Lecture 2: Frequency Distribution and Graphical Representation

Donglei Du
(ddu@unb.edu)

Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2

Table of contents

(1) Quantitative data: table/graphic representation

- Table representation for quantitative data: Frequency Distribution Table
- Graphical Representation for quantitative data: histogram and polygon
- Stem-and-leaf display for small/medium sized quantitative data
(2) Qualitative data: table/graphic representation
- Graphical Representation for quantitative data: bar chart and pie chart

Layout

(1) Quantitative data: table/graphic representation

- Table representation for quantitative data: Frequency Distribution Table
- Graphical Representation for quantitative data: histogram and polygon
- Stem-and-leaf display for small/medium sized quantitative data
(2) Qualitative data: table/graphic representation
- Graphical Representation for quantitative data: bar chart and pie chart

Frequency Distribution

- A Frequency Distribution is a grouping of data into mutually exclusive and exhaustive classes showing the number of observations in each class.

An example

- Example: Consider the guessed weights (lbm) collected in our first class on Sept. 5, 2013 from 62 students (the e-version of this data will be available online on my website).

```
140135140160175150152155155165145150154160143
160170155140160160175140145150150152159160165
145155150150165148152155155160172180141147155
165170160140150150152155130155163170139165180
180190
```

- Problem: Let us organize it into a frequency distribution table.

Five steps procedure to construct a frequency distribution

Step 1. Decide how many classes you wish to use.
Step 2. Determine the class width
Step 3. Set up the individual class limits
Step 4. Tally the items into the classes
Step 5. Count the number of items in each class

Step 1. Decide how many classes you wish to use

- Rule of Thumb: Use the 2 to the k th rule.
- Suppose there are n points in the data: Choose k so that 2 raised to the power of k is greater than n; namley

$$
k \geq \log _{2}^{n}
$$

- For this example, $n=62$, so $k=6$ because

$$
2^{6}=64 \geq 62
$$

or

$$
\log _{2}^{62} \approx 5.954196 \nearrow 6
$$

Step 2. Determine the class width

- Generally, the class width should be the same size for all classes.

$$
C=\left\lceil\frac{\max -\min }{k}\right\rceil
$$

- For this example,

$$
C=\left\lceil\frac{190-130}{6}\right\rceil=10
$$

Step 3. Set up the individual class limits

- We only need to know the lower limit of the first class L.

$$
L=\left\lceil\min -\frac{C * k-(\max -\min)}{2}\right\rceil
$$

- For this example,

$$
L=\left\lceil 130-\frac{10 * 6-(190-130)}{2}\right\rceil=130 .
$$

Frequency Distribution Table for the weight example

- Solution: Tallying and counting in Steps 4 and 5 result in the following frequency distribution table.

class	frequency
$[130,140)$	3
$[140,150)$	12
$[150,160)$	23
$[160,170)$	14
$[170,180)$	6
$[180,190]$	4

Some terminologies associated with the table

- Data organized into a frequency distribution table also called grouped data.
- Class frequency: The number of observations in each class.
- Class relative frequency: The percent of observations in each class.
- Class cumulative frequency: The total observations up to certain class
- Class Midpoint: A point that divides a class into two equal parts, i.e. the average of the upper and lower class limits.
- Class interval (a.k.a. class width or class size): The class interval is obtained by subtracting the lower limit of a class from the lower limit of the next class.

Terminologies associated with the table

class	freq	relative freq.	cumulative freq.	mid point
$[130,140)$	3	0.05	3	135
$[140,150)$	12	0.19	15	145
$[150,160)$	23	0.37	38	155
$[160,170)$	14	0.23	52	165
$[170,180)$	6	0.10	58	175
$[180,190]$	4	0.06	62	185

Histogram

- A Histogram is a graph in which the classes are marked on the horizontal axis and the class frequencies on the vertical axis. The class frequencies are represented by the heights of the bars and the bars are drawn adjacent to each other.

histogram for the weight example

Histogram of sec_01A

Example

- Example: the above example
- The R code:
> weight <- read.csv("weight.csv")
> sec_01A<-weight\$Weight.01A.2013Fall
$>\mathrm{m}<-\min \left(\mathrm{sec}_{1} 01 \mathrm{~A}\right)$
$>M<-\max \left(\sec _01 A\right)+1$
$>$ hist (sec_01A, breaks=seq(m, M, 10), right=FALSE)

Polygon

- A frequency polygon consists of line segments connecting the points formed by the class midpoint and the class frequency.

frequency polygon for the weight example

Example

- Example: the above example
- The R code:
> weight <- read.csv("weight.csv")
> sec_01A<-weight\$Weight.01A.2013Fall
$>\mathrm{m}<-\min ($ sec_01A)
$>$ M $<-\max \left(s e c _01 \mathrm{~A}\right)+1$
> breaks_sec_01A <- seq(m,M, by=10)
> weight.cut <- cut(sec_01A, breaks_sec_01A, right=FALSE)
> weight.freq <- table(weight.cut)
> freq0<-c(0,weight.freq, 0)
> mid_point_01A<-seq(m+5, M-5, by=10)
> mid_point_01A<-c(m, mid_point_01A, M)
> plot(mid_point_01A, freq0)
> lines(mid_point_01A, freq0)

Ogive: cumulative frequency polygon

- An ogive consists of line segments connecting the points formed by the class upper limits and the class frequency.
- A cumulative frequency polygon is used to determine how many or what proportion of the data values are below or above a certain value.

Ogive for the weight example

Example

- Example: the above example
- The R code:
> weight <- read.csv("weight.csv")
> sec_01A<-weight\$Weight.01A.2013Fall
> m<-min(sec_01A)
$>$ M<-max (sec_01A) +1
> breaks_sec_01A <- seq(m,M, by=10)
> weight.cut <- cut(sec_01A, breaks_sec_01A, right=FALSE)
$>$ weight.freq <- table(weight.cut)
> weight.cumfreq <- cumsum(weight.freq)
> cumfreq0 = c(0, weight.cumfreq)
> plot(breaks_sec_01A, cumfreq0)
> lines(breaks_sec_01A, cumfreq0)

A note

- Single value cannot be recovered from the frequency distribution, that is, information is lost in this process.
- The distribution of the data within each groups is unclear.
- Question: Are there methods that preserve all information?
- Yes! Medium-sized data
- No! Large-sized data

Stem-and-leaf display

- A statistical technique for displaying a set of data, and each numerical value is divided into two parts:
- the leading digits become the stem
- the trailing digits become the leaf.
- One advantage of the stem-and-leaf display over a frequency distribution is that we retain the value of each observation!
- Another is the distribution of the data within each groups is clear.

How to develop a stem-and-leaf display

Step 1: (Identify the stem) This can be done as follows:

- Find the lowest value, record the leading digit.
- Find the next score with the second highest leading digit.
- Repeat the above until all data are examined

Step 2: (Identify the leaf) list the remaining leaf values based on the stems.

stem-and-leaf display for the weight example

- The stem-and-leaf display for the weight example - The decimal point is $1 \operatorname{digit}(\mathrm{~s})$ to the right of the \mid :

13	059
14	000001355578
15	00000000222245555555559
16	00000000355555
17	000255
18	000
19	0

Example

- Example: the above example
- The R code:
> weight <- read.csv("weight.csv")
> sec_01A<-weight\$Weight.01A.2013Fall
> stem(sec_01A)

Layout

(1) Quantitative data: table/graphic representation

- Table representation for quantitative data: Frequency Distribution Table - Graphical Representation for quantitative data: histogram and polygon - Stem-and-leaf display for small/medium sized quantitative data
(2) Qualitative data: table/graphic representation
- Graphical Representation for quantitative data: bar chart and pie chart

Bar chart

- A two dimensional graph which consists of a series of usually non-adjacent rectangles, where the horizontal axis is marked by the classes, and the vertical axis is marked by the class frequencies.
- We can put several bar charts together to form stacked (top-below) or clustered bar charts (side-by-side).

An example

- Example: Here are the five worst passwords: a study shows the following result among 1,000 persons surveyed:

password	number of people used
123456	500
12345	300
123456789	100
Password	60
iloveyou	40

- Problem: Find the bar chart for the above example

Bar chart for the password example

Example

- Example: the above example
- The R code:
> pw <- data.frame (password = c('123456', '12345', '123456789', 'Password', 'iloveyou'), numberofusers $=c(500,300,100,60,40)$)
> barplot(pw\$numberofusers, names.arg =pw\$password)

Pie chart

- A partitioned circle in which the area of each sector is proportional to the relative frequency of each category. Usually the number of section is no more than 6 or 7 for clear illustration.
- Pie Chart is useful for displaying a Relative Frequency Distribution

How to develop a pie chart

- In order to have the area of each sector to be proportional to the relative frequency, it is equivalent for the angle of each sector to be proportional to the relative frequency.
- To develop a pie char, note that 1 percent corresponds to 3.6 degree.

Pie chart for the password example

Example

- Example: the above example
- The R code:
> pw <- data.frame (password = c('123456', '12345', '123456789', 'Password', 'iloveyou'), numberofusers $=c(500,300,100,60,40)$)
> pie(pw\$numberofusers, labels =pw\$password)

