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3.13.3.4 Analysis of Covariance

Analysis of covariance (ANCOVA) is a method for comparing sets of data that
consist of two variables (treatment and effect, with the effect variable being called
the variate), when a third variable (called the covariate) exists that can be measured
but not controlled and that has a definite effect on the variable of interest. In other
words, it provides an indirect type of statistical control, allowing the precision of a
study to be increased and potential source of bias to be removed. One common
example of this is in the analysis of organ weights in toxicity studies. The interest
here is the effect of the dose or exposure level on the specific organ weights;
however, most organ weights also increase (in the young, growing animals most
commonly used in such studies) in proportion to increases in animal body weight.
Because the effect of this covariate (body weight) is not of interest, it is measured
only to allow adjustment of the measurement of the variate of concern (the organ
weights). ANCOVA allows this adjustment to be made. Care must be taken before
using ANCOVA, however, to ensure that the underlying nature of the
correspondence between the variate and the covariate is such that it can be relied
on as a tool for adjustments (Harris 1975; Litchfield and Wilcoxon 1949).

The underlying assumptions for ANCOVA are fairly rigid and restrictive. These
assumptions are as follows:

. the regression slopes of Yand X are equal from group to group;
. the relationship between X and Y'is linear;

. the covariate X is measured without error;

. the errors inherent in each variable are independent of each other;

1

2

3

4. there are no unmeasured confounding variables;

5

6. the variances of the errors in groups are equal between groups;
7

. the measured data that form the groups are normally distributed.

Read full chapter
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Statistical Methods in the Atmospheric Sciences

D.S. Wilks, in International Geophysics, 2011

13.4 Maximum Covariance Analysis (MCA)
Maximum covariance analysis (MCA) is a similar technique to CCA, in that it finds
pairs of linear combinations of two sets of vector data x and y,

v, = £ x },m: 1.ee, M: (13.39)
T

Wy =Ty v

such that their covariances

Cov(vym, W) = €5[Szy] Tm (13.40)

(rather than their correlations, as in CCA) are maximized, subject to the constraint
that the vectors £, and rpy are orthonormal. As in CCA, the number of such pairs M
=min (1, ]) is equal to the smaller of the dimensions of the data vectors x and y, and
each succeeding pair of projection vectors is chosen to maximize covariance,
subject to the orthonormality constraint. In a typical application to atmospheric
data, x(t) and y(t) are both time series of spatial fields, and so their projections in
Equation 13.39 form time series also.

Computationally, the vectors €n, and ry, are found through a singular value
decomposition (Equation 10.68) of the matrix [S,] in Equation 13.1, containing the
cross-covariances between the elements of x and y,

[Szy] = (L] (@ [R]T. (13.41)
IxJ) (Ix))T=xJ)T=xJ)

The left singular vectors £, are the columns of the matrix [L], and the right singular
vectors r,, are the columns of the matrix [R] (i.e., the rows of [R]"). The elements w,,
of the diagonal matrix [Q] of singular values are the maximized covariances
(Equation 13.40) between the pairs of linear combinations in Equation 13.39.
Because the machinery of the singular value decomposition is used to find the
vectors £, and r,, and the associated covariances w,,, maximum covariance
analysis sometimes unfortunately is known as SVD analysis; although as illustrated
earlier in this chapter and elsewhere in this book, the singular value decomposition
has a rather broader range of uses. In recognition of the parallels with CCA, the
technique is also sometimes called canonical covariance analysis and the w,, are
sometimes called the canonical covariances.

There are two main distinctions between CCA and MCA. The first is that CCA
maximizes correlation, whereas MCA maximizes covariance. The leading CCA
modes may capture relatively little of the corresponding variances (and thus yield
small covariances even if the canonical correlations are high). On the other hand,
maximum covariance analysis will find linear combinations with large covariances,
which may result more from large variances than a large correlation. The second
difference is that the vectors £, and r,, in maximum covariance analysis are
orthogonal, and the projections v,, and w,, of the data onto them are in general
correlated, whereas the canonical variates in CCA are uncorrelated but the
corresponding canonical vectors are not generally orthogonal. However, it is not
unusual to find similar results for CCA and MCA applied to the same data sets
(e.g., Feddersen et al., 1999; Wilks, 2008). Bretherton et al. (1992), Cherry (1996),
Tippett et al. (2008), van den Dool (2007), and Wallace et al. (1992) compare the two
methods in greater detail.

Example 13.4 Maximum Covariance Analysis of the January 1987
Temperature Data
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Singular value decomposition of the cross-covariance submatrix [S, ] in Equation
13.31cyields

(13.42)
[58.07 51.70]_[.4876 .8731 H157.4 0 ][.6325 . 7745 ]
81.63 110.8| |.8731 —.4876]|0 14.06 | | .7745 —.6325]

The results are qualitatively similar to the CCA of the same data in Example 13.1.
The first left and right vectors, & = [.4876, .8731]" and r, = [.6325, .7745]',
respectively, resemble the first pair of canonical vectors a; and by in Example 13.1
in that both put positive weights on both variables in both data sets. But here the
weights are closer in magnitude and emphasize the minimum temperatures rather
than the maximum temperatures. The covariance between the linear combinations
defined by these vectors is 157.4, which is larger than the covariance between any

other pair of linear combinations for these data, subject to ||€1| = ||r1|| = 1. The
corresponding correlation is
Corr(vy,w;) = = = “1 13.43
W1w1) = Saverwn” CACARPA R CHEMENES 1)
157.44 !
= ——=— =10.94
(219.8)/%(126.3)"/2 0.945

which is large, but necessarily smaller than rc; = 0.969 for the CCA of the same
data.

The second pair of vectors, ¢, = [.8731, —.4876]" and r = [.7745. —.6325]", are also
similar to the second pair of canonical vectors for the CCA in Example 13.1, in that
they also describe a contrast between the maximum and minimum temperatures
that can be interpreted as being related to the diurnal temperature ranges. The
covariance of the second pair of linear combinations is w, corresponding to a
correlation of 0.772. This correlation is slightly larger than the second canonical
correlation in Example 13.1, but has not been limited by the CCA constraint that
the correlations between vy and v,, and wy and w; must be zero. ¢

The results of a MCA can be used to forecast one of the fields, say y, using the x
field as the predictor, similarly to the CCA forecasts described in Section 13.2.3. If
the projection variables in Equation 13.39 have been computed from anomaly
vectors x' and y, then the individual regressions will have zero intercept and be of
the form

B = B Omy, m=1,..., M, (13.44)

where the least-squares estimates of the individual regression slopes are

3 _ _ Um 13.45
P = Esuntts (134

and the estimated regression error variance is
r 13.4
52 = r5[Syy) tm — Brn £5[Sez] . (13.46)

However, since the since the projections in Equation 13.39 are not uncorrelated for
different m, simultaneous application of multiple-m versions of Equation 13.44, as
in Equation 13.23 for CCA, will in general not yield optimal predictions. Rather, the
framework of multiple linear regression (Section 7.2.8), in which many or all of the
¢ projections might be used as predictors for any of the ry, predictands would be
more appropriate (Garcia-Morales and Dubus, 2007; Tippett et al., 2008).

The papers of Bretherton et al. (1992) and Wallace et al. (1992) have been influential
advocates for the use of maximum covariance analysis. One advantage over CCA
that sometimes is cited is that no matrix inversions are required, so that a
maximum covariance analysis can be computed even if n < max (I, J). However,
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both techniques are subject to similar sampling problems in limited-data
situations, so it is not clear that this advantage is of practical importance. Some
cautions regarding maximum covariance analysis have been offered by Cherry
(1997) and Hu (1997); and Newman and Sardeshmukh (1995) emphasize that the
¢, and r,,, vectors may not represent physical modes of their respective fields, just
as the eigenvectors in PCA do not necessarily represent physically meaningful
modes.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780123850225000130

Multivariate Analysis of Vector Pairs

Daniel S. Wilks, in Statistical Methods in the Atmospheric Sciences (Fourth
Edition), 2019

14.3.1 Definition of MCA

Maximum covariance analysis (MCA) is a similar technique to CCA, in that it finds
pairs of linear combinations of two sets of vector data x and y (Equation 14.2) such
that the squares of their covariances

Cov (v, W)= @k [Sz 4] b (14.44)

(rather than their correlations, as in CCA) are maximized, subject to the constraint
that the vectors a,, and b,, are orthonormal. Maximization of squared covariance
allows for the possibility that a pair of vectors a,,, and b,, may yield a negative
covariance in Equation 14.44. As in CCA, the number of such pairs M = min (I, ]) is
equal to the smaller of the dimensions of the data vectors x and y, and each
succeeding pair of projection vectors are chosen according to the maximization
criterion, subject to the orthonormality constraint. In a typical application to
atmospheric data, x(t) and y(t) are both time series of spatial fields, or the leading
principal components of these fields, and so their projections in Equation 14.2
form time series also.

Computationally, the vectors a,,, and b,, are found through a singular value
decomposition (Equation 11.72) of the matrix [S, ] in Equation 14.1, containing the
cross-covariances between the elements of x and y,

[Szy] = [4] [2] [BI”. (14.45)
IxJ) (IxJ) (IxJT) (IxJ)

The left singular vectors a,, are the columns of the matrix [A] and the right singular
vectors b,, are the columns of the matrix [B] (i.e., the rows of [B]"). The elements
w,, of the diagonal matrix [Q] of singular values are the covariances (Equation
14.44) between the pairs of linear combinations in Equation 14.2. Comparison of
Equation 14.45 with its CCA counterpart in Equation 14.35 shows that MCA is
computed on the basis of the unwhitened (not subjected to Mahalanobis
transformations) data vectors x" and y', and that the projection vectors a,,, and b, in
MCA are not scaled subsequent to the SVD (cf. Equation 14.32 for CCA).

The proportions of the variances of the underlying variables represented by the
projections vy, and wy, are

2 _ a%[sz,z] Ay 14.46a
Ba(®)= =60 (14.462)

and
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b2 (S,y] bm 14.46b
Ra(W)= s ( )

the numerators of which are Var(v,,) and Var(w,,), respectively. The homogeneous
correlations are

_ a%[sz,z][Dz]_l (14.473)
COI‘I‘(’Uma w)— (aﬁ[sz,z] %)1/2
and
T -1
Corr(wp, y)— LelbelB (14.47b)

(b7 [Sys] bm)

which differ from their counterparts for CCA in Equation 14.7 because the square
roots of the variances of the projection variables v,, and w,, in the denominators of
Equations 14.47 are not equal to 1. Similarly, the heterogeneous correlations are

_ a'zw[szm][Dy]_l (14483)
COI‘I'('Um, y)— W
and
b7 [Syz](D2] " (14.48b)

Corr(’wm,m)= (bT 15,16 )1/2’
m FYyyl¥m

which correspond to Equations 14.8.

Because the machinery of the singular value decomposition is used to find the
vectors a,,, and b,,, and the associated covariances w,,, maximum covariance
analysis sometimes unfortunately is known as SVD analysis. As illustrated earlier in
this chapter and elsewhere in this book, the singular value decomposition has a
rather broader range of uses (e.g., Golub and van Loan, 1996). In recognition of the
parallels with CCA, the technique is also sometimes called canonical covariance
analysis in which case the w, are called the canonical covariances. The method is
also known as Co-inertia Analysis in the biology literature.

There are two main distinctions between CCA and MCA. The first is that CCA
maximizes correlation, whereas MCA maximizes covariance. The leading CCA
modes may capture relatively little of the corresponding variances (and thus yield
small covariances even if the canonical correlations are high). On the other hand,
MCA will find linear combinations with large covariances, which may result more
from large variances than a large correlation. The second difference is that the
vectors ap, and by, in maximum covariance analysis are orthogonal, and the
projections vy and wp, of the data onto them are in general correlated, whereas the
canonical variates in CCA are uncorrelated but the corresponding canonical vectors
are not generally orthogonal. Bretherton et al. (1992), Cherry (1996), Tippett et al.
(2008), and Van den Dool (2007) compare the two methods in greater detail.

It is not unusual to find similar results for CCA and MCA applied to the same data
sets. For example, Figure 14.5 shows a pair of MCA-derived homogeneous
correlation patterns for winter northern Pacific SSTs (a) and corresponding 500 mb
heights (b), which are both very similar to their counterparts in Figure 14.1 that
were based on CCA.

Example 14.4 Maximum Covariance Analysis of the January 1987 Temperature
Data

Singular value decomposition of (the transpose of ) the cross-covariance submatrix
[Syy] in Equation 14.36c yields

[58.07 51.70]_[.4876 8731 ][157.4 0 ][.6325 7745 ] (14.49)

81.63 110.8] |.8731 —.4876 0 14.06]1.7745 —.6325
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The results are qualitatively similar to the CCA of the same data in Example 14.1.
The first left and right vectors, a; = [0.4876, 0.8731]" and b, = [0.6325, 0.7745]",
respectively, resemble the first pair of canonical vectors a; and by in Example 14.1
in that both put positive weights on both variables in both data sets. Here the
weights are closer in magnitude and emphasize the minimum temperatures rather
than the maximum temperatures. The covariance between the linear combinations
defined by these vectors is 157.4, which is larger than the covariance between any
other pair of linear combinations for these data, subject to || a; || = || by || = 1. The
corresponding correlation is

(14.50)
w1 w1
Corr(vy,w1)= =
(Var(v)) Var(w))"?  (aZ[S,0] a1) "/ (7[S,q] 1)
— 11527°44 — =0.945
(219.8)"/%(126.3)"/

which is large, but necessarily smaller than rc = 0.969 for the CCA of the same
data.

The second pair of vectors, a; = [0.8731, - 0.4876]" and b, = [0.7745. —0.6325]", are
also similar to the second pair of canonical vectors for the CCA in Example 14.1, in
that they also describe a contrast between the maximum and minimum
temperatures that can be interpreted as being related to the diurnal temperature
ranges. The covariance of the second pair of linear combinations is w;,
corresponding to a correlation of 0.772. This correlation is slightly larger than the
second canonical correlation in Example 14.1, but has not been limited by the CCA
constraint that the correlations between vy and v;, and w; and w; must be zero.

The proportions of variability in the original variables captured by the MCA
variables are

oo w5 [ ey Lorst (14.512)
2 () — . . . _
Ri(x)= 59.516+185.467 = 0.897
B gyl as529
2 () . . - .
R; (a:)_ 59.516-+185.467 =0.103
25 785 [ 0 e Lova (1453
2 () — . . . _
Rl (y)— 61.847+77.581 = 0.906
and
e P | (14.549)
2 () . . - .
Ry (y)— 61.847+77.581 = 0.094
o
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Figure 14.5. Homogeneous correlation maps of (a) average winter sea-surface
temperatures in the northern Pacific Ocean, and (b) hemispheric winter 500 mb
heights, derived from MCA. These are very similar to the corresponding CCA result
in Figure 14.1.

From Wallace et al. (1992). © American Meteorological Society. Used with permission.

The papers of Bretherton et al. (1992) and Wallace et al. (1992) have been influential
advocates for the use of maximum covariance analysis. One advantage over CCA
that sometimes is cited is that no matrix inversions are required, so that a
maximum covariance analysis can be computed even if n < max (I, J). However,
both techniques are subject to similar sampling problems in limited-data
situations, so it is not clear that this advantage is of practical importance, and in
any case dimension reduction through use of the leading principal components is
often employed. Some cautions regarding maximum covariance analysis have been
offered by Cherry (1997) and Hu (1997). Newman and Sardeshmukh (1995)
emphasize that the am and by, vectors may not represent physical modes of their
respective fields, just as the eigenvectors in PCA do not necessarily represent
physically meaningful modes.

Read full chapter
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Poisson ANCOVA

Marc Kéry, in Introduction to WinBUGS for Ecologists, 2010

Publisher Summary

A Poisson analysis of covariance (ANCOVA) can be called a Poisson regression with
both discrete and continuous covariates. In most practical applications, Poisson
models will have several covariates and of both types. To stress the similarity with
the normal linear case, we only slightly alter the inferential setting. This chapter has
generalized the general linear model from the normal to the Poisson case to model
the effects on grouped counts of a continuous covariate. The changes involved in
doing so in WinBUGS were minor, and the inclusion of further covariates is
straightforward. The Poisson ANCOVA is an important intermediate step for one's
understanding of the Poisson generalized linear mixed model.

Read full chapter
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Binomial Analysis of Covariance

Marc Kéry, in Introduction to WinBUGS for Ecologists, 2010

Publisher Summary

A binomial analysis of covariance (ANCOVA) can be specified by adding discrete
and continuous covariates to the linear predictor of a binomial generalized linear
model (GLM). It has been hypothesized that the black color confers a thermal
advantage, and therefore, the proportion of black individuals should be greater in
cooler or wetter habitats. The value of the linear predictor is again obtained by
matrix multiplication of the design matrix (Xmat) and the parameter vector
(beta.vec). Moving from the normal and the Poisson to a binomial ANCOVA
involves only minor changes in the code of WinBUGS (and also R). Similarly, the
concepts of residuals and posterior predictive distributions carry over to this class
of models.

Read full chapter

URL: https://www.sciencedirect.com/science/article/pii/B9780123786050000181

Introduction to the Generalized Linear Model

Marc Kéry, in Introduction to WinBUGS for Ecologists, 2010

Publisher Summary

The unification of a large number of statistical methods such as regression,
analysis of variance (ANOVA), and analysis of covariance (ANCOVA) under the
umbrella of the general linear model was a big advancement for applied statistics.
However, even more significant was the unification of an even wider range of
statistical methods within the class of the generalized linear model. They showed
that a large number of techniques previously thought of as representing quite
separate types of analyses, including logistic regression, multinomial regression,
Chi-square tests, log-linear models, as well as the general linear model, could all
be represented as special cases of a generalized version of a linear model. The two
main ideas of the GLM are that, first, a transformation of the expectation of the
response E(y) is expressed as a linear combination of covariate effects rather than
the expected (mean) response itself. And second, for the random part of the model,
distributions other than the normal can be chosen, e.g., Poisson or binomial.
Binomial, Poisson, and normal are probably the three most widely used statistical
distributions in a GLM. The former two are distributions for non-negative, discrete
responses and therefore suitable to describe counts. The normal is the most widely
used distribution for continuous responses such as measurements. The GLM is
another key concept that appears over and over again in modern applied statistics
in empirical sciences such as ecology.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780123786050000132
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Fitting Models Using the Bayesian Modeling Software
BUGS and JAGS

Marc Kéry, J. Andrew Royle, in Applied Hierarchical Modeling in Ecology, 2016

5.6 Linear Model with Normal Response (Normal GLM): Analysis of
Covariance (ANCOVA)

Returning to the illustration of common linear models, we next use BUGS to fit a
linear model that underlies a technique called analysis of covariance (ANCOVA).
Specifically, within a GLM with normal response, we fit to the mean tit counts the
linear model underlying a fixed-effects ANCOVA with interaction effects. For this,
we somewhat artificially first construct a factor that classifies the continuous
covariate forest cover into four levels or groups, with level 1 for values between
-1 and -0.5, level 2 corresponding to -0.49 and 0, etc.; see Figure 5.10(a) for the
raw relationship between mean tit count and levels of the forest factor (facFor).
Factors in BUGS must be labeled with integer numbers and not, for instance, with
letters or words, and the numbering must start at 1 and end at the number of
levels—i.e., have no jumps (e.g., 1, 2, 4, and 5 would cause a crash). We fit the
following model in the effects and the means parameterization (see Chapter 3),
where j indexes the four levels of the forest factor:

Figure 5.10. (a) Relationship between the mean count of great tits and the levels of
the forest cover factor (facFor). Raw data are shown for each level of facFor. (b)
Raw data and predicted relationship with elevation under the ANCOVA model with
a least-squares fit. Colors denote the four levels of facFor.

Cmean; ~ Normal (,ui, 02)
M = g j + ay ; * elev;

# Generate factor and plot raw data in boxplot as function of
factor A

facFor <- as.numeric(forest < -0.5) # Factor level 1

facFor[forest < @ & forest > -0.5] <- 2 # Factor level 2

facFor[forest < 0.5 & forest > 0] <- 3 # Factor level 3
facFor[forest > ©0.5] <- 4 # Facto
r level 4

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/covariance-analysis
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table(facFor)
# every site assigned a level 0K

par(mfrow = c(1, 2), mar = c(5,5,3,2), cex.lab = 1.5, cex.axi
s = 1.5)

plot(Cmean ~ factor(facFor), col = c("red", "blue", "green",
"grey"), xlab = "Forest cover class", ylab = "Mean count of g
reat tits", frame.plot = F, ylim = c(0,20))

# Bundle data

win.data <- list(Cmean = Cmean, M = length(Cmean), elev = ele
v, facFor = facFor)

We can define the model in the effects or the means parameterization, and we
show both. In either case, we define vector-valued parameters using the handy
nested indexing in the BUGS language. We will fit the model in WinBUGS, JAGS,
and compare with the MLEs obtained by using the least-squares method by way of
the function Imin R.

# Specify model in BUGS language in effects parameterization
cat(file = "ANCOVAL.txt","
model {

# Priors

alpha ~ dnorm(@, 1.0E-
06) # Prior for intercept = effect of level 1 of
forest factor

beta2 ~ dnorm(©, 1.0E-
06) # Prior for slope = effect of elevation
for level 1 of forest factor

betal[1] <- © # Set to zero
effect of first level of facFor

beta3[1] <- © # Set to zero
effect of first level of facFor of elevation

for(k in 2:4){
betal[k] ~ dnorm(®, 1.@E-

06) # Prior for effects of factor facFor
beta3[k] ~ dnorm(®, 1.0E-

06) # Prior for effects of factor facFor

}

tau <- pow(sd, -2)

sd ~ dunif(e, 1000) # Prior for dispe
rsion on sd scale

# Likelihood
for (i in 1:M){

Cmean[i] ~ dnorm(mu[i], tau) # precision tau = 1 / vari
ance

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/covariance-analysis 10/19
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mu[i] <- alpha + betal[facFor[i]] + beta2 * elev[i] + beta3
[facFor[i]] * elev[i]
}
}
")
We must not give any initial values for fixed quantities (here, betal[1] and

beta3[1]); note that in place of the initial for the first element of the parameter
vectors betal and beta3, we have an “NA.

# Initial values

inits <- function() list(alpha = rnorm(1,,10), betal = c(NA,
rnorm(3,,10)), beta2 = rnorm(1,,10), beta3 = c(NA, rnorm(3,,1
9)))

# Parameters monitored

params <- c("alpha", "betal", "beta2", "beta3", "sd")

# MCMC settings
ni <- 6000 H nt <- 1 5 nb <- 1000 ; nc <- 3

# Call WinBUGS or JAGS from R (ART <1 min)

out3 <- bugs(win.data, inits, params, "ANCOVAl.txt", n.chains
= nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

out3J <- jags(win.data, inits, params, "ANCOVAl.txt", n.chain
s = nc, n.thin = nt, n.iter = ni, n.burnin = nb)

# traceplot(out3])

# Fit model using least-
squares (yields equivalent estimates as MLE)

(fm <- summary(lm(Cmean ~ as.factor(facFor)*elev)))

Coefficients:
Estimate Std.
Error t value Pr(>|t])

(Intercept) 0.3353 0.2301
1.457 0.14633

as.factor(facFor)2 0.4244 0.3231 1.
313 0.19028

as.factor(facFor)3 1.2690 0.3083 4.
115 5.2e-05 **x

as.factor(facFor)4 3.7205 0.3162 11.7
66 < 2e-16  *xx

elev -0.6013 9.
4203 -1.431 0.15377
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as.factor(facFor)2:elev -0.6866 0.5999 -1.145 0.
25345

as.factor(facFor)3:elev -1.2116 0.5427 -2.232 0.
02644 *

as.factor(facFor)4:elev -1.6164 0.5708 -2.832 0.
00499 *x

Signif. codes: © ‘sxx’ 0.001 “xx’ 0.01 ‘+¥’ ©0.05 ‘.’ 0.1 <’ 1

Residual standard error: 1.783 on 259 degrees of freedom
Multiple R-squared: 0.4941, Adjusted R-squared: ©0.4804
F-statistic: 36.13 on 7 and 259 DF, p-value: < 2.2e-16

# Summarize posteriors

print(out3, 3)

mean sd 2.5%
25% 50% 75% 97.5% Rha
t n.eff
alpha 0.337 0.231 -0.114 0.183
0.337 0.491 0.799 1.001 15000
betal[2] 0.422 0.324 -0.211 0.205
0.422 0.641 1.051 1.001 15000
betal[3] 1.268 ©.310 0.664 1.062
1.267 1.473 1.887 1.001 15000
betal[4] 3.721 0.318 3.093 3.509
3.721 3.931 4.350 1.001 15000
beta2 -0.602 0.421 -1.442 -0.885 -
0.600 -0.319 0.222 1.001 15000
beta3[2] -0.687 0.605 -1.859 -1.101 -0.69
2 -0.277 0.503 1.001 15000
beta3[3] -1.215 0.544 -2.290 -1.581 -1.21
8 -0.847 -0.158 1.001 15000
beta3[4] -1.611 ©0.578 -2.744 -1.999 -1.61
(7] -1.223 -0.456 1.001 6100
sd 1.791 ©0.078 1.648 1.737
1.788 1.842 1.953 1.001 15000

deviance 1067.483 4.339 1061.000 1064.000 1067.000 10
70.000 1078.000 1.001 15000

DIC info (using the rule, pD = Dbar-Dhat)
pD = 9.0 and DIC = 1076.5

DIC is an estimate of expected predictive error (lower devian
ce is better).

We see the usual close numerical agreement between the Bayesian estimates and
the MLEs obtained with function 1m in R. Next, we fit the model using the means
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parameterization, where we fit directly the effect of each level of factor facFor
(note the changed parameter naming in the output). We do not need any change
in the data bundle. In addition, we also illustrate how we can estimate custom
contrasts as derived quantities—i.e., differences or other functions of parameters.
We estimate all pair-wise differences between the group means beta[1:4]. Of
course, we could also easily compute these derived quantities in R using posterior
samples of the vector beta produced by BUGS.

# Specify model in BUGS language
cat(file = "ANCOVA2.txt","

model {

# Priors

for(k in 1:4){
alpha[k] ~ dnorm(@, 1.0E-06) # Priors for intercepts
beta[k] ~ dnorm(©, 1.0E-06) # Priors for slopes

}

tau <- pow(sd, -2)

sd ~ dunif(@, 1000) #
Prior for dispersion on sd scale

# Likelihood
for (i in 1:M){

Cmean[i] ~ dnorm(mu[i], tau) #
precision tau = 1 / variance

mu[i] <- alpha[facFor[i]] + beta[facFor[i]] * elev[i]

# Derived quantities: comparison of slopes (nhow you can forge
t the delta rule !)

for(k in 1:4){

diff.vsl[k] <- beta[k] - beta[1] #
Differences relative to beta[1]

diff.vs2[k] <- beta[k] - beta[2] # ... relative to beta
[2]

diff.vs3[k] <- beta[k] - beta[3] # ... relative to beta
[3]

diff.vs4[k] <- beta[k] - beta[4] # ... relative to beta
[4]
}
}
")

# Initial values

inits <- function() list(alpha = rnorm(4,,10), beta = rnorm(4
»,10))
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# Parameters monitored

params <- c("alpha", "beta", "sd", "diff.vsl", "diff.vs2", "d
iff.vs3", "diff.vs4")

# MCMC settings
ni <- 6000 H nt <- 1 5 nb <- 1000 ; nc <- 3

# Call WinBUGS or JAGS from R (ART <1 min) and summarize post
eriors

out4 <- bugs(win.data, inits, params, "ANCOVA2.txt", n.chains
= nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

system.time(outd4] <- jags(win.data, inits, params, "ANCOVA2.t
xt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))

traceplot(out4d)

print(out4, 2)
Inference for Bugs model at "ANCOVA2.txt", fit using WinBUGS,

Current: 3 chains, each with 6000 iterations (first 1000 disc
arded)

Cumulative: n.sims = 15000 iterations saved

mean sd 2.5% 25
% 50% 75% 97.5% Rhat n.eff
alpha[1] 0.33 0.23 -0.13 0.18 0.33
0.49 0.79 1 15000
alpha[2] 0.76 0.23 0.31 0.61 0.76
0.91 1.21 1 15000
alpha[3] 1.60 0.21 1.19 1.46 1.60
1.74 2.00 1 15000
alpha[4] 4.06 0.22 3.64 3.91 4.05
4.20 4.49 1 15000
beta[1] -0.60 0.42 -1.41 -0.88 -0.60 -
0.31 0.23 1 15000
beta[2] -1.29 0.43 -2.14 -1.58 -1.29 -
0.99 -0.43 1 15000
beta[3] -1.82 0.34 -2.49 -2.05 -1.82 -
1.59 -1.13 1 6700
beta[4] -2.22 0.39 -2.97 -2.48 -2.22 -
1.96 -1.45 1 15000
sd 1.79 0.08 1.65 1.74
1.79 1.84 1.96 1 9900
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diff.vsi[1] 0.60  0.00 0.00 0.00 .00
.00 .00 1 1
diff.vsi[2] -0.69 ©.60 -1.88  -1.10 -0.69  -0.28
0.48 1 15000
diff.vs1[3] -1.22 .55 -2.30  -1.58 -1.22  -0.86
-0.15 1 14000
diff.vsi[4] -1.62  ©.57 -2.73  -2.01 ~-1.63  -1.23
-0.49 1 15000
diff.vs2[1] .69 0.60 -0.48 .28 .69
1.10 1.88 1 15000
diff.vs2[2] 0.00  0.00 0.00 0.00 0.00
0.00 .00 1 1
diff.vs2[3] -0.53 ©.56 -1.63  -0.99  -0.53 -0.16
.57 1 15000
diff.vs2[4] -0.93 ©.58 -2.87  -1.32  -0.93 -0.54
.21 1 15000
diff.vs3[1] 1.22  0.55 .15 0.86 1.22
1.58 2.30 1 14000
diff.vs3[2] ©.53  0.56 -0.57 0.16 .53
.90 1.63 1 15000
diff.vs3[3] 0.00  0.00 0.00 0.00 0.00
0.00 .00 1 1
diff.vs3[4] -0.40  ©.52 -1.42  -0.75  -0.40 -0.05
.62 1 9700
diff.vs4[1] 1.62  0.57 .49 1.23 1.63
2.01 2.73 1 15000
diff.vs4[2] .93 0.58 -0.21 0.54 0.93
1.32 2.07 1 15000
diff.vs4[3] 0.40  0.52 -0.62 .05 0.40
9.75 1.42 1 9700
diff.vs4[4] 0.00  0.00 0.00 0.00 0.00
0.00 0.00 1 1

# Fit model using maximum likelihood

(fm <- summary(lm(Cmean ~ as.factor(facFor)selev-1-elev)))

Coefficients:

Estimate  Std.
Error t value Pr(>|t])
as.factor(facFor)1l 0.3353 0.2301 1.

457 0.146328

as.factor(facFor)2 0.7596 0.2269 3.
348 0.000935 #kx

as.factor(facFor)3 1.6042 0.2052 7.
816 1.37e-13 *xx
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as.factor(facFor)4 4.0558 0.2169 18.7
00 < 2e-16 **x

as.factor(facFor)l:elev -0.6013 0.4203 -1.431 0.1
53772

as.factor(facFor)2:elev -1.2880 0.4280 -3.009 0.0
02880 *x*

as.factor(facFor)3:elev -1.8129 0.3433  -5.281 2.7
3e-07 xxx

as.factor(facFor)4d:elev -2.2177 0.3862 -5.743 2.6
0e-08 #*x*

Signif. codes: © ‘xxx’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 <’ 1

Residual standard error: 1.783 on 259 degrees of freedom
Multiple R-squared: ©0.6689, Adjusted R-squared: ©.6587
F-statistic: 65.42 on 8 and 259 DF, p-value: < 2.2e-16

We will often see the linear model that underlies an ANOVA (analysis of variance)
or an ANCOVA using nested indexing in the BUGS language. Let us plot the
predicted response as a function of the explanatory variables facFor and elev
(Figure 5.10(b)). We use the parameter estimates from the least-squares fit (=
MLEs), but clearly could also use the Bayesian posterior means.

plot(elev[facFor==1], Cmean[facFor==1], col = "red", ylim = ¢

(0, 20), xlab = "Elevation", ylab = "", frame.plot = F)
points(elev[facFor==2], Cmean[facFor==2], col = "blue")
points(elev[facFor==3], Cmean[facFor==3], col = "green")
points(elev[facFor==4], Cmean[facFor==4], col = "black")
abline(fm$coef[1,1], fm$coef[5,1], col = "red")
abline(fm$coef[2,1], fm$coef[6,1], col = "blue")
abline(fm$coef[3,1], fm$coef[7,1], col = "green")
abline(fm$coef[4,1], fm$coef[8,1], col = "black")

To further illustrate how simple it is to test custom hypotheses in an MCMC-based
analysis, let us compute the probability that the difference in the slopes between
level 3 of facFor and the other levels of that factor is greater than 1. We plot the
histograms of these contrasts (Figure 5.11) and then compute the proportion of the
area under the curve that lies to the right of 1.
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Figure 5.11. Posterior distributions of the difference between the slope of the
regression of the mean tit counts on elevation in facFor level 3 versus levels 1 (a),
2 (b), and 4 (c). The probability that this difference is greater than 1 is represented
by the area under the curve to the right of the red line for each posterior
distribution.

attach.bugs(out4) # Allows to directly address the sims.l
ist

str(diff.vs3)

par(mfrow = c(1, 3), mar = c(5,5,3,2), cex.lab = 1.5, cex.axi
s = 1.5)

hist(diff.vs3[,1], col = "grey", breaks = 100, main = "", fre
g=F, ylim = c(0, 0.8))

abline(v = 1, 1wd = 3, col = "red")

hist(diff.vs3[,2], col = "grey", breaks = 100, main = "", fre
g=F, ylim = c(0, 0.8))

abline(v = 1, lwd = 3, col = "red")

hist(diff.vs3[,4], col = "grey", breaks
g=F, ylim = c(9@, 0.8))

abline(v = 1, lwd = 3, col = "red")

, fre

100, main

# Prob. difference greater than 1
mean(diff.vs3[,1] > 1)
mean(diff.vs3[,2] > 1)
mean(diff.vs3[,4] > 1)

[1] ©.6554667

[1] ©.1981333

[1] ©.003733333

Hence, there is a 66% probability that the difference between the slopes in groups
1 and 3 of facFor is greater than 1, and we find corresponding probabilities of
20% and of essentially 0% for the analogous slope differences between group 3
and groups 2 and 4, respectively.

Read full chapter
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URL: https://www.sciencedirect.com/science/article/pii/B9780128013786000059

Space-Time Metrics

George Christakos, in Spatiotemporal Random Fields (Second Edition), 2017

Example 2.1

Some worth-noticing special cases of Egs. (2.1a) and (2.1b), to be used later in the
context of the “geometrical metric—physical covariance” analysis, are presented in a
matrix-vector format by

0 — OAp dex 2.2a-b

a1 <X (AP)= 3" 5ap” ( )
8 _ ®Ap dcx aap\T (08p\ ocx

on7on X (AP)= goror oap + (8_h) (0_h) 9Ap?’

where, Ap = (Ap2)% as usual. At this point, | would like to reiterate the
significant point that an apparent feature of the above CDF, which is useful for
physical metric determination purposes (discussed in Section 3), is that they
decompose the ordinary covariance derivatives with respect to space lags (hy...hy)
and time lag (ho = 7), rather commonly encountered in physical covariance laws, in
terms of the space—time physical metric and the corresponding covariance
derivatives with respect to this metric.

By combining MDF with CDF, some interesting expressions are found that
explicitly contain the space- and time-independent metric coefficients. This is
shown in the following proposition.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780128030127000039

Statistical Prediction

M.E. Borsuk, in Encyclopedia of Ecology, 2008
ANOVA and ANCOVA models

When the predictors, x, of a linear model consist entirely of categorical variables,
and yet the response, y, remains continuous, the model is referred to as an
‘Analysis of Variance’ (ANOVA) model. If an additional, continuous predictor is also
included, and it is assumed that the effect of that covariate on the response is equal
for all categories, the model is referred to as an ‘Analysis of Covariance’ (ANCOVA)
model. Traditionally, the use of ANOVA and ANCOVA-type models has focused on
hypothesis testing, but the models can also be used for prediction.

There are three basic classes of ANOVA models:

1. ‘Fixed effects models’ in which the data are assumed to come from
normallydistributed populations which differ only in their means. In these
models, the parameter 8 is simply regarded as a vector of constants.

2. ‘Random effects models’ in which the data are assumed to come from a
hierarchy of populations, and differences are constrained by the hierarchy. In
these models, B is treated as a vector of random variables.
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3. ‘Mixed effects models’ in which both fixed and random effects are present.

Because the random components in ANOVA and ANCOVA models are assumed to
be normally distributed, the methods used to fit and apply simple and multiple
linear regression models can continue to be used.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780080454054002342

SEWALL WRIGHT

James F. Crow, in Philosophy of Biology, 2007

Publisher Summary

Sewall Wright was one of the great trio—R. A. Fisher, J. B. S. Haldane, and himself
—uwho, starting about the time of World War I, founded the mathematical theory of
microevolution and population genetics. Wright had an interest in statistics from
his earliest scientific studies, in his early study of guinea pig weights in 1917; he
was able to subdivide product moments into between- and within-group
components. In effect, he had discovered what was later called the analysis of
covariance, a subject invented independently and carried farther by R. A. Fisher. His
most important contribution to statistical methodology is his method of path
analysis. In 1925, Wright published a monumental analysis of the production and
prices of corn and hogs in the period from the Civil War to World War . In the
early years after Wright's discovery of the method, path analysis was very popular
among animal breeders. Wright's approach was always quantitative. Today, his
inbreeding coefficient, discussed earlier, and its extension to hierarchical

population structure are among his greatest accomplishments, now widely used in
the study of population structure, including humans. Although most of Wright's
work in population genetics was theoretical, he entered several collaborations with
experimentalists, especially Th. Dobhansky. He gave the shifting balancing theory
in 1968-78. He also had a long interest in the philosophy of organism and the
mind-body problem. For a man of such accomplishment, Wright was excessively
modest with a self-deprecating wit, although he did not hesitate to argue a point
on which he had an opinion—like politics or the shifting balance theory.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B978044451543850006X
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