- [1atomic molecyles. If the masses of the electrons and the
of the nuclei are 1gnored, a diatomic molecule may be compared to a ngid

Treatment of Rigid Rotator

| ! ; g i j ' cule with
- Let us consider a two-particle rigid rotator like a diatomic mole
l'll and m, and separated by fixed distance “s". Assume that the centre of
| ":-r': the system is fixed at the origin of our coordinate. Let the distance of m,
._-ﬁ: centre of gravity be r; and distance m, be ry, then

(2.125)
myr, = myry e
" From Eq. (2.125) and (2.126)
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Fig 2.23 Rigid rotator model for 8
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Substituting the values of ry and r, in 2.127, we get
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(Reduced mass: Whep

called reduced mass, bmzﬁ?: of tws pa:

Since the distance

between
7ero, ThErE-‘fﬂrE' thE nm r n th.ﬂ two particle ;
by Otator has only K.E. mﬂiaEﬁme;E@h treated as
: I, is the o
T = 1 3. 2
2 ml?l +—2'-m2v2
where Vi and Vg are the linear v 2
elocities of b
terms of angular velocity, we can i masses m, and m, respectively. Then, in
Ry O e O
e 2
=30 {mlr] + mzrgj
=
=gl (2.129)

~ where o (omega) 1s the angular velocity and I is the moment of inertia about an axis
passing through the centre of the gravity and normal to the line through the masses.

Since the angular momentum L, 18 related to the moment of Inertia. I
through the relation

L=wl (2.130)
Therefore,
T @)
T =9~ g
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Fig.2.24 The rigid rotator in three-dimensional spaces

It will be recalled that the three-dimensional Schrodinger wave equationfy
= single particle 18

vay +

|
|

2 \
B’;f’ E-V)¥=0

|
The potential energy of the rigid rotator will be constant and this ml|

<alue may be conveniently taken as zero. Applying above equation to the rigid roti
and putting V=0

2
gﬁ“%ﬂﬂm:” (2.132)

The Laplacian operator was given in terms of spherical polar coordinates.
1 6‘( 2 a) 1 a( a) 1 7
=ohel e Ny S C e a E e
2\" ‘5 2 ging sin B » +rﬂain2’& E;ﬁ
For the rigid rotator, r has i facte®
involving &/@r will be zero. constant value, Since r is constant, %
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Equation (2.134) Containg o _ﬂf' =0

(2.134)
again by the method of Separation '-;::u angular variabj

two functions, each of whics . arinbles. [y iy oo 20 & 1t is golved P
therefore, that ichis e function of only ﬂ::u.;ut;ad th:;:.“ & product of
Varables. [y i nEsumed

(O, ¢) = Y @) Z)

which means that Yiwhich is ; {2.135)
functions “Y™ and “z~ where ""Y". function of g 4nd §) is equal

. gl is 8 f ) t‘ﬂ the product of twin
Equation (2.135) may be Written muuu::l:; 2:1’ T function ealy of 4
Y=YZ

Since the function Z i,

w.r.t. 0 yvields o ndent of 9, differentiation of equation (2.135)

2v_, dy
i (2.136)

Similarly, differentintion w.r.t. § gives

——Y

o dé
and further differentiation w.r.t. ¢ yields,

Ay d“Z (2.187)

=Y.
EST

Substituting from Eq. (2.136) and (2.137) into (2.134) gives
dY X _6'2 S's’lEﬁﬂl
un_'z e'?lgi('i“iﬁ)*ﬁn’a W o
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Multiply by Y/sin® 0
fiagn: o 4y m>
mﬁ("““'?ﬂ“)*(”';ﬂ?ﬁ)? =0
- Carrying .ﬂ* out the differentiation indicated in the first term and remembera
a’(ﬁ) must be differentiated as a product.

] [:A'g*f““%] +[ﬁ"i;§)?=o .lel

1
sinb
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(2.144)
B=Il+1)

Equation (2.144) is similar to Associated Legender Equation and the function
F‘ﬁz} = P;“{cos 8) = Y(0) is called Associated Legendre Polynomial of degree "T" and
order “m”

dsz"(z} d 8 y
(1- zz) - 40 —225 Pf’{z}+(f{£+ 1}-m_]!'?{z}-.n.
It is a well known equation of physics.

8n°1E
p= hg
i+ 1) =%
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Brot =g 21
"B usually written J rather than /
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h?.
Ey=Ew =53 904D (2.145)

n values of the energy of the rotator and J j

This relationship gives the eige
known as the rotational quantum number.
The state of the sysiem however, requires the‘ speci_ﬁcatiun of two quantumy
number J and m. It will be remembered that the relationship between two quantuny

numbers i8

Jz |ml
when J = 2, for example, then m = +2, +1. 0, -1, -2. There are thus five possible
states of the system for J = 2. As the energy is determined solely by the value of J in.
equation (2.145) there are thus five different states of the system with the same
energy. In general for any value of J, there are (2J + 1) degenerate states. It may be
mentioned here that this degeneracy 1s removed if the molecule, 18 placed in &
magnetic field, and hence in the presence of a magnetic field extra lines appear in the
rotational spectrum. It should be noted that J can have the value zero, therefore, it
is once again seen that a rotational motion can have zero energy. The rigid rotator
serves as an approximate model for the rotational spectra of diatomic molecules. If
two energy levels are defined by rotational quantum numbers J and J', then the
energy difference between then AE, is given by

h!
AE; = m [(J'@ + 1) -J( +1)] Joules (2.146)

There is a selection rule in rotational spectroscopy
Al=+1
We need only those transitions in which J changes by one unit, all other

transitions, being spectroscopically forbidden.

Equation (2.145) expresses the allowed energy in joules. In rotational region
spectra are usually discussed in terms of wave number,

v =AE/he
J__h : -
or EJ=§=E'J@+1J@1 @=0,1,2..)

o 9=BI@+Dem’”
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hen =0 ground rotational state where no rotation ccurs

After absorption of radiation J = |

e 143

The energy absorbed will be

€j=1— €J=0= 2B-0 =2B cm™
and therefore,

Ug=0pg=t = 2B em™

The absorption line appears at 2B em .

If now .the molecule is raised J = 1 to J = 2 level of absorption of more energy,
we see

I -1
GJ=]—|-J=2 e [ €]=1 =6B - 2B = 4B cm

In general
|
Vjsd+l = 9B (J +1) cm
] 5 |
3 R 0 4B 8B 12B —> cm
i — 12B
| A 3B B 10B
Jo e 2P
u i Fig 2,26 Allowed transitions and observed
e i rotational spectrum.
Fig. 2.25 the allowed rot-ﬂnﬂﬂ"l
~ energy level®

BT = Ry, T ey, PN



