Fo - 1. Thus for 11 decem, to

4.11 PARTITION FUNCTION AND THERMODYNAMIC FUNCTIONS

We will now utilize the partition function and the distribution law to evaluate various thermodynamic functions including the equilibrium constant in chemical reactions.

(i) Internal Energy

Consider a system consisting of non-interacting molecules (e.g., ideal gas), the total energy of the system is given by

$$E = \sum n_i \in \{1, \dots, (4.3)\}$$

According to Maxwell-Boltzmann law

$$n_i = g_i e^{-\alpha} e^{-\epsilon_i/kT}$$

Taking summation on both sides

$$\Sigma n_i = e^{-\alpha} \Sigma g_i e^{-\epsilon_i / kT}$$
 (4.59)
 $N = e^{-\alpha} Q$
 $e^{-\alpha} = \frac{N}{Q}$ (4.60)

Putting the value of Σn, from equation (4.59) into equation (4.3)

$$E = e^{-\alpha} \Sigma g_i e^{-\epsilon_i / k T} \epsilon_i \qquad \dots \dots (4.61)$$

Putting the value of $e^{-\alpha}$ from equation (4.60) into equation (4.61) we get

$$E = \frac{N}{Q} \sum_{\mathbf{g}_i} e^{-\epsilon_i/kT} \in \mathbb{R}$$

$$\frac{EQ}{N} = \sum_{\mathbf{g}_i} e^{-\epsilon_i/kT}$$
..... (4.62)

 $Q = \sum_{g_i} e^{-\epsilon_i/kT}$

Differentiate the above equation with respect to T at constant V, we get

$$\left(\frac{\partial Q}{\partial T}\right)_{v} = \frac{1}{kT^{2}} \sum_{g_{i}} e^{-\epsilon i/kT} \epsilon_{i}$$

or
$$kT^2 \left(\frac{\partial Q}{\partial T}\right)_v = \sum g_i e^{-\epsilon_i/kT}$$
 (4.63)

Comparing equation (4.62) and (4.63)

$$\begin{split} &\frac{EQ}{N} = kT^2 \left(\frac{\partial Q}{\partial T} \right)_v \\ &E = \frac{NkT^2}{Q} \left(\frac{\partial Q}{\partial T} \right)_v \\ &E = NkT^2 \left(\frac{\partial \ln Q}{\partial T} \right)_v \\ & \qquad \qquad \vdots \quad \frac{1}{Q} \left(\frac{\partial Q}{\partial T} \right)_v = \left(\frac{\partial \ln Q}{\partial T} \right)_v \end{split}$$

For one mole of a gas N = NA = Avogadro number

$$E = N_A k T^2 \left(\frac{\partial \ln Q}{\partial T}\right)_v$$
or
$$E = R T^2 \left(\frac{\partial \ln Q}{\partial T}\right)_v$$

$$\therefore R = N_A k$$

$$(4.64)$$

Thus, equation (4.64) is the relation between energy (E) and partition function of the system.

(ii) Heat Capacity

Heat capacity at constant volume is given by

$$C_{v} = \left(\frac{\partial E}{\partial T}\right)_{v} \tag{4.65}$$

and
$$E = RT^2 \left(\frac{\partial \ln Q}{\partial T} \right)_v$$

Putting the value of E in equation (4.65), we get

$$C_{v} = \frac{\partial}{\partial T} \left[RT^{2} \left(\frac{\partial lnQ}{\partial T} \right)_{v} \right]$$

$$C_{v} = R \left[2T \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + T^{2} \left(\frac{\partial^{2} \ln Q}{\partial T^{2}} \right)_{v} \right] \qquad \dots (4.66)$$

Equation (4.66) is the relation between the molar heat capacity (C_{ν}) at constant volume of an ideal gas and partition function.

We also known

$$C_{p} = C_{v} + R$$

$$C_{p} = R + \frac{\partial}{\partial T} \left[RT^{2} \left(\frac{\partial \ln Q}{\partial T} \right)_{v} \right] \qquad (4.67)$$

Equation (4.67) is the relation between molar heat capacity (C_p) at constant pressure of an ideal gas and partition function.

(iii) Entropy (S)

According to Boltzmann distribution law

$$\frac{n_i}{N} = \frac{g_i e^{-\epsilon_i/kT}}{Q} \qquad \dots (4.21)$$

where n_i = Number of molecules having energy ∈ i

N = Total number of molecules in the system

gi = Statistical weight factor for energy level i

Taking logarithm of above equation on both sides

$$\ln n_i = \ln N + \ln g_i - \epsilon_i / kT - \ln Q$$

Multiplying the above equation by ni both sides, we get

$$n_i \ln n_i = n_i \ln N + n_i \ln g_i - \frac{n_i \epsilon_i}{kT} - n_i \ln Q$$

or
$$n_i \ln n_i = (n_i \ln N - n_i \ln Q) + n_i \ln g_i - \frac{n_i \in i}{kT}$$

or
$$n_i \ln n_i = n_i \ln \left(\frac{N}{Q}\right) + n_i \ln g_i - \frac{n_i \in I}{kT}$$

By taking summation over all the energy-level (or quantum states) we get

$$\Sigma n_i \ln n_i = \Sigma n_i \ln \left(\frac{N}{Q}\right) + \Sigma n_i \ln g_i - \Sigma \frac{n_i \in i}{kT}$$

or
$$\Sigma n_i \ln n_i = -\Sigma n_i \ln \left(\frac{Q}{N}\right) + \Sigma n_i \ln g_i - \Sigma \frac{n_i \in i}{kT}$$
 (4.68)

But according to modified definition of probability

$$W = \frac{(g_o)^{n_0}}{n_o!} \cdot \frac{(g_1)^{n_1}}{n_1!} \cdot \frac{(g_2)^{n_2}}{n_2!} \cdot \cdot \cdot \frac{(g_i)^{n_i}}{n_i!}$$

Taking logarithm on both sides of the equation

$$\begin{split} \ln W &= (n_0 lng_0 - lnn_0!) + (n_1 lng_1 - lnn_1!) + ... (n_i lng_i - lnn_i!) \\ lnW &= (n_0 lng_0 + n_1 lng_1 + n_i lng_i) - (lnn_0! + lnn_1! + lnn_i!) \\ lnW &= \Sigma n_i \ ln \ g_i - \Sigma ln \ n_i! & (4.69) \end{split}$$

For any large values of n_i, as in the case with molecules, Stirling's formula may be used

$$lnn_i! = n_i ln n_i - n_i$$

$$\sum \ln n_i! = \sum n_i \ln n_i - \sum n_i$$

Hence
$$\Sigma \ln n_i! = \Sigma n_i \ln n_i - N$$
 (4.70)

From equation (4.69) and (4.70)

$$\ln W = \sum n_i \ln g_i - \sum n_i \ln n_i + N$$

or
$$\Sigma n_i \ln n_i = -\ln W + \Sigma n_i \ln g_i + N$$
 (4.71)

From equations (4.68) and (4.71)

$$-\ln W + \Sigma n_i \ln g_i + N = -\Sigma n_i \ln \left(\frac{Q}{N}\right) + \Sigma n_i \ln g_i - \Sigma \frac{n_i \in I}{kT}$$

$$\ln W = \sum n_i \ln \left(\frac{Q}{N}\right) + \sum \frac{n_i \in i}{kT} + N \qquad (4.72)$$

Since in the summation $\Sigma n_i \, \ln \left(\frac{Q}{N} \right)\!,$ the factor $\ln \left(\frac{Q}{N} \right)$ will come with each

term

hence
$$\Sigma n_i \ln \left(\frac{Q}{N}\right) = \ln \left(\frac{Q}{N}\right) \Sigma n_i$$

But
$$N = \Sigma n_i$$

Hence
$$\Sigma n_i \ln \left(\frac{Q}{N}\right) = N \ln \left(\frac{Q}{N}\right)$$

Similarly

$$\Sigma \left(\frac{\mathbf{n}_i \in_i}{k \mathrm{T}} \right) = \frac{1}{k \mathrm{T}} \Sigma \mathbf{n}_i \in_i$$

(4.73)

From equation (4.72), (4.73) and (4.74), we get

$$\ln W = N \ln \left(\frac{Q}{N}\right) + \frac{1}{kT} \sum_{i=1}^{N} \sum_{i=1}$$

But
$$E = NkT^2 \left(\frac{\partial \ln Q}{\partial T}\right)_v$$
 $\Sigma n_i \in E$

$$\ln W = N \ln \left(\frac{Q}{N}\right) + \frac{NkT^2}{kT} \left(\frac{\partial \ln Q}{\partial T}\right)_v + N$$

$$lnW = N ln \left(\frac{Q}{N}\right) + NT \left(\frac{\partial lnQ}{\partial T}\right)_{v} + N$$

Taking N as common

$$\ln W = N \left[\ln \left(\frac{Q}{N} \right) + T \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + 1 \right] \qquad \dots (4.76)$$

According to Boltzmann-Planck's equation

$$S = k \ln W$$

$$\ln W = \frac{S}{k}$$

Hence equation (4.76) becomes

$$\frac{S}{k} = N \left[\ln \left(\frac{Q}{N} \right) + T \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + 1 \right]$$

$$S = kN \left[\ln \left(\frac{Q}{N} \right) + T \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + 1 \right] \qquad(4.77)$$

Equation (4.77) is the relation between entropy and partition function for any number of molecules in the system. For one mole of an ideal gas; i.e., $N = N_A$, we get

$$S = kN_{A} \left[\ln \left(\frac{Q}{N} \right) + T \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + 1 \right]$$

$$S = R \left[\ln \left(\frac{Q}{N} \right) + T \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + 1 \right]$$

$$S = R \ln \left(\frac{Q}{N} \right) + RT \left(\frac{\partial \ln Q}{\partial T} \right)_{v} + R \qquad (4.78)$$

 $R = kN_A$, where N_A is the Avogadro number. Equation (4.78) applies to one mole of an ideal gas.

(iv) Work Function

We know that,