
SEC. 15.4 Taylor and Maclaurin Series 

cc [(11 + 1e)]-1 9. L zn+k 
n~O Ie 

DC (n + 111) 10. L z" 
n~O I1l 

11. (Addition and subtraction) Write our the details of 
the proof on terrnwise addition and subtraction of 
power series. 

12. (Cauchy product) Show that 
(1 - Z)-2 = L';;~O (n + l)zn tal by using the Cauchy 
product, (b) by differentiating a suitable series. 

13. (Cauchy product) Show that the Cauchy product of 
L~~O zn/n! multiplied by itself gives L~~O (2zyn/n!. 

14. (On Theorem 3) Prove that Vn ~ I as n ~ ex; (as 
claimed in the proof of Theorem 3). 

15. (On Theorems 3 and 4) Find further examples of your 
own. 

116-201 APPLICATIONS OF THE IDENTITY 
THEOREM 

State clearly and explicitly where and how you are using 
Theorem 2. 

16. (Bionomial coefficients) Using 
(1 + z)P(J + z)q = (1 + z)p+q. obtain the basic 
relation 
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17. (Odd function) If .f(z) in (1) is odd (i.e., 
.f(-z) = -.f(z», show that an = 0 for even n. Give 
examples. 

18. (Even functions) If .f(z) in (1) is even (i.e., 
.f( - z) = .f(z», show that an = 0 for odd n. Give 
examples. 

19. Find applications of Theorem 2 in differential equations 
and elsewhere 

20. TEAM PROJECT. Fibonacci nmnbers.2 tal The 
Fibonacci numbers are recursively defined by 
ao = al = 1. an +l = an + an-l if n = 1. 2 ..... 
Find the limit of the sequence (an+l/an)' 

(b) Fibonacci's rabbit problem. Compute a list of 
a1 . .... a12' Show that a12 = 233 is the munber of 
pairs of rabbits after l2 months if initially there is 1 
pair and each pair generates I pair per month, 
beginning in the second month of existence (no deaths 
occuning). 

(c) Generating function. Show that the generating 

junction of the Fibonacci numbers is 
.f(z) = I/(1 - z - Z2); that is, if a power series (l) 

represents this .f(z), its coefficients must be the 
Fibonacci numbers and conversely. Hint. Start from 
.f(z) (1 - z - Z2) = I and use Theorem 2. 

15.4 Taylor and Maclaurin Series 
The Taylor series3 of a function fez), the complex analog of the real Taylor series is 

(1) where 

or, by (l), Sec. 14.4, 

(2) 1 f f(::;*) a - -- dz*. 
n - 21Tl' C (z* - zdn + 1 

In (2) we integrate counterclockwise around a simple closed path C that contains ::'0 in 

its interior and is such that f(:::) is analytic in a domain containing C and every point 

inside C. 
A Maclaurin series3 is a Taylor series with center zo = O. 

2LEONARDO OF PISA, called FIBONACCI (= son of Bonaccio), about 1180-1250, Italian mathematician. 
credited with the first renaissance of mathematics on Christian soil. 

3BROOK TAYLOR (1685-1731), English mathematician who introduced real Taylor series. COLIN 
MACLAURIN (1698--1746), Scots mathematician, professor at Edinburgh. 
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The remainder of the Taylor series (1) after the telm an(z - zo)n is 

(3) 

(proof below). Writing out the corresponding pmtial sum of (1). we thus have 

z - zo, (z - ZO)2 " 
fez) = f(2o) + -l-! - f (zo) + 2! f (zo) + ... 

(4) 

This is called Taylor's formula with remainder. 

We see that Taylor series are power series. From the last section we know that power 
series represent analytic functions. And we now show that eve I}' analytic function can be 
represented by power series, namely, by Taylor series (with various centers). This makes 
Taylor series very important in complex analysis. Indeed. they me more fundamental in 
complex analysis than their real counterparts me in calculus. 

THEOREM 1 Taylor's Theorem 

Let fez) be analytic in a domain D, and let z = 20 be any point in D. Then there 
exists precisely one Taylor series (1) with center ':0 that represents fez). This 
representation is mlid in the largest open disk with center.:o in which fez) is analytic. 
The remainders Rn(z) of (1) can be represented in the f0171l (3). The coefficients 
satisfy the inequality 

(5) 
M lal:::S;-n - rn 

Irhere M is the 1I1(n:ill1ll1ll of If(z)1 011 a circle Iz - :01 = r ill D whose interior is 
also in D. 

PROOF The key tool is Cauchy's integral formula in Sec. 14.3; writing z and z* instead of 20 and 
z (so that z* is the vmiable of integration), we have 

(6) 
1 f f(z*) 

fez) = -. --- dz*. 
21Tl C z* - z 

z lies inside C, for which we take a circle of radius r with center Zo and interior in D 
(Fig. 364). We develop 1/(z* - z) in (6) in powers of z - z{). By a standard algebraic 
manipulation (worth remembering!) we first have 

(7) 
1 

z* - z z* - zo - (z - z{)) 
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For later use we note that since z* is on C while z is inside C, we have 

(7*) I z-zol<] 
z* - 20 

(Fig. 364). 

y 

x 

Fig. 364. Cauchy formula (6) 

To (7) we now apply the sum formula for a finite geometric sum 

(8*) 
I - qn+l 

1 + q + ... + qn = --'----­
I - q I - q 

qn+l 

i-q 
(q =1= 1), 

which we use in the form (take the last term to the other side and interchange sides) 

I 
(8) 

I - q 

qn-t-l 
I + q + ... + qn + 

]-q 

Applying this with q = (z - zo)/(z* - zo) to the right side of (7), we get 

I 
z* - .,. z* - Zo [

] + z - Zo ( Z - Zo )2 ( Z - 20 )nJ 
z* - Zo + Z* - Zo + + z* - Zo 

+ I ( z - Zo )n+l 
z* - Z Z* - Zo 

We insert this into (6). Powers of z - Zo do not depend on the variable of integration z*. 
so that we may take them out from under the integral sign. This yields 

I f f(z*) Z - <'0 1 f(z*) 
fez) = - dz* + -- r dz* + ... 

. 21Ti c z* - zo· 21Ti c (z* - 20)2 

(z - zo)n f f(z*) ... + dz* + Rn(z) 
21Ti c (z* - zo)n+l 

with Rn(z) given by (3). The integrals are those in (2) related to the derivatives, so that 
we have proved the Taylor formula (4). 

Since analytic functions have derivatives of all orders, we can take n in (4) as large as 
we please. If we let n approach infinity, we obtain (I). Clearly, (I) will converge and 
represent f(z) if and only if 

(9) lim Rn(z) = O. 
n-->oo 
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THEOREM 2 

CHAP. 15 Power Series, Taylor Series 

We prove (9) as follows. Since .:* lies on C. whereas.: lies inside C (Fig. 364). we have 
1.:* - zI > O. Since fez) is analytic inside and on C, it is bounded, and so is the function 
f(::.*)/(z* - z). say. 

I f(::.*) I ---- ~M 
z* - z 

for all z"" on C. Also. C has the radius r = k* - zol and the length 27Tr. Hence by the 
ML-ineguality (Sec. 14.1) we obtain from (3) 

1 - In+l If f(z*) d::.*1 IRnl = 
z - '.0 

27T c (.:* - .:o)n+l(z* - .:) 
(10) 

..,:; 
Iz - zoln+l - 1 _ -I z - Zo r+ 1 

M n+l 27T1" - M ---
27T r r 

Now Iz - ':01 < r because 2 lies inside C. Thus Iz - 20111" < L so that the right side 
approaches 0 as n ~ x. This proves the convergence of the Taylor series. Uniqueness 
follows from Theorem 2 in the last section. Finally, (5) follows from 0) and the Cauchy 
inequality in Sec. 14.4. This proves Taylor's theorem. • 

Accuracy of Approximation. We can achieve any preassinged accuracy in 
approximating f(::.) by a paI1ial sum of ( I ) by choosing n large enough. This is the practical 
aspect of formula (9). 

Singularity, Radius of Convergence. On the circle of convergence of 0) there is at 
least one singular point of fez), that is, a point 2 = c at which fez) is not analytic (but 
such that every disk with center c contains points at which fez) is analytic). We also say 
that f(::.) is singular at c or has a singUlarity at c. Hence the radius of convergence R of 
(1) is usually equal to the distance from z.() to the nearest singular point of f(::.). 

(Sometimes R can be greater than that distance: Ln.: is singular on the negative real 
axis, whose distance from Zo = - 1 + i is ], but the Taylor series of Ln ::. with center 
Zo = -] + i ha<; radius of convergence V2.) 

Power Series as Taylor Series 
Taylor series are power series-Df course! Conversely, we have 

Relation to the Last Section 

A pml'er series with a non::,ero radills of convergence is the Taylor series of its SUI1I. 

PROOF Given the power series 

Then f(zo) = ao. By Theorem 5 in Sec. 15.3 we obtain 

f' (::.) = al + 2a2(Z - ':0) + 3a3(;:' - ZO)2 + ... , 
f"(z) = 2a2 + 3' 2(::. - ':0) + ... , 

thus 

thus 

f'(.::o) = (/1 

f"(::.o) = 2! a2 
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and in generalln)(zo) = n! an' With these coefficients the given series becomes the Taylor 
series of fez) with center zoo • 

Comparison with Real Functions. One surpnsmg property of complex analytic 
functions is that they have derivatives of all orders, and now we have discovered the other 
surprising property that they can always be represented by power series of the form (I). 
This is not true in general for real/unctions; there are real functions that have derivatives 
of all orders but cannot be represented by a power series. (Example: f(x) = exp ( - l/x2

) 

if x*"O and f(O) = 0; this function cannot be represented by a Maclaurin series in an 
open disk with center 0 because all its derivatives at 0 are zero.) 

Important Special Taylor Series 
These are as in calculus, with x replaced by complex z. Can you see why? (Answer. The 
coefficient formulas are the same.) 

X AMP L E 1 Geometric Series 

. LE 

LeI I(z) = 11(1 - z). Then we have In)(::;) = n!/(1 - ::;)n+l, In)(O) = II!. Hence the Maclaurin expansion of 
11(1 - ::;) is the geometric series 

00 

(11) 
1 - z 

= 2: zn = I + z + z2 + ... 
n=O 

(Izl < I). 

I(::;) is singular at z = I: this point lies on the circle of convergence. • 
Exponential Function 

We know that the exponential function eZ (Sec. 13.5) is analytic for all z, and (ez)' = eZ
• Hence frum (I) with 

Zo = 0 we obtain the Maclaurin series 

(12) 

This series is also obtained If we replace x In the familiar Maclaurin series of eX by z. 
Funhermore. by setting z = iy in (12) and separating the series into the real and imaginary pans (see 

Theorem 2. Sec. 15.1) we obtain 

Since the series on the right are the familiar Maclaurin series of the real functions cos y and sin .1', this shows 
that we have rediscovered the Euler formula 

(13) e
iy = cos y + i sin y. 

Indeed, one may use (12) for definillg eZ and derive from (12) the basic propenies of eZ
• For instance, the 

differentiation formula (eZ
)' = eZ follows readily from (12) by termwise differentiation. • 
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E X AMP L E:I Trigonometric and Hyperbolic Functions 

By substituting (12) into (1) of Sec. 13.6 we obtain 

x .,2n ~2 A 

COSz = :L (_1)n ~ '" '" 1 - + - + ... 
n=O (_11). 2! 4! 

(14) 
00 z2n+l Z3 Z5 

sin z = :L (_l)n ==z- + -+ 
n=O 

(2n + 1)! 3! 5! 

When ~ = \. these are the familiar Maclaurin series of the real functions cos x and sin x. Similarly, by substituting 
(12) into (II), Sec. 13.6. we obtain 

Z2n ~2 _4 

cosh z = 2.: 1 + + + ... 
n=O 

(2n)! 2! 4! 
(15) 

:x; z2n+l Z3 _5 

sinh Z = 2.: =z+ + • 
n=O 

(211 + I)! 3! 5! 

)( AMP L E 4 Logarithm 

From (\) it follows that 

_2 _3 

(16) Ln (1 + z) = z - "'2 + - + ... 
3 

Clzi < 1). 

Replacing;;; by -z and multiplying both sides by -1, we get 

(17) 
1 .2_3 

-Ln(l -;;;) = Ln ~ = z + '2 + '3 + .. (kl < 1). 

By adding both series we obtain 

(18) 
1 + ;;; ( ~3 <;5 ) 

Ln -- = 2 z + - + - + ... 
1 - z 3 5 

(1;;;1 < 1). • 

Practical Methods 
The following examples show ways of obtaining Taylor series more quickly than by the 
use of the coefficient formulas. Regardless of the method used. the result will be the same. 
This follows from the uniqueness (see Theorem 1 t 

., L E r Substitution 

Find the Maclaurin series of f(;;;) = 1I( I + ;;;2). 

Solution. By substituting -Z2 for;: in (11) we obtain 

(19) 
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E X AMP L E 6 Integration 

Find the Maclaurin series of fez) = arctan z. 

Solution. We have f' (z) = 11(1 + Z2). Integrating (19) term by term and using flO) = 0 we get 

oc (_I)n 2n+l Z3 Z5 
arctan Z = ~ ~I z = z - -3 + -5 - + ... 

n=O _II 
(izi < I); 

this series represents the principal value of w 

lui < -rr12. 

u + iv = arctan z defined as that value for which 

E X AMP L E 7 Development by Using the Geometric Series 

Develop lI(e - z) in powers of z - zo, where e - 20 *' O. 

Solutioll. This was done in the proof of Theorem I, where e = z*. The beginning was simple algebra and 
then the use of (II) with z replaced by (z - zo)/(e - zo): 

( 
z - 7 ) 

(e-ZQ) I-~ 
c - Zo 

c - Zo 

~ (Z-Zo)n 
n~O e - Zo e-z e - Zo - (z - zo) 

e - Zo (
Z--)2 ) e-:: + .... 

This series converges for 

I z - Zo I --- <I, 
e - Zo 

that is, Iz - 201 < Ie - zol· • 
E X AMP L E 8 Binomial Series, Reduction by Partial Fractions 

Find the Taylor series of the following function with center Zo = L 

f(z) = 3 2 
Z + Z - 8z - 12 

Solution. We develop f(~) in partial fractions and the first fraction in a binomial series 

(20) 

___ = (1 + Z)-m = ~ (-m) Zn 

(I + Zr n=O n 

m(m + 1) m(m + l)(m + 2) 
1 - mz + Z2 - Z3 + ... 

2! 3! 

with 111 = 2 and the second fraction in a geometric series, and then add the two series term by term. This gives 

f(z) = __ 1_ + _2_ = I _ 2 = 2. ( I ) _ I 
(z + 2l z - 3 [3 + (z - 1)]2 2 - (z - I) 9 [I + !(z - 1)]2 I - ~(z - 1) 

i ~ (-2) (z ~ I )n _ ~ (z; I )n = ~ [(-1)~:2+ I) - 2~ ] (Z _ I)n 

n~O Il n~O n~O 3 

8 31 23 2 275 3 
9 54 (z - 1) - 108 (z - I) - 1944 (z - I) 

We see that the first series converges for Iz - II < 3 and the second for Iz - II < 2. This had to be expected 
because I/(z + 2)2 is singular at -2 and 2/(z - 3) at 3. and these points have distance 3 and 2. respectively, 
from the center Zo = L Hence the whole series converges for Iz - II < 2. • 
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_ ••• w .... ·._ ... " _ ...... .-. • ..--• .- .......... · ..... lA--.. ___ ........ 

I~~ TAYLOR AND MACLAURIN SERIES 

Find the Taylor or Maclaurin series of the given function 
with the given point as center and detennine the radius of 
convergence. 

1. 

3. 

5. 

7. 

9. 

11. 

-2z 0 2. I/(I - (3), 0 e , 

e Z
, -2i 4. cos2 

Z, 0 

sin z, 7r12 6. 1/z. 

1/(1 - z), 8. Ln (I - z). 

-z2(2 e , 0 10. 2 f 2 eZ e-t dt, 
0 

Z6 - Z4 + Z2 - I, 12. sinh (z - 2i), 

HIGHER TRANSCENDENTAL 
FUNCTIONS 

0 

2i 

Find the Maclaurin series by tennwise integrating the 
integrand. (The integrals cannot be evaluated by the usual 
methods of calculus. They define the error function erf z, 
sine integral Si(z). and Fresnel integrals4 S(z) and C(z). 
which occur in statistics, heat conduction. optics, and other 
applications. These are special so-called higher 
transcendental functions.) 

Z • 

2 LZ 

2 13. erfz = • f e-t dt f SID t 
14. Si(z) = -- dt 

o t V7r 0 

Z 

15. S(z) = f sin t 2 dt 
o 

17. CAS PROJECT. sec, tan, arcsin. (a) Euler numbers. 
The Maclaurin series 

E22 E44 
(21) sec z = Eo - - z + - z - + ... 

2! 4! 

defines the Elller numbers E 2n- Show that Eo = 1, 
E2 = -I, E4 = 5, E6 = -61. Write a program that 
computes the E2n from the coefficient formula in (1) 
or extracts them as a list from the series. (For tables 
see Ref. [GRI]. p. 810. listed in App. 1.) 

(b) Bernoulli numbers. The Maclaurin series 

(22) 
z 

e' - 1 

defines the Bernoulli numbers Bn. Using undetermined 
coefficients, show that 

I 
Bl = , B2 = - B3 = O. 

(23) 
2 6 

I 1 
B4 = -- B5 = 0, B6 = -

30 42 

Write a program for computing Bn. 

(c) Tangent. Using (1), (2), Sec. 13.6, and (22), show 
that tan z has the following Maclaurin series and 
calculate from it a table of Bo, ... , B2O: 

2i 4i 
(24) tan z = e2iz _ 

- i 

n=l 

18. (Inverse sine) Developing uV I - Z2 and integrating, 
show that 

arcsin z = z + (±) ~ + (~:!) ~ 
+ (~) _7 +. 

2'4' 6 7 
(izl < 1). 

Show that this series represents the principal value of 
arcsin z (defined in Team Project 30. Sec. 13.7). 

19. (Undetennined coefficients) Using the relation 
sin z = tan Z cos Z and the Maclaurin series of sin z and 
cos z, find the first four nonzero terms of the Maclaurin 
series of tan z. (Show the details.) 

20. TEAM PROJECT. Properties from Maclaurin 
Series. Clearly, from series we can compute function 
values. In this project we show that properties of 
functions can often be discovered from their Taylor or 
Maclaurin series. Using suitable series, prove the 
following. 

(a) The fonnulas for the derivatives of e2
, cos z, sin z, 

cosh Z, sinh z, and Ln (1 + z) 

(b) 4(iZ + e-iz) = cos Z 

(c) sin z =1= 0 for all pure imaginalY Z = iy *" 0 

4AUGUSTIN FRESNEL (1788-1827), French physicist and engineer, known for his work in optics 


