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4.5 THE BOLTZMANN DISTRIBUTION LAW
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Statiatioal Thermodynamics  ¥ar

Consider a svstom of constant energy 1 companad of N iduntionl particlas s
wmperature T and possess the following charactovigtion,

(1) Each particle 1 distinguishable from the other,

() Particles do not attract o repel each other,

() No restriction on assigning various enorgy levels to the particles s being
imposed,

{iv) The particles are localized,
These assumption lead to the classicnl Boltzmann disteibution law, Now we

shall consider the distribution of the total energy I among the various energgy lovels
SaV €, €9, E5... €, of the N particles. As we know that each particle may axint in n

number of allowable energy levels, the total number of particles N may be i nod
to the energy levels in such a way that n, particles be present in energy lovel € ny

in the level with €. ny in the level with e and so on. Irrespective of thiw distribution
_the total number of particles and the energy of the system remain constant Lo,

N=Zn, and ZIng,

Such summations are to be carried over all energy levels. The number of ways in
which N particles can be put in these energy level is the number of permutations of N

things in groups of nj, ng, 0y, ..., 1.€.,

N!
W=w vevies (4D
On taking logarithm of both sides of above equation
InW=InN - [lnng! +lnn!+inng + .. ]
laW=InNl=Eln i Y

Stirling's approximation can be used for factorials of large humber as N is




268 Modemn Physical Chemistry
On differentiating equation (4.7), the result is

Sln W=-8Zn;Inn [6(N) = §(constant) = 0]
and now placing the condition of equation (4.8), we get
5{Zn; In n)=0 Sees LAY
on; 1
ar E[ni-ﬁ-+}nn;-ﬁni1=ﬂ (:,Blnnﬁ-n"jﬁni)

or Lfén, + Inn, dn] =0

or  E[1+Inn]én=0 e (410)

We must remember that for the given molecular system, the total energy E
and number of particles N remains constant.
N = En, = constant i ﬁN:Eﬁni#ﬂ! reeens (4.10)

2
EI
E

E =3Zne,=constant .. SE=ZEe;fn;=0 ceense (4.12)
& Multiplying equations (4.11) and (4.12) by two arbitrary constanl a' and
~ respectively and adding to equation (4.10), we get
' £[(1 + In n,) bn, + §ma’ + € &, B)] =0

o or S[(1 +1lnn)+a +ep))on =0
let 1+ a'=a
E[lnni+u+ﬂei}ﬁni=[} ...... 4.
As the variables &n,, ny, §ny ..., are independent of each other go that the
(4.18) is to hold good, then each term in the summation must be zero

Inn+a +Pe; =0 i i bt

e (424



Substitate this value s equntion (4.15)
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The constant B can be identified by equating the internal energy of a
monatomic gas with that obtained from the kinetie theory of gases.
We may express the distribution law in terms of quantum energy levels
instoad of energy states. For an ideal gas it can be shown that

P35 vrieee {4.18)

-tmhr: & is the Boltamann constant. Inserting equation (4.18) into equation (4.17), ene
om ve

“1 !-1 Fl‘T

il

E-El.»"ﬂ

'21|.F‘ P

voeens (4.19)

or

¥

In equation (4.19) it is assumed that each energy levels is non-degenerate,
1e., it is composed of only a single level. However, when such is not the case, thus
each level must be assigned a statistical weight g, and Eq. (4.19) becomes
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When Boltzmann law is applied to an electron gas, discrepancies appear
between these and observations.

(1i1) In a similar manner as in (ii), the photon gas presents another difficulty. This
law predicts a continuous number of photons per unit range of frequency as
the latter increases, whereas the actual distribution is given by the well
known law of Planck, exhibits a minimum.

4.6 PARTITION FUNCTION

Statistical thermodynamic analysis is facilitated through the use of partition
function. This great analytical tool is defined as

Q =3 El. E_Ej"kT ...... (4.22}

where g; is the statistical weight factor and is equal to the degree of degeneracy, ie.,
the number of super-imposed energy levels, k is the Boltzmann constant, €; i8 the
energy of quantum state in excess of the lowest possible value and T is the absolute
temperature. In equation (4.22) summation is taken over all integral of i from zero to
infinity corresponding to all possible energy states of the molecules. For general
purpose, it is required to measure energy level, relative to the ground state.
fore, equation (4.22) becomes
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. E,*’ﬂllﬂmmﬂlﬂmmu.{}ntﬁammmﬁm (4.24) becomes
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; g

or q:%meﬂfﬂ

rherenii!ﬂlemlmbﬂrdmnl&culeainthaithatata_ n,, the number of molecules in
' t&mmEFEWlﬁ-aﬂdgqmprmntthedegemm:iuintheﬁhmdmlﬂﬂk
_" respectively.
' When €, =0, then g, = 1, therefore one can write

": mge

."i or n,=n, g,—a‘“im' ...... (4.26)

] Now N=In,

= Substituting the value of n; from equation (4.26) in above equation, we get
N=Zn,ge "

N=n,ge®+n, g +n g™+
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the partition function 18 larger

m les in zero energy level. Therefore, : .,
:: hi:;;: :::;;l:f:tm. Caknh cet” 1‘::;:4.{
Factorization of Partition Function
Partition function ig defined as
...... (4.28)

Q=LEg; g it
sum of contribution from the different
nal, vibrational, electronic, ete. If we
ur is independent of all

molecule is the

lational, rotatio _
d with any one mode of behavio

e energy by

The energy € of a
modes of motion like trans
assume that energy associate
other modes, then we can defin

EzET‘i‘Er*'Ev"‘EE

and gi=ET+gr+gv+gc

rotational, vibrational and electronic
are degeneracy of translational,
y. So equation (4.28)

where Ep, E,, E, and E, are translation,
contribution, respectively and gp, 8. 8, and g
vibrational, rotational and electronic energy level, respectivel
can be written as

Q _ E(ET gr g‘r Eﬂ} ,E_{Et,+E['+E\'+Ec}IrkT
ar Q=t gy E—-Et!k'f oy g E-E,.M:T % E gy E—EV&T 4 EE,: E-EEHtT
or Q=Qr-Q,-Q, Q veeres (4.29)
1

Equation (4.29) is known as mullipli ‘ tzati
= _ 2 : plication theorem or factorization
partition function. This _facmnzatinn means that we can investigate each r,::::m;rib1.:\&:’.(?1-1'1r
zp::telry;dFr:m :q;.:amn (4.29), it follows that the net partition function is equal to
product o the separate partition functions in i type
‘energy independently associated with molecules. e ety 1 oy
!

4.7 TRANSLATIONAL PARTITION FUNCTION
By definition partition function is given by,
Q=rg e it

twnalenergy an ﬂm trnnalatmnal energy levels are non-
onal p n function can be written as



