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When EtU{iFitlg the R TGRS

GRS : f ]
measure ments of its propertie =~ 8_system,

. : e 8, B one i L
anergy- Bach individua uch typically makes various

a8 magg
Q0 Erty i.H- I vﬂlumﬁ. puﬂ' :
= . s C 1tion, m
prop rty of the system which eould e d EEE}:_I an ﬂﬁ!&!{[uabie. An ghs umerit,utln ond
pnsmimm: that the state of a system | € measured. Since -q—fmfﬂﬂb_e is any
18 um mechanics

st 3 1e vV : E‘i\FEn '
< NIT”:-L :'Imut:::tue of various observables (say by a wave function, how does one
from wWa 18, (W) » POsItion or momentum, or energy)

The next postulates of quantum mechanics atat;:a that

. value of _Qh_s\_j in order to determine

the e f i -aﬂ'l‘h- Ewabiﬁ: ou have to perform some m . prﬂe o

wave function. This operation is represented by an operat - erauon;on 8
perator.

“An operator rep
. resents a mathemati
mat :
- 4o another 6 b6 Vector into aibther® ical rule that transforms one function
: or
An operator 18 an instruction to carry out certain nperﬁt.ions"'. :
or

An operator is a symbol or sign that tells us to do something of what follows
the symbol”. i K

Consider some examples

(1) In the differential equation Hd_x gin x = cos x. The operator is 3‘—1 It

differentiates the function on its right.
(1) In the equation
y=Inx
The In operator takes the natural logarithm of x, transforming into y.
(i)  In the equation

y=xﬁﬂ
The operator X stands for the rule: multiple by x the function to the right of x.
The result is a néw function called y.

4
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liv) I the matrix egquation
0 1 5, i
(Y o) Lilely)

Tho matrix pperator translorms one v

aetor into anather vector,

Evidently an operator s i set of inetruciions embadied i the definition ¢
ator and the operations can plways be written in the form of an eq

[ Ll
i : . .rh:
(operator) (funetion) (nnother function) (2.64) SN
The function on which the operation is cirried out 1 often called an o '_-"I;-

The loft hand wide of 1q.02.64) does not mean that the funetion is multiphs
by the aperator, In n sense an operitor therefore does not have any meaning
when it stande alone, For example "f 18 un uperator which i J‘mlfm,'
mean anything, but if a quantity or number put under it, it mefm%
quantity into 1te kquire root, another quantity. An operator, unless it s
atherwise obvious, is hereafter written with a symbol (%) averhead, Thﬂwﬁf
operator A 1 symboliged hy A, Operntors  are extremely important ia

quantum mechames because they provide the means for calculating pe s
measured values of observable properties of the system. It 1s the pos
quantum mechanics that for any observable in classical mechanics, there isa
linear quantum mechanical operator. It is further postulated that the
possible measured values are the eigen values obtained from SWE. Th
physical significance of the eigen values of any physical quantity i5, that the

are the possible results of measurements of physical quantity. i
Algebra of Operators ré'l.‘ :

Although operators do not have any physical meaning, they can be ..
subtracted, multiplied. and have some other propertics, - '

Addition l-nd-ﬂuivtrnetipn: .

" The addition or subtraction of operators yields new operatars, the sus
difference of operators being defined by 7

CArBfo=AtoeBin

X A
s e
E t. ’



means that the function iy 18 first
which 18 then operated on by ,ﬂ to "'“'m":n:m lrr ﬁ to yield new function iy
' functig :

e o on hix),
AB fix) = AR fx)) = A BIX) = hiy) ;

For example, let A be 452 f4. d
X Bbe e and ) = ax? then

AB iy =gt @ .
WE B as e st (@ax®) = 12ax
The square of an operater

means
successively twice, i.e, A% ) 21‘.“&&1} that the same aperator 15 applied

For example,

AL |
Lot A =7-and f{x)=ainx.theniaﬁlj(i):mﬂ“

d” . drd e
or a_l{mx};—ﬁ[_E';{.mﬂlll‘—.*ax-.-(mﬁ:'}=~gm:

Commutative Property

When a series of operation 18 perforued on a function successively the result
depends on the sequence in which th~ aperation is performed; in other words, in

aperator algebra it is not necessary that AB fix) = BA f(x). For example, let A denote
%. B stand for 3x”, and the function f(x) be sin x; then,
m-'ff!)- =Ed; [_3;_*, {mnxj};:j&- tﬁ’m x)
= 6xsinx + 35 wex
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A [ + g = A fo0 + A 8
or ﬁ[Cf{x}] =C . A f(x), where C

is constant

Examples

: " L d e +
@ dx 24 linear operator because ax (ax ™+ bx') d_x (ﬂx ) ("J!t ) ‘
(1) \/, square root, is not a linear operator because ' J.

Vi(x) + g(x) # i) + Ve

Commutator Operator

For any two operator A and B, the difference. A BB A, which is simply

denoted by AB-BAor[A B]is called “commutator operator”.

If A and B commute then [4, B] = 0, where 0 is called the zero operator which
means multiplying a function with zero. '

A d
In the earlier example, where, A= A5 2 B = 31{2 and f(x) = sin X, the

commutator is obtained as follows
(A, B] f(x) = [A B - B A] fx)
= (6x sin x + 3x” cos ) - 3x° cos X
= gx sin x = 6x f(x)
or [A, B] = 6x
The Operator V and v2
the examples of simple one-dimensional ope:
of a single variable like f(x) or

So far we have given
Iy 4 ete, which operate on functions
there may be two-or three-dimensional operators which operate on
than one variable, ie., f(x, y, z). Thus, the operator 7y i :3? *‘:T’l her

function f, wherg f m:le for f{x, y,q}, gwasﬂm raaulﬁﬂ:



P -+ ;
where .7 and k are unit vectors

along the - .
. the sense that when applied o as X, Y'_Hndt'nxeg; This ; :
:::.lh]ch & & vector. a scalar function it Wmfmi?tm :E:::}:

mﬂhamcai operator are as follows:

1.

=

The rules for co ' :
nverting a classical function 1o correspondi

: ng quantum

Quantum mechanical operator

the same as its classical value, for g ponding to each Cartesian coordinate is

ample,

el i (2.65)

h C i :
Each Cartesian component of linear momentum is replaced by the operator.,
kB ol e

Px " 2n Bx” " 2n bx (2.68)
Similarly,
a h : ‘E_ 2 ﬁ

; I ;
where 1 = '\le. The quantity Tis equal to i, become (1) = L.

On the basis of these rules ~rerator for other quantities can be determined.

Thus the operator for energy is the Hamiltonian l_’f:[) angular momentum is i These
can be expressed in terms of equations (2.65, 2.66). As we know that the total energy

of a conservative system in

classical mechanics is represented by H and its value is

equal to the kinetic energy (T) and the potential energy (V). re.
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Table 2.1 Common Quantum-Mechanical Operators as Derived

from their Classical Expressions

N S b
bl Quantum Mechanical Operation
Classical Variable Operator 5,
Position
X . A x(multiplication)
(similarly for the y- and z-
direction)
~ Linear momentum -
p(x-direction) '13! L(_{‘—)
2ne \ X
(similarly for the y- and z-
direction)
Angular momentum : ’ e - o
L, (retation abnuﬁ the z f‘z T
- Kinetic energy \h i
T 5 i rif. .
Potential energy :
Total energy |




