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general property of the wave functions. Wave functions that are solution of a given
SWE are usually orthonormal to one another. They are independent of one another
and the integral of their product over the wht;if.' space Ii:.u zero. They are not
degenerate wave functions (having same energy) and are exact solution of the wave
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The normahization and orthogonality conditions may be combined as follows
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These relations can be combined by writing
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where 8, is called Kronecker delta, which is defined by gl




