218 THE SCHRODINGER WAVE EQUATION

In 1926 Erwin Schrodinger, an Austrian Physicist developed the wave

model of the atom. This model takes into account the wave and particle

pature of the electron. In his model, he visualized the atom as a positively charged
nucleus surrounded by a standing electron wave which extends round the nucleus.

Schrodinger proposed that if the electron has wave-like nature, it would obey
the same equation of motion as all other known types of waves obey, On the basis of
this simple idea, he derived an equation which describes the wave motion of an
glectron wave along any of the three axes viz. x, v and z axis and is called
Schrodinger Wave Equation. This equation cannot be proved or derived. Rather, it



80 Modern Physical Chemistry

may be taken as the starting point for a discussion of modern guantum theory. It is
possible, however, to make an argument for the Schrodinger equation in the

Let us consider a particle P moving with uniform angular velocity @ rad &
in a circular path of radius A, which is executing simple harmonic motion. We
measure time from the instant when P passes O and then after a time t second, we
imagine P to have described an angle 8 = wt radians. The variation of displacement
with time can be represented by a simple harmonic wave as shown in Fig 2.9,
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Fig. 2.9 The representation of simple harmonic motion and harmonie wave

A simple harmonic wave may be produced in a medium by a body executing
simple harmonic motion. By considering the right angled triangle PBC, we can write

PO W

PB ‘«'—*_I =gin B

¥ = A sin 0 = A sinot (. 0=qt) 2.35
B e (arsmouiiond a pai) reprecents thie vertioal displacement of

wave. We can plot this displacement against time as on
side of Fig. 2.9 .
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Combining Equation (2.35) and Equation (2.36), we have ;
W= A win 228 (. t=3M) (2.98) 4

~ and wave is shown in Fig. 2,10
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Fig. 2.10 The concept of progressive wave with wavelength A.
3 'B?uidmt the froquency u, we now have another property by which we cun
characterize the wave — ita wavelength A, which is the distance traveled during o :
1 mﬂlh Ej’ﬂ]ﬂ. t
v )
b (. v=ul) "
So, we have .
2nx . -
¥=Auin == 249~ %

On differentinting Equation (2.99) with respect to x, we get

f & =(Aee ) (%) i3
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, . - otion of any particle
Thin in the classical wave equation describing il , Jet us assume

o ' d to have a wave ¢
along x-axis, Since tho €8CE0 Fm:ectrnn waves. To apply this equation 1o a

that the sume behavior is shown by : . o
particle, & must be replaced by the momentum of the particle using de-Broglie
relationship L.e.,

h

o

my
Tuking square on both sides
2
a2 _h
A-Em=g

m ¥

1.2
4 _my (2.41)

or ] ¥
A

Substituting this value in equation 2,40, we get

A5y 4 dﬂEmzvﬂ =
dx* h*

In order to express this equation in terms of energy, we make use of the fact
ttat total energy (E) is the sum of kinetic energy and potential energy (Bohr's
heory).

Total Energy = Kinetic Energy + Potential Energy

(2.42)

E=12mvi+V

or -;-_mv2=E—-\.?




or simply

l‘m2 € - “Wv= 0

:E
where V= (del squared) is known et

Equations (2.43),
wave equation.
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2., _ -Bn’m 8’
or Vog = 81 m
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B2 | 1 Vy
: h*
Multiply this equation by 5
[ T m
e
V=t i
5,16 Ev+ V¥
=
or Ev¥ == VW + VW
Bn"m

or Ewv=| - h? ?2'4-\")‘:?
or HY=EY¥Y (2.46)
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expression for an electron i H.

; (ve an
Gv)  Thie equation has been used to derive

atom, \ . .
n used to derive various quantum numbersy “'hih:h

electron in an atom,

calculate the energy of n-electrong i

v) This equation has bee
represent the postal address of an

(vi) This equation has been used to
conjugated systems like benzene.

olecules,
(vii)  This iz aleo used to ca lculate the resonance energy of m

214 THE INTERPRETATION OF WAVE FUNCTION (V)

The wave function ¥ is a sort of an amplitude f“-f_fﬂ"mﬂ- In the case of a light
wave, the intensity of a light at any point i8 proportional to the square of the
amplitude of wave at that point. In terms of light quﬂl'ftﬂ or photon hv, t-he_murg
intense the light at any place, the more photons are falling on that place. Thu fact
can be expressed in another way by saying that the greater the value Flf ampht_.u:ig af
a light wave in any region the greater is the probability of a photon being within that
region.

¥ being a mathematical function has no physical meaning by itself. Max

Born suggested in 1927 that the product w? does have physical meaning, since it
gives the probability of finding the particle (or the product of the wave function ¥

and its complex conjugate ¥ is a probability density). The probability of finding the
electron in space is not given by ¥ only, even though ¥ is considered to be a complete
function which has a real value and always zero or positive. The complex conjugate of
‘¥ is obtained by changing i to —i everywhere in V. If the behaviour of the electron is
represented by a wave equation, we can equate the square of the function with either
(a) the electron density and (b) the probability that the electron will be found in a

given volume element, we thus get a physical significance for the function Yix, y, z)
in that A

¥ dxdy-dz (= ¥ dv)

measures the probability that the electron will be fo y
surrounding the point whose coordinates are (x, vly und in the volume element dv

. ; 2 :
The other interpretation ¥* dy represents the electron density in the volume

element dv cannot be justified so vigorous] i i e :
y a8 the proh i ;

has proved to be very useful in practice. But diiﬁculgéec:; ability mterpm_bgtdi‘@-_ffﬂ? it

electron system. ¢8 arise when Ep;fllﬂ_ to single

- The probability density at some poin e
probability that a particle will be found tﬁ:rl:t Fﬁr .ﬂ:xpal{:ﬂjlb’ a
almgth!f“ﬂﬁ.hmmﬂwa?&funqu(x}.mn example,

J:Fb‘“ probability density, f(x) =¥ (x) W(x),

=



The probability

that it jg
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. funet
In caleulatin s & 10n is @L-,
box contum £ probability densities, 3 ' b€ normatized
PR o ame 86 haa e Probability densigy 3y unction is multiplied by its
Y

18 always real and positive. The
Nary part ie. ¥ may be a complex

quantity.
Let C=a+ib
where @ 18 real quantity and b is an Imaginary part.
Then its complex conjugate
¥ =g-ib
where ¢ (jota) is an imaginary part.

These two values of W and w

may be imaginary, in order to geta real quantity we multiply them
=ity s D=0 00
=gt + b°
or w2 =g+ b*

or ?2 - 2+ bz |
o2 should be the square of the abaolute :_-m of the
ost of the wave functions in mu:u' molecular
s only, andm’i**mn_r be employed. .. |
pudickmm’i- likely to llfﬂ'uiﬂ '

Strictly speaking that
“a%e function i.e, || % However m
"ructura] problems contain real terms
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function must have cértain general

Since g is a probability density, a wave

properties =

as a probability amplitude

-

tation of the wave function
cal conditions.

s which must be met by

The physical interpre
implies that it must obey certain mathematl

Following are the mathematical requirement

physically acceptahle wave functions.
the integral of Wy over all the space

5 1 st be normalized,
< ek e, here in that interv al if 1t to exist

is unity, since the particle must exist somew

at all.

,|-_ Wi (x)dx = 1

or _[ ; W (xdx = 1 ‘

i : - I
Wi(x) and d‘:l:\} must be everywhere single-valued. 1t must be single-valued

because the probability of finding the electron at any point must have an]_',f_ .}
one value. If the W were doubled-valued, there would be two probabihities for
the same position which would be physically meamngless.

I

o W(x) and dP(x)/dx must be everywhere finite. It cannot be infinite at any
point, for then the electron would be fixed at exactly that point which would
he inconsistent with its wave properties or ¥ cannot become infinite since
that would corresponds to certainty of particle being at some definite points.

d¥
4 ‘Wix) and d( ) must be everywhere continuous. The reason for that is that

certain properties (e.g. momentum) are caleulated by taking the deri?ﬂtiw‘u"
of the wave function. If the wave function is discontinuous at some point. 1ts
first derivative is infimite at this point. But values of phymm’t mpﬁmus
cannot be infinite, so the wave function cannot be mm' ws. Mor

the requirement of continuity is helpful in the n of physicall
reasonable solutions for the wave equation.

Because of these limitations onl m
ar ﬂimmm Y, eechain




fhe information given by w o "
m,?mlurﬂmt*l“ﬂ of 'I.hﬁ ‘yﬂtﬂm' Ph,vnim m T
+ Phveical properting,
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indic, St

() This function becomes infinite at (b) This function is not Hﬂﬁw
certain value of x at every position over the allowed
range of x

—/‘",—« vl‘.

(¢) This function is not everywhere  (d) This function has discontinubus . 2
continuous derivative at each cusp.




