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One of the maost significant contri

behavior of electrolyte solutions ia the Dehye-Huckel. , _ e
(1923) derived an equation which offers quantitative calculation of mean activity

coefficients of strong electrolytes. The values obtained theoretically were in good
agreement with the experimental values as long as the concentrations are kept low,
The equation which they derived is known as lelltlﬂg Law equation. The name
gignifies that its application ia limited to dilute solutions of strong electrolytes only,

butions to our understanding of
Huckel limiting law. Debye and Hucke]

This limiting law is based on the following assumptions:
(1) Electrolvtes are completely dissociated into ions in solution.
(n) The solutions are dilute, with a concentration of 0.01m or lower.

(i) The interactions between ions of solute are electrostatic in character. |
Electrostatic forces are strictly long rang interactions.

solution are subject to random thermal motion which disrupts

(1v) The ions 1n the
aused by the interionic

the orientation of oppositely charged species ¢
attractions.

(V) Each ion is regarded as point charge and is surrounded by ions of opposite
charge, forming an ionic atmosphere.

b

(vi)  The dielectric constant of an electrolyte solution is uniform and independent
of the actual coneentration of the dissolved solute.
The energy associzted with the ionic atmosphere is electrical in origin. It i
therefore, must be a function of charge density and the potential produced by the

ionic atmosphere, According to Debye-Huckel theory the energy of 1onie interaction is
electrostatic in origin and may be defined as the energy of charging a central ton in ]

the electric field of an ionic cloud.

~ The energy of a charged body, that is the work expended in the process of
charging, is half the product of its charge and potential. Hence for an ion Qflﬁmu. e
+Zic the energy it possesses by virtue of its ionic stmosphere is given b har #,_ )
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Ho=u+RT inax, +RT In y, (.4 =yx) (9.76)
Where o, 15 the activity and activity 1onic
i Y the eoefficient of ionic species.
?Iﬂtm between Eqs (9 75 and (9.76) is RTIn y, which uqudhthmx
ree energy change atcompanymng the addtion or removal of 1g md’thhl

S and i = : T
" S copmyo . ideal solution respectively. This difference of

. equivalent to the electrical energy ﬂﬂnmhh -

s atmosphere: that 15  say, the departure from ideal behavior i ‘ascribed entirely
o wntersonic forces. Hence Eq. (9.74) became as. . . G |
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From Eq. (9.38). we know
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Substituting this value of K into Eq. (9.77), we get
%a
.7
Iny; = Nz’ it (mﬂﬂ] (Z )
=
2 DRT [DRT}’%
Multiplying both sides by negative and on rearranging we get
VA
CiZ
~Iny, = Nﬂzi [Iﬂﬂﬂ] (E )
'~ DRT (DRT) A
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N2gd [ _“_)
Z CZry= :
-log v, = i _‘{_Z__*_}_ e
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The term in the large parentheses consists of several constants, only and m: t _
be replaced by A’. may

Further, we know that




For a given 80] and —
. : vent - o
may be inserted nto Eq. (9.82) ;mpehtm. D and T haye lefinite values- T

By inserti : : . : f‘ﬂ'ﬁ} e
n&ng at zﬁnc’ hﬂﬁ thB vﬂlﬂﬂ'ﬂ ﬂfN, E'r “# R., Dy a—ﬂﬂ Ti thg Wﬂﬂﬁwrﬁﬂe ..h

=~ log ¥i =0.509 ZFJE A MJ % .

399 o ent the DebyeHuckal lmiting law. Thi |
variation of th Livi : i g S e e
the solution, It je st t:. l?:l Wity coefficient qf an ion with the mwﬁ

the fact that the expression fi : : W R s R s
_ ) ‘ or the potential of an jon due to ionic atmosp here was
derived assuming dilution being approached. Moreover, from Eq (9.84). I{’M"F’_ :

th;‘ttflft*“it}' coefficient of an ion should decrease with increasing lonic strength of the
solution, . el o2

Since the individual activity or activity coefficient. of an 1on cannot be

cetermined experimentally, it is not possible to make direct test of Bq. (983)
However, it is possible to relate the individual ion activities to the measurable mean
actvities of the ions. If one molecule of a binary electrolyte dissociates into V. * 5
which Vi are cations and V. anions, then the mean activity meﬁmm is related to
individual ionic activity coefficient y.and y_by
T
) -4 6 e SR I
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| V4 Vi ! - ',hl
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log vs = -A Z,Z_Ju 9.86)

Equation (9.86) also represents the Debye- ‘Huckal limiting law for dilute |
solutions. According to this law the deviation from the ideal behavior in a given
<olvent 1s governed by the ionic strength of the m: 'ium and valence of the ions of

slectrolvte, but is independent of their chemical nature.
Verification of the Debye-Huckel Limiting Law

The mean activity coefficients of
various electrolytes can be determined
experimentally by a number of methods,

e.g measurement of vapour pressure,

freezing point, solubility or electromotive

force. In general. it is found that the mean  —109 Ve
acuvity coefficient of an electrolyte

decreases with increasing concentration.

but at higher concentration range it is
frequently found that the mean activity
coefficent increases with increasing
concentration. thus passing though a
Mminimum.

The law can be tested by pleiting a Fig. 9.7. Test of Debye-Huckel |
graph between —log y. and ﬁ at rooln law for diffent elem-alym
temperature. All electrolytes should give a |
straight line passing through the origin. The slope of the line depends on Z, nmlﬁ :
values of the given electrolytes, For electrolytes this slope should be A, for 1-2 or 3‘-1 |
tvpe electrolytes 2A for 1-3 or 3-1 electrolytes 3A ete. .

Example 9.7. Calculate the mean activity coefficient of (i) a 1-1 electrolyte, e.g..
NaCl at a molility of 0.01 and of (ii) 1-2 electrolyte, e.z., Na:SOsat a nn]aktx of 0.001
n -quemu solution of 25°C.
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