

Department of Electrical Engineering

College of Engineering & Technology University of Sargodha

OUTCOME BASED EDUCATION (OBE)

Course File

Probability Methods in Engineering

Session-2017

6th Semester

B.Sc Electrical Engineering

Course File Contents

1	Course Time Table		
	Course Outline		
2	List of CLO's		
2	Detailed Lecture Plan		
	Evaluation Criteria		
	Schedules:		
3	Semester Calendar		
3	Mid Term Exam Date Sheet		
	Final Term Exam Date Sheet		
4	Sample Quizzes (Graded Best, average and worst cases)		
5	Question Paper and Solution of Mid Term Examination		
6	Mid Term Exams Answers Sheets (Graded Best, average and worst cases)		
7	Question Paper and Solution of Final Term Examination		
8	Final Term Exams Answers Sheets (Graded Best, average and worst cases)		
9	Sample Assignments (Graded Best, average and worst cases)		
10	Lecture Notes		

BSc. Electrical Engineering (Session – 2017)

6th Semester

1	Course Time table				
Course: Probability Methods in Engineering GS-323	Name of Instructor: Engr. Erum Rehman	Class 2017	Semester 6 th	Duration Feb-Jun, 2020	
Credit hours:	(Theory) 3	Class Timings: Wednesday 02:00pm – 03:30 pm Friday 9:30 am – 11:00 am		-	

2	Course Outlines
Cour	rse Outline:
•	Set theory,
٠	Basic concepts of probability
•	Conditional probability,
•	Independent events,
•	Baye's Theorem,
•	Discrete and continuous random variables,
٠	Distributions and density functions,
•	Probability distributions (binomial, Poisson,
•	Hyper geometric, normal, uniform and exponential),
•	Mean, variance, standard deviations, moments and moment generating functions,
	I in the manual second fitting

- Linear regression and curve fitting,
- Limit theorems and applications.

Recommended Books:

□ Alberto Leon-Garcia: Probability and Random Processes for Electrical Engineering. Prentice Hall, Inc. New Jersey, 3rd ed. 2008.

□ Peyton Z. Peeble Jr.: Probability and Random Variables and Random Signal Principles. McGraw Hill, 4th ed. 2001.

□ Richard L. Scheaffer and James T. McClave: Probability and Statistics for Engineers. Brooks/Cole, 5th ed. 2011.

3	Course Learning Outcomes				
Sr. No	CLO	Domain	Taxonomy Level	PLO	Assessment
1	EXPLAIN basic probability concepts and their use in different problems	Cognitive	2	2	Quiz 1 + Mid Term + Assignment 1
2	COMPARE different types of random variables and their usage in science and engineering.	Cognitive	4	2	Quiz 2 + Final Term
3	APPLY basic statistical techniques such as regression, curve fitting to engineering data.	Cognitive	3	4	Final Term+ Assignment 2

4	4 Detailed Lecture Plan					
Week No.	Lecture Course Content to be Covered					
		Description	Objectives	CLO's Mapping		
1	1-2	Set theory, Sample Space, Experiment Outcomes, and Sampling	The students will be able to understand the basic concepts of Probability and recognize various Experiments outcomes.	1		

		with and without replacement.		
2	3-4	Introduction to theory of Probability, Theorems of Probability.	The students will be able to have a working knowledge of the basic properties of probability and will understand the conditional probability.	1
3	5-6	Conditional probability Baye's Theorem,	The students will be able to have a working knowledge to make predictions based on data collected and identify all possible outcomes of an event.	1
4	7-8	Permutations and Combinations.	The students will learn to systematically find all possible outcomes of an event using tree diagrams and organized lists.	1
5	9-10	Random Variables and Probability Distributions. Mean and Variance of a Distribution,	Students will learn to take samples and use them to make predictions, compare theoretical and experimental probabilities.	1
6	11-12	Expectation, Moments (Quiz 1)	Students will be able to use relative frequency to predict events.	1
7	13-14	Binomial distributions.	Students will be able to make and justify the probability of events in common situations.	2
8	15-16	Poisson & Hyper geometric distributions.	Students will be able to theoretically and experimentally examine the probabilities of games of chance.	2
9		Mid Term Examination	27-03-2020 10:30am-11:30am (LR-3)	
10	17-18	Continuous Random Variables.	To learn the formal definition of a probability density function of a continuous random variable.	2
11	19-20	Normal distribution.	To learn how to transform a normal random variable <i>X</i> into the standard normal random variable <i>Z</i> .	2 & 4
12	21-22	Probability density functions	To learn and be able to apply the empirical rule to a set of data.	3

13	23-24	Cumulative Distribution Functions.	To determine probabilities of a class that is just a little too complicated for probability trees.	3
14	25-26	Moments and moment generating functions.	To Use long-run frequencies to estimate probabilities.	3
15	27-28	Linear regression and curve fitting (Quiz 2)		4
16	29-30	limits theorems and applications.	To determine probabilities of a class that is just a little too complicated for probability trees.	4
17	31-32	The central limit theorem.		4
18		End Term Examination	24-06-2020	

6 Seme	ster Calendar
Fall 2017	
Commencement of Classes:	13-01-2020
Mid Term exam:	25-03-2020 to 01-04-2020
Classes End:	22-05-2020
End Term exam:	10-06-2020 to 14-06-2020
Result Declaration:	24-06-2020

5	Evaluation Criteria		
	Component of Assessment	Method	Marks