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Cauchy's I ntegral Theorem for 
Multiply Connected Domains 
Cauchy's theorem applies to multiply connected domains. We first explain this for a 
doubly connected domain D with outer boundary curve C1 and inner C2 (Fig. 350). If 
a function fez) is analytic in any domain D* that contains D and its boundary curves, we 
claim that 

(6) f fez) d::. = f fez) dz 
C 1 C2 

(Fig. 350) 

both integrals being taken counterclockwise (or both clockwise, and regardless of whether 
or not the full interior of C2 belongs to D*). 

Fig. 350. Paths in (5) 

PROOF By two cuts C\ and C2 (Fig. 351) we cut D into two simply connected domains Dl and 
D2 in which and on whose boundaries .Hz) is analytic. By Cauchy's integral theorem the 
integral over the entire boundary of Dl (taken in the sense of the arrows in Fig. 351) is 
zero, and so is the integral over the boundary of D 2 , and thus their sum. [n this sum the 
integrals over the cuts C 1 and C 2 cancel because we integrate over them in both 
directions-this is the key-and we are left with the integrals over C1 (counterclockwise) 
and C2 (clockwise; see Fig. 351); hence by reversing the integration over C2 (to 
counterclockwise) we have 

f fdz-f fd::;=O 
C 1 C 2 

and (6) follows. • 
For domains of higher connectivity the idea remains the same. Thus, for a triply connected 
domain we use three cuts C b C 2, C 3 (Fig. 352). Adding integrals as before, the integrals 
over the cuts cancel and the sum of the integrals over C1 (counterclockwise) and C2 , C3 

(clockwise) is zero. Hence the integral over C1 equals the sum of the integrals over C2 

and C3 , all three now taken counterclockwise. Similarly for quadruply connected domains, 
and so on. 
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Fig. 351. Doubly connected domain 
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Fig. 352. Triply connected domain 



SEC. 14.2 Cauchy's Integral Theorem 

CAUCHY'S INTEGRAL THEOREM 
APPLICABLE? 

Integrate f(::) counterclockwise around the unit circle. 
indicating whether Cauchy's integral theorem applies. 
(Show the details of your work.) 

1. f(::) = Re:: 2. f(::) = 11(3:: - 1Ii) 

3. f(::) = ez2
/2 4. f(::) = II: 

5. f(::) = tan::2 

7. f(::) = 11(::8 - 1.2) 

9. f(::) = 1/(21<:13) 

11 •. f(z) = .:2 cot .: 

6. f(::) = sec (::/2) 

8. f(::) = 1/(4z - 3) 

10. f(::) = l 

112-171 COMMENTS ON TEXT AND EXAMPLES 

12. (Singularities) Can we conclude in Example 2 that 
the integral of 11(::2 + 4) taken over (a) Iz - 21 = 2, 
(b) I:: - 21 = 3 is zero? Give reasons. 

13. (Cauchy's integral theorem) Velify Theorem 1 for 
the integral of ::2 over the boundary of the square 
with vertices I + i, -I + i. -I - i, and I - i 
(counterclockwise). 

14. (Cauchy's integral theorem) For what contours C will 
it follow from Theorem I that 

(a) f d:: = 0, 
c :: 

,.( cos ::: 
(b) 'f _6 _ _2 d:: = O. 

c- -

f 
elfz 

(c) -2-- d:: = O? 
c:: + 9 

15. (Deformation principle) Can we conclude from 
Example 4 that the integral is also zero over the contour 
in Problem 13? 

16. (Deformation principle) If the integral of a function 
fez) over the unit circle equals 3 and over the circle 
Izl = 2 equals 5, can we conclude that fez) is analytic 
everywhere in the annulus I < Izl < 2? 

17. (Path independence) Verify Theorem 2 for [he 
integral of cos:: from 0 to (l + i}7T(a) overthe shortest 
path. (b) over the x-axis to 7T and then straight up to 
(l + i)7T. 

18. TEAM PROJECT. Cauchy's Integral Theorem. 
(a) Main Aspects. Each of the problems in Examples 
1-5 explains a basic fact in connection with Cauchy's 
theorem. Find five examples of your own, more 
complicated ones if possible. each illustrating one of 
those facts. 

(b) Partial fractions. Write f(::) in terms of partial 
fractions and integrate it counterclockwise over the unit 
circle, where 

2:: + 3i 
(i) f(::) = _2 + 1 

- 4 

(ii) 
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z + I 
f(::) = -=---­

:;:2 + 2:: 

(c) Deformation of path. Review (c) and (d) of Team 
Project 34, Sec. 14.\. in the light of the principle of 
deformation of path. Then consider another family of 
paths with common endpoints. say, ::(t) = r + ia(r - (2). 

o ~ ( ~ 1. and experiment with the integration of analytic 
and nonanalytic functions of your choice over these paths 
(e.g., ::. 1m::. ::2, Re .:2, 1m Z2, etc). 

119-301 FURTHER CONTOUR INTEGRALS 

Evaluate (showing the details and using partial fractions if 
necessary) 

,.( d:: II 19. 'f 2- _ i . C the circle z = 3 (counterclockwise) 
c -

20. f tanh::: d::, C the circle Iz - !7Til = ~ (clockwise) 
c 

21. f Re 2::: d:;:, C as shown 
c 

c 

-1 

f 7z - 6 
22. _2 _ 2- d::, C as shown 

c~ -

1 x 

_--_c 

23.,.( 2 d:: , C as shown 
Jcz - I 

y 

x 

x 

,.( e2z 

24. 'f -4- d::. C consists of 1:::/ = 2 (clockwise) and /<:/ = f 
c o. 

(counterclockwise) 
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J: cos 7 

25. r ~ dz, C consists of Izl = 1 (counterclockwise) 
c (. 

J: d:: 
28. r -2-- , C: (a) Iz + il 

c:: + 1 
I, (b) Iz - il 

and Izi = 3 (clockwise) (counterclockwise) 

26. f Ln (2 + ::) d::, C the boundary of the square with 
c f sin:: I I 29. --. d:;., C: z - 4 - 2i = 5.5 (clockwise) 

c:: + 21 
vertices :!: 1, :!: i 

27. J: 2 d:: • C: (a) Izi 
Jcz + 1 

!. (b) Iz - il 3 
2: f tan (::/2) 

30. 4 d::., C the boundary of the square with 
cZ - 16 

(counterclockwise) veltices :!: 1, ~i (clockwise) 

14.3 Cauchy's Integral Formula 

THEOREM 1 

The most important consequence of Cauchy's integral theorem is Cauchy's integral 
formula. This formula is useful for evaluating integrals, as we show below. Even more 
important is its key role in proving the surprising fact that analytic functions have 
derivatives of all orders (Sec. 14.4), in esrablishing Taylor series representations 
(Sec. 15.4), and so on. Cauchy's integral formula and irs conditions of validity may be 
stated as follows. 

Cauchy's Integral Formula 

Let fez) be analytic il1 a simply connected domain D. Then for allY POi11T ':0 ill D 
alld any simple closed path C in D that encloses Zo (Fig. 353), 

J: f(::) r -_-_- dz = 27Tif(zo) 
C<· ---0 

(Cauchy's integral formula) (1) 

the integration being taken cuullterc!ockwise. Alternatively (for representing f(zo) 

by a contour integral, divide (I) by 27Ti), 

(1*) 
1 J: fez) 

f(zo) = -. r --. dz 
27Tl C Z - Zo 

(Cauchy's integral formula). 

PROOF By addition and subtraction, fez) = f(zo) + [fez) - fC2{)]. Inserting this into (l) on the 
left and taking the constant factor f(.::o) out from under the integral sign, we have 

(2) 

The first term on the right equals f(;:.o)· 27Ti (see Example 6 in Sec. 14.2 with 111 = - I). 
This proves the theorem. provided the second integral on the right is zero. This is what 
we are now going to show. Its integrand is analytic, except at Zoo Hence by (6) in 
Sec. 14.2 we can replace Cby a small circle K of radius p and center.::o (Fig. 354), without 
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c o 
K 

Fig. 353. Cauchy's integral formula Fig. 354. Proof of Cauchy's integral formula 

altering the value of the integral. Since f(~) is analytic, it is continuous (Team Project 26, 
Sec. 13.3). Hence an E > 0 being given, we can find aD> 0 such that 1ft.:) - f(~o)1 < E 

for all z in the disk Iz - 201 < o. Choosing the radius p of K smaller than 0, we thus have 
the inequality 

1 

fez) - f(zo) 1 < ~ 
Z - 20 P 

at each point of K. The length of K is 27fp. Hence, by the ML-inequality in Sec. 14.1, 

I
l f(z~ _- f_(20) d-:I < E 1... - - 27fp = 27fE. 

K "-.(.0 P 

Since E (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must 
have the value zero, and the theorem is proved. • 

E X AMP L E 1 Cauchy's Integral Formula 

l _ ~ d::. = 2'ITieZI = 2'ITie2 = 46.4268; Jc ~ 2 z~2 

for any contour enclosing ::'0 = 2 (since eZ is entire). and zero for any contour for which ::'0 = 2 lies outside (by 
Cauchy's integral theorem). • 

E X AMP L E 2 Cauchy's Integral Formula 

f Z3 - 6 f ~Z3 - 3 
-2--. dz = --1-· dz 

C Z - I C Z - 2' 

= 2'ITi[~::.3 - 3]1 
z~i/2 

'IT 
= "8 - 6'ITi (::'0 = li inside C) . • 

E X AMP L E 3 Integration Around Different Contours 

Integrate 

Z2 + 1 ::.2 + I 
g(z) = -- - -----

Z2 - 1 (::. + 1)(z - 1) 

counterclockwise around each of the four circles in Fig. 355. 
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Solution. g(::) is not anal)1ic at -I and L These are the points we have to watch for. We consider each 
circle separately. 

(a) The circle I:: - 11 = I encloses the point ::0 = 1 where g(;:J is not analytic. Hence in (1) we have to 
write 

thus 

and (I) gives 

;:2 + I 
g(::) =-­

Z2 - I <: + 1 

_2 + 1 
fez) = ~ + I 

z - 1 ' 

f Z2 + I [ Z2 + 1 ] 
-2-- dz = 27Tif(l) = 27Ti --- = 27Ti. 

c z - I z + I z-l 

lb) gives the same as (a) by the principle of deformation of path. 

(c) The function glz) is as before, but fez) changes because we must take Zo = -I (instead of 1). This gives 
a factor z - ~o = z + 1 in (1). Hence we must write 

z - 1 z + I ' 

thus 

Compare this for a minute with the previous expression and then go on: 

f c

2+1 [-2+IJ 
--2-- d;: = '27Tif(- I) = 27Ti ~ = -hi 

c:: - I - I z~-l 

(d) gives O. Why? • 
y 

x 

Example 3 

Multiply connected domains may be handled as in Sec. 14.2. For instance, if fez) is 
analytic on C1 and C2 and in the ring-shaped domain bounded by C1 and C2 (Fig. 356) 
and ~o is any point in that domain, then 

(3) 1 f f(~) I f fez) f(-)=- --d-+- --d-
-0 2· - 2· -.. m ~z-~ m ~z-~ 

where the outer integral (over C1) is taken counterclockwise and the inner clockwise, as 
indicated in Fig. 356. 
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c] 
Fig. 356. Formula (3) 

Our discussion in this section has illustrated the use of Cauchy's integral formula in 
integration. In the next section we show that the formula plays the key role in proving 
the surprising fact that an analytic function has derivatives of all orders, which are thus 
analytic functions themselves. 

::a-III',--

11-41 CONTOUR INTEGRATION 

Integrate (Z2 - 4)/(Z2 + 4) counterclockwise around the 
circle: 

1. Iz - il = 2 

3. Iz + 3il = 2 

2. Iz - 11 = 2 

4. Izl = 71"!2 

l ::!.iI CONTOUR INTEGRATION 

Using Cauchy's integral formula (and showing the details), 
integrate counterclockwise (or as indicated) 

,( 7 + 2 
5. :r : _ 2 dz., C- Iz - 11 = 2 

C ,. 

,( e3z 

6. :r -3 -. dz, C- Izl = 1 
C z - I 

f sinh rr;:; 
7. -2-- dz, c-Izl = I 

cZ - 3z 

,( dz I I 8. :r Z2 _ l' C: Z - 1 = 71"/2 
c 

,( dz 
9. :r Z2 - 1 . 

c 
C: Iz + 11 = 1 

10. ,( ~ dz, C- Iz - 2il = 4 
:rc z - 2z 

,( cosz 
11. :r -- dz, 

c 2z 
C: Izl = ~ 

,( tanz 
12. :r -- d;:;, C the boundary of the triangle with 

c z - i 
vertices 0 and ± 1 + 2i 

,( e-3 r.z 

13. :r --_ dz. 
c2z + I 

vertices ±1, ±i 

C the boundary of the square with 

f Ln (z + 1) 
14. 2 dz, C consists of Iz - 2il = 2 

c z + 1 
( counterclockwise) and Iz - 2il = ~ (clockwise) 

,( Ln (z. - 1) 
15. :r d;:;, C: Iz - 41 = 2 

c z-5 

f sm" 
16. 2 ~. d:., Cconsistsoflzl =3 (counterclockwise) 

cZ - 21Z 

and Izl = 1 (clockwise) 

f cosh2 z. 
17. 2 dz, C as in Prob. 16 

c(z-l-i)z 

18. Show that f (z - Z1)-\Z - Z2)-1 dz = 0 for a simple 
c 

closed path C enclosing Z1 and Z2, which are arbitrary_ 

19. CAS PROJECT. Contour Integration. Experiment 
to find out to what extent your CAS can do contour 
integration (a) by using the second method in Sec. 14.1, 
(b) by Cauchy's integral formula. 

20. TEAM PROJECT. Cauchy's Integral Theorem. 
Gain additional insight into the proof of Cauchy's 
integral theorem by producing (2) with a contour 
enclosing ;:;0 (as in Fig. 353) and taking the limit as in 
the text. Choose 

,( sin;:; 
(b) :r --1- dz, 

c z - 271" 

and (c) two other examples of your choice. 


