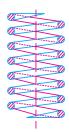
23

Springs

- 1. Introduction.
- 2. Types of Springs.
- 3. Material for Helical Springs.
- 4. Standard Size of Spring Wire.
- 5. Terms used in Compression Springs.
- 6. End Connections for Compression Helical Springs.
- 7. End Connections for Tension Helical Springs.
- 8. Stresses in Helical Springs of Circular Wire.
- 9. Deflection of Helical Springs of Circular Wire.
- 10. Eccentric Loading of Springs.
- 11. Buckling of Compression Springs.
- 12. Surge in Springs.
- 13. Energy Stored in Helical Springs of Circular Wire.
- 14. Stress and Deflection in Helical Springs of Noncircular Wire.
- 15. Helical Springs Subjected to Fatigue Loading.
- 16. Springs in Series.
- 17. Springs in Parallel.
- 18. Concentric or Composite Springs.
- 19. Helical Torsion Springs.
- 20. Flat Spiral Springs.
- 21. Leaf Springs.
- 22. Construction of Leaf Springs.
- 23. Equalised Stresses in Spring Leaves (Nipping).
- 24. Length of Leaf Spring Leaves.

23.1 Introduction


A spring is defined as an elastic body, whose function is to distort when loaded and to recover its original shape when the load is removed. The various important applications of springs are as follows:

- To cushion, absorb or control energy due to either shock or vibration as in car springs, railway buffers, air-craft landing gears, shock absorbers and vibration dampers.
- To apply forces, as in brakes, clutches and springloaded valves.
- **3.** To control motion by maintaining contact between two elements as in cams and followers.
- **4.** To measure forces, as in spring balances and engine indicators.
- **5.** To store energy, as in watches, toys, etc.

23.2 Types of Springs

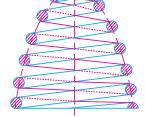
Though there are many types of the springs, yet the following, according to their shape, are important from the subject point of view.

1. *Helical springs*. The helical springs are made up of a wire coiled in the form of a helix and is primarily intended for compressive or tensile loads. The cross-section of the wire from which the spring is made may be circular, square or rectangular. The two forms of helical springs are *compression helical spring* as shown in Fig. 23.1 (a) and *tension helical spring* as shown in Fig. 23.1 (b).

(a) Compression helical spring.

(b) Tension helical spring.

Fig. 23.1. Helical springs.


The helical springs are said to be *closely coiled* when the spring wire is coiled so close that the plane containing each turn is nearly at right angles to the axis of the helix and the wire is subjected to torsion. In other words, in a closely coiled helical spring, the helix angle is very small, it is usually less than 10°. The major stresses produced in helical springs are shear stresses due to twisting. The load applied is parallel to or along the axis of the spring.

In *open coiled helical springs*, the spring wire is coiled in such a way that there is a gap between the two consecutive turns, as a result of which the helix angle is large. Since the application of open coiled helical springs are limited, therefore our discussion shall confine to closely coiled helical springs only.

The helical springs have the following advantages:

- (a) These are easy to manufacture.
- **(b)** These are available in wide range.
- (c) These are reliable.
- (d) These have constant spring rate.
- (e) Their performance can be predicted more accurately.
- (f) Their characteristics can be varied by changing dimensions.
- **2.** Conical and volute springs. The conical and volute springs, as shown in Fig. 23.2, are used in special applications where a telescoping spring or a spring with a spring rate that increases with the load is desired. The conical spring, as shown in Fig. 23.2 (a), is wound with a uniform pitch whereas the volute springs, as shown in Fig. 23.2 (b), are wound in the form of paraboloid with constant pitch

(a) Conical spring

(b) Volute spring.

Fig. 23.2. Conical and volute springs.

and lead angles. The springs may be made either partially or completely telescoping. In either case, the number of active coils gradually decreases. The decreasing number of coils results in an increasing spring rate. This characteristic is sometimes utilised in vibration problems where springs are used to support a body that has a varying mass.

The major stresses produced in conical and volute springs are also shear stresses due to twisting.

3. *Torsion springs*. These springs may be of *helical* or *spiral* type as shown in Fig. 23.3. The **helical type** may be used only in applications where the load tends to wind up the spring and are used in various electrical mechanisms. The **spiral type** is also used where the load tends to increase the number of coils and when made of flat strip are used in watches and clocks.

The major stresses produced in torsion springs are tensile and compressive due to bending.

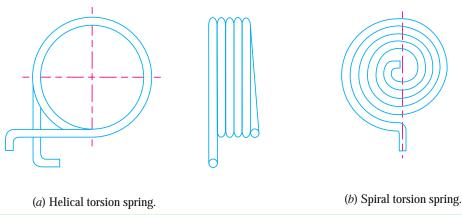


Fig. 23.3. Torsion springs.

4. Laminated or leaf springs. The laminated or leaf spring (also known as *flat spring* or *carriage spring*) consists of a number of flat plates (known as leaves) of varying lengths held together by means of clamps and bolts, as shown in Fig. 23.4. These are mostly used in automobiles.

The major stresses produced in leaf springs are tensile and compressive stresses.

Fig. 23.4. Laminated or leaf springs.

Fig. 23.5. Disc or bellevile springs.

5. *Disc or bellevile springs*. These springs consist of a number of conical discs held together against slipping by a central bolt or tube as shown in Fig. 23.5. These springs are used in applications where high spring rates and compact spring units are required.

The major stresses produced in disc or bellevile springs are tensile and compressive stresses.

6. Special purpose springs. These springs are air or liquid springs, rubber springs, ring springs etc. The fluids (air or liquid) can behave as a compression spring. These springs are used for special types of application only.