323 DEGENERACY

In the case of particle in a one-dimensional box, the state of the particle could
be specified by specifying energy of the system. All of the energies and eigen
functions are different. For the general 3-D particle in a box, because the total energy
~ depends on not only the quantum numbers ny, n, and n, but also the individual

dimensions of the box, a, b, and ¢, one can imagine that in some cases the quantum
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Eis1. Egy; and E,;, have same energy, even through each energy observable
corresponds to a different wave function. This value of emergy is three-fold
degenerate. There are three different wave functions that have the same energy.
Degenerate wave functions may have different eigen values of other observable.

This example of degeneracy is a consequence of a wave function in three
dhnensif:mal space where each dimension is independent but equivalent, This might
be considered degeneracy by symmetry. One can also find examples of accidental
degeneracy. For example, a cubical box has wave functions with the sets of quantum
numbers (3, 3, 3) and (5, 1, 1) and energies are Ll B N

2

| . e
Eg3s=—75(9+9+8)=27 .-
‘ O s i

(5 [ I ..".'.1 Ii




Eryy =—
5117 g P 25+1 47 Sl

™ ot
This is an example of .
qupctions have no common quantym m degeneracy,
! tly the same. If we recognize that b . o5 DUt their gpesor o PONMing way
pevel of degeneracy in this example 161 a0d B, . algq ﬁlmgy eigenvalues arg
quantum states belonging to the same eney fﬁu.r-.fg]d_ B o Same energy, the

jevels of the 3-D particle in a box i 8 and vice vergg, A Biveain it
dimensional box, this degree of de Eram

: Eenera ree-
the system, or by using a box of different :?m:::i:::ﬂw' W% Mighiinitin
30~
"""""" (3,3.3)(5, 1, (LS, 1)1, 1, 5)
25-
T (3,2, 1)(3, 1, 2)(1,3,2)(1,2,3) (2,3, 1)(2, 1, 3)
A 124 ---- (2,2,2)
e i (2: 2! 1] (2' I 2} (L 22

E ( hy/8ma’)




