2.22 PARTICLE IN A THREE-DIMENSIONAL BOX

We have seen that a particle moving freely in a one-dimensional box
(potential energy V = 0) serves as a very convenient model for several types of atomic
and molecular systems. Calculations. though approximate, agree fairly well with
observed results. Electronic motions 1in atoms and molecules, are, however, three-
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dimensional and a three-dimensional box model ahould be more appropriate. Thnuﬁ
4 molecules are complicated due to some other factors,

electron motions In atoms an . | .,
let us see how far results of quantum-me.chumcal treatment of a single particle

moving in a three-dimensiona
Let us consider a particle of mass 7
*m” moving n & three-dimensional
rectangular box having gides a, b, and ¢
along x, y and z-axis as shown 1n
Fig.2.16. The potential energy of the
particle moving ingide the box will be
zoro, The remainder of space outside the
box will have infinite potential energy. ¢
The potential energy at the boundaries of

| hox are of interest.

the rigid walls will also be zero in order -
to avoid discontinuity of the wave X
function, 1.e.

Vix,y,2)=0, - >

for0<x<a, 0<y<bandO<z<c 8
Fig.2.16 Particle in a three-
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The Schrodinger wave equation s
for such a particle moving within the box
is given by
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Substituting ::e valu:&nm (@), (b) and (¢), Into equation (2.69), we get
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It 1s apparent that each term on the LH.S. of equation (2.72) is a function of
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I is clear from these equations that
E=E, +.E1., + EI

Each of the equations (2.74a-c) is the same as the equation |

dimensional box. Therefore, the solution of tl RS
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sin ( .;r:z) (2.76:¢). ’
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where ny, n, an n, are integers, excluding zero. Thue, three is a quantum 1

each coordinate. The total kinetic energy of particle from equations (2.

by
. b o’ b’

ﬁﬁ"‘g 8mb®  Smc”

E

f




Feninry =\/;'5“’(na )*(""“-)ain(“‘“j

The lowest (ground state i

) ener
a!;-'uf] |-I.I'l{‘.|".'-'n a5 Zero pﬂll‘lt E‘nErg-v- g}r {El}mrl‘l‘.'ﬂpuqﬂa to nx

_ _ 1 The i e w
that in one-dimensional hox pruhlem.peﬁﬂglgrn:ﬁe y
es

(in the former). Here the factoy

(2.79)
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ave functions will be same as
(in the latter) and degeneracy

7 the normalization of factor or

constant.
The results of particle in :
a thl’EE-dlmen i ; s = i
regard to the following points: sional box are of interest mainly with

(i) Unlike the classical predictions, the probability of finding the particle is not

constant, but is a function of x. v and z-coordinates.

(11) The probability of finding the particle in a particular portion of the bog
depends upon the energy of the particle.

(111) Only certain eneré}; levels, related to n are allowed, others are not allowed.
The lowest kinetic energy is given when Ry =n,=n, =1
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Example 2.13

Determine the low

est kinetic energy of a particle in a !:_hree»dimensmnﬂ box
: : i . _]ﬁ
713 10V mand 20 x 1077 m.
of dimensions 0.1 = 10 15 m. 1.5 100 "man

Solution




