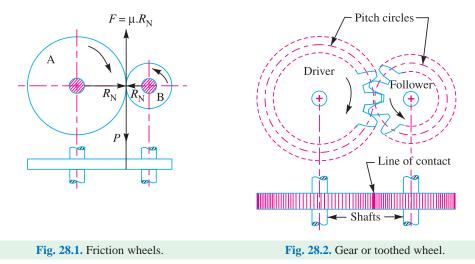
C H A P T E R

Spur Gears

2ð

- 1. Introduction.
- 2. Friction Wheels.
- 3. Advantages and Disadvantages of Gear Drives.
- 4. Classification of Gears.
- 5. Terms used in Gears.
- Condition for Constant Velocity Ratio of Gears-Law of Gearing.
- 7. Forms of Teeth.
- 8. Cycloidal Teeth.
- 9. Involute Teeth.
- 10. Comparison Between Involute and Cycloidal Gears.
- 11. Systems of Gear Teeth.
- 12. Standard Proportions of Gear Systems.
- 13. Interference in Involute Gears.
- 14. Minimum Number of Teeth on the Pinion in order to Avoid
- Interference.
- 15. Gear Materials.
- 16. Design Considerations for a Gear Drive.
- 17. Beam Strength of Gear Teeth-Lewis Equation.
- 18. Permissible Working Stress for Gear Teeth in Lewis Equation.
- 19. Dynamic Tooth Load.
- 20. Static Tooth Load.
- 21. Wear Tooth Load.
- 22. Causes of Gear Tooth Failure.
- 23. Design Procedure for Spur Gears.
- 24. Spur Gear Construction.
- 25. Design of Shaft for Spur Gears.
- 26. Design of Arms for Spur Gears.


28.1 Introduction

We have discussed earlier that the slipping of a belt or rope is a common phenomenon, in the transmission of motion or power between two shafts. The effect of slipping is to reduce the velocity ratio of the system. In precision machines, in which a definite velocity ratio is of importance (as in watch mechanism), the only positive drive is by *gears* or *toothed wheels*. A gear drive is also provided, when the distance between the driver and the follower is very small.

28.2 Friction Wheels

The motion and power transmitted by gears is kinematically equivalent to that transmitted by frictional wheels or discs. In order to understand how the motion can be transmitted by two toothed wheels, consider two plain circular wheels *A* and *B* mounted on shafts. The wheels have sufficient rough surfaces and press against each other as shown in Fig. 28.1.

1022 A Textbook of Machine Design

Let the wheel *A* is keyed to the rotating shaft and the wheel *B* to the shaft to be rotated. A little consideration will show that when the wheel *A* is rotated by a rotating shaft, it will rotate the wheel *B* in the opposite direction as shown in Fig. 28.1. The wheel *B* will be rotated by the wheel *A* so long as the tangential force exerted by the wheel *A* does not exceed the maximum frictional resistance between the two wheels. But when the tangential force (*P*) exceeds the *frictional resistance (*F*), slipping will take place between the two wheels.

In order to avoid the slipping, a number of projections (called teeth) as shown in Fig. 28.2 are provided on the periphery of the wheel *A* which will fit into the corresponding recesses on the periphery of the wheel *B*. A friction wheel with the teeth cut on it is known as *gear* or *toothed wheel*. The usual connection to show the toothed wheels is by their pitch circles.

Note : Kinematically, the friction wheels running without slip and toothed gearing are identical. But due to the possibility of slipping of wheels, the friction wheels can only be used for transmission of small powers.

28.3 Advantages and Disadvantages of Gear Drives

The following are the advantages and disadvantages of the gear drive as compared to other drives, *i.e.* belt, rope and chain drives :

Advantages

- **1.** It transmits exact velocity ratio.
- 2. It may be used to transmit large power.
- 3. It may be used for small centre distances of shafts.
- 4. It has high efficiency.
- 5. It has reliable service.
- 6. It has compact layout.

Disadvantages

where

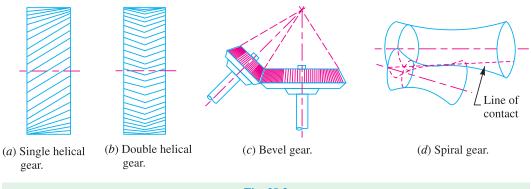
1. Since the manufacture of gears require special tools and equipment, therefore it is costlier than other drives.

In bicycle gears are used to transmit motion. Mechanical advantage can be changed by changing gears.

- * We know that frictional resistance, $F = \mu \cdot R_N$
 - μ = Coefficient of friction between the rubbing surfaces of the two wheels, and $R_{\rm e}$ = Normal reaction between the two rubbing surfaces
 - $R_{\rm N}$ = Normal reaction between the two rubbing surfaces.

- 2. The error in cutting teeth may cause vibrations and noise during operation.
- **3.** It requires suitable lubricant and reliable method of applying it, for the proper operation of gear drives.

28.4 Classification of Gears


The gears or toothed wheels may be classified as follows :

1. *According to the position of axes of the shafts.* The axes of the two shafts between which the motion is to be transmitted, may be

(a) Parallel, (b) Intersecting, and (c) Non-intersecting and non-parallel.

The two parallel and co-planar shafts connected by the gears is shown in Fig. 28.2. These gears are called *spur gears* and the arrangement is known as *spur gearing*. These gears have teeth parallel to the axis of the wheel as shown in Fig. 28.2. Another name given to the spur gearing is *helical gearing*, in which the teeth are inclined to the axis. The *single* and *double helical gears* connecting parallel shafts are shown in Fig. 28.3 (*a*) and (*b*) respectively. The object of the double helical gear is to balance out the end thrusts that are induced in single helical gears are kinematically equivalent to a pair of cylindrical discs, keyed to a parallel shaft having line contact.

The two non-parallel or intersecting, but coplaner shafts connected by gears is shown in Fig. 28.3 (c). These gears are called *bevel gears* and the arrangement is known as *bevel gearing*. The *bevel gears*, like spur gears may also have their teeth inclined to the face of the bevel, in which case they are known as *helical bevel gears*.

Fig. 28.3

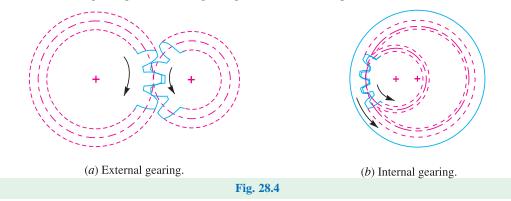
The two non-intersecting and non-parallel *i.e.* non-coplanar shafts connected by gears is shown in Fig. 28.3 (*d*). These gears are called *skew bevel gears* or *spiral gears* and the arrangement is known as *skew bevel gearing* or *spiral gearing*. This type of gearing also have a line contact, the rotation of which about the axes generates the two pitch surfaces known as *hyperboloids*.

Notes : (*i*) When equal bevel gears (having equal teeth) connect two shafts whose axes are mutually perpendicular, then the bevel gears are known as *mitres*.

(*ii*) A hyperboloid is the solid formed by revolving a straight line about an axis (not in the same plane), such that every point on the line remains at a constant distance from the axis.

(iii) The worm gearing is essentially a form of spiral gearing in which the shafts are usually at right angles.

2. According to the peripheral velocity of the gears. The gears, according to the peripheral velocity of the gears, may be classified as :


(a) Low velocity, (b) Medium velocity, and (c) High velocity.

1024 A Textbook of Machine Design

The gears having velocity less than 3 m/s are termed as *low velocity gears* and gears having velocity between 3 and 15 m / s are known as *medium velocity gears*. If the velocity of gears is more than 15 m / s, then these are called *high speed gears*.

3. *According to the type of gearing.* The gears, according to the type of gearing, may be classified as :

(a) External gearing, (b) Internal gearing, and (c) Rack and pinion.

In *external gearing*, the gears of the two shafts mesh externally with each other as shown in Fig. 28.4 (*a*). The larger of these two wheels is called *spur wheel* or *gear* and the smaller wheel is called *pinion*. In an external gearing, the motion of the two wheels is always unlike, as shown in Fig. 28.4 (*a*).

In *internal gearing*, the gears of the two shafts mesh internally with each other as shown in Fig. 28.4 (*b*). The larger of these two wheels is called *annular wheel* and the smaller wheel is called *pinion*. In an internal gearing, the motion of the wheels is always like as shown in Fig. 28.4 (*b*).

Sometimes, the gear of a shaft meshes externally and internally with the gears in a *straight line, as shown in Fig. 28.5. Such a type of gear is called *rack* and *pinion*. The straight line gear is called *rack* and the circular wheel is called *pinion*. A little consideration will show that with the help of a rack and pinion, we can convert linear motion into rotary motion and *vice-versa* as shown in Fig. 28.5.

4. According to the position of teeth on the gear surface. The teeth on the gear surface may be

(a) Straight, (b) Inclined, and (c) Curved.

We have discussed earlier that the spur gears have straight teeth whereas helical gears have their teeth inclined to the wheel rim. In case of spiral gears, the teeth are curved over the rim surface.

Pinion Rack

Fig. 28.5. Rack and pinion.

28.5 Terms used in Gears

The following terms, which will be mostly used in this chapter, should be clearly understood at this stage. These terms are illustrated in Fig. 28.6.

1. *Pitch circle*. It is an imaginary circle which by pure rolling action, would give the same motion as the actual gear.

* A straight line may also be defined as a wheel of infinite radius.

2. *Pitch circle diameter.* It is the diameter of the pitch circle. The size of the gear is usually specified by the pitch circle diameter. It is also called as *pitch diameter*.

3. *Pitch point*. It is a common point of contact between two pitch circles.

4. *Pitch surface*. It is the surface of the rolling discs which the meshing gears have replaced at the pitch circle.

5. *Pressure angle or angle of obliquity*. It is the angle between the common normal to two gear teeth at the point of contact and the common tangent at the pitch point. It is usually denoted by ϕ . The standard pressure angles are $14^{1}/_{2}^{\circ}$ and 20° .

6. *Addendum.* It is the radial distance of a tooth from the pitch circle to the top of the tooth.

7. Dedendum. It is the radial distance of a tooth from the pitch circle to the bottom of the tooth.

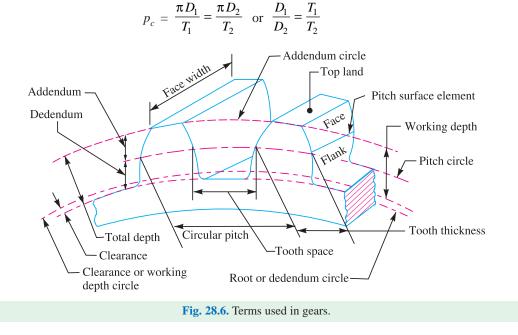
8. *Addendum circle*. It is the circle drawn through the top of the teeth and is concentric with the pitch circle.

9. *Dedendum circle*. It is the circle drawn through the bottom of the teeth. It is also called *root circle*.

Note : Root circle diameter = Pitch circle diameter $\times \cos \phi$, where ϕ is the pressure angle.

10. Circular pitch. It is the distance measured on the circumference of the pitch circle from a point of one tooth to the corresponding point on the next tooth. It is usually denoted by p_c . Mathematically,

Circular pitch, $p_c =$


where

ch, $p_c = \pi D/T$ D = Diameter of the pitch circle, and

T = Number of teeth on the wheel.

A little consideration will show that the two gears will mesh together correctly, if the two wheels have the same circular pitch.

Note: If D_1 and D_2 are the diameters of the two meshing gears having the teeth T_1 and T_2 respectively; then for them to mesh correctly,

1026 • A Textbook of Machine Design

Spur gears

11. *Diametral pitch.* It is the ratio of number of teeth to the pitch circle diameter in millimetres. It denoted by p_d . Mathematically,

 $...\left(\because p_c = \frac{\pi D}{T}\right)$

Diametral pitch, $p_d = \frac{T}{D} = \frac{\pi}{p_c}$ T = Number of teeth, and

where

D =Pitch circle diameter.

12. *Module*. It is the ratio of the pitch circle diameter in millimetres to the number of teeth. It is usually denoted by *m*. Mathematically,

Module, m = D / T

Note : The recommended series of modules in Indian Standard are 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40 and 50.

The modules 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 22, 28, 36 and 45 are of second choice.

13. *Clearance.* It is the radial distance from the top of the tooth to the bottom of the tooth, in a meshing gear. A circle passing through the top of the meshing gear is known as *clearance circle.*

14. *Total depth.* It is the radial distance between the addendum and the dedendum circle of a gear. It is equal to the sum of the addendum and dedendum.

15. *Working depth.* It is radial distance from the addendum circle to the clearance circle. It is equal to the sum of the addendum of the two meshing gears.

16. Tooth thickness. It is the width of the tooth measured along the pitch circle.

17. *Tooth space*. It is the width of space between the two adjacent teeth measured along the pitch circle.

18. *Backlash.* It is the difference between the tooth space and the tooth thickness, as measured on the pitch circle.