) DEFAULT '0.0',

delivery float(4,2) DEFAULT '0.00',

note varchar(120),

PRIMARY KEY (cust_id,order_no)

);

MySQL and SQL

40

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE items (

cust_id int(5) DEFAULT '0' NOT NULL,

order_id int(5) DEFAULT '0' NOT NULL,

item_id int(3) DEFAULT '1' NOT NULL,

wine_id int(4) DEFAULT '0' NOT NULL

qty int(3),

price float(5,2),

date timestamp(12),

PRIMARY KEY (cust_id,order_no,item_id)

);

MySQL and SQL

41

Example 3-1
Example 3-1. The complete winestore DDL statements

CREATE TABLE wine_variety (

wine_id int(5) DEFAULT '0' NOT NULL,

variety_id int(3) DEFAULT '0' NOT NULL,

id int(1) DEFAULT '0' NOT NULL,

PRIMARY KEY (wine_id, variety_id)

);

MySQL and SQL

	Slide 1
	Topics
	Introducing Relational Databases
	Slide 4
	Slide 5
	Slide 6
	Terminology
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Managing Databases
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Example 3-1
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

