
CHAPTER 1 6 

/ Laurent Series. 
Residue Integration 

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive integer 
powers (and a constant term) and converges in a disk, a Laurent series (Sec. 16.1) is a 
series of positive and negative integer powers of z - '::0 and converges in an annulus (a 
circular ring) with center Zoo Hence by a Laurent series we can represent a given function 
f(z) that is analytic in an annulus and may have singularities outside the ring as well as 
in the "hole" of the annulus. 

We know that for a given function the Taylor series with a given center '::0 is unique. 
We shall see that, in contrast, a function f(z) can have several Laurent series with the 
same center '::0 and valid in several concentric annuli. The most important of these series 
is that which converges for 0 < Iz - zol < R. that is, everywhere near the center ::'0 except 
at Zo itself. where Zo is a singular point of f(z). The series (or finite sum) of the negative 
powers of this Laurent series is called the principal part of the singularity of f(z) at Zo, 

and is used to classify this singularity (Sec. 16.2). The coefficient of the power 1/(;: - zo) 

of this series is called the residue of f(z) at zoo Residues are used in an elegant and 
powerful integration method, called residue integration, for complex contour integrals 
(Sec. 16.3) as well as for certain complicated real integrals (Sec. 16.4). 

Prerequisite: Chaps. 13, 14, Sec. 15.2. 
Sections that may be omitted in a shorter course: 16.2, 16.4. 
References and Answers to Problems: App. 1. Part 0, App. 2. 

16.1 Laurent Series 
Laurent series generalize Taylor series. If in an application we want to develop a function 
f(z) in powers of Z - Zo when f(z) is singular at Zo (as defined in Sec. 15.4). we cannot 
use a Taylor series. Instead we may use a new kind of series, called Laurent series, 1 

consisting of positive integer powers of::. - Zo (and a constant) as well as negative integer 
powers of z - ':::0; this is the new feature. 

Laurent series are also used for classifying singularities (Sec. 16.2) and in a powerful 
integration method ("residue integration", Sec. 16.3). 

A Laurent series of f(::.) converges in an annulus (in the "hole" of which f(.:::) may have 
singularities), as follows. 

IPIERRE ALPHONSE LAURENT (1813-1854). French military engineer and mathematician, published the 
theorem in 1843. 

701 



702 

THEOREM 1 

CHAP. 16 Laurent Series. Residue Integration 

Laurent's Theorem 

Let fez) be analytic in a domain c()ntaining two concentric circles C1 and C2 with 
center Zo and the annulus betrveen them (blue in Fig. 367). Then fez) can be 
represented by the Laurent series 

(1) 

... + 
z - Zo 

consisting of nonnegative lind negative powers. The coefficients of this Laurent series 
are given by the integrals 

(2) 

taken coullterclockwise around allY simple closed path C that lies in the annulus 
and encircles the inner circle, as in Fig. 367. [The variable of integration is denoted 
by z* since z is used in (1).] 

This series converges and represents fez) in the enlarged open allnulus obtained 
from the given annulus by continuously increasing the outer circle C1 and decreasing 
C2 until each of the fiFO circles reaches a point where fez) is singular. 

III the important special case that :.':0 is the ollly singular point of fez) inside C2 , 

this circle can be shrunk to the point zo, giving convergence in a disk except at the 
center. In this case the series (or finite sum) of the negative powers of (1) is called 
the principal part of the singularity of fez) at zoo 

.-- -

I 

\ 
\ 

\ 

Fig. 367. Laurent's theorem 

COMMENT. Obviollsly, instead of (1). (2) we may write (denoting bn by a_n ) 

(1') 
n=-:JO 
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where all the coefficients are now given by a single integral formula, namely, 

(2') 
1 T f(z*) a = -- d-* 

n 2wi c (z* - Zo)n+1 ~ 
(n = 0, ±l, ±2, .. '). 

PROOF We prove Laurent's theorem. (a) The nonnegative powers are those of a Taylor series. 
To see this, we use Cauchy's integral fOlmula (3) in Sec. 14.3 with z* (instead of z) as 
the variable of integration and z instead of ~o. Let g(z) and h(::.) denote the functions 
represented by the two terms in (3), Sec. 14.3. Then 

(3) 
1 T f(z*) I T f(z*) 

fez) = g(z) + hU;) = -. -- d::* - -. -- dz*. 
2Wl c, z* - ::. 2m C

2 
z* - Z 

Here::. is any point in the given annulus and we integrate counterclockwise over both C1 

and C2 , so that the minus sign appears since in (3) of Sec. 14.3 the integration over C2 is 
taken clockwise. We transform each ofthese two integrals as in Sec. 15.4. The first integral 
is precisely as in Sec. 15.4. Hence we get precisely the same result, namely, the Taylor 
series of g(z), 

(4) 
I T f(:;::*) = 

g(z) = --. --- dz* = :L an(z - zo)n 
2Wl z* - Z c, n~O 

with coefficients [see (2), Sec. 15.4, counterclockwise integration] 

(5) 
I T f(z*) a = -- d-* 

n ? ( ok )n+1 ~. 
_WI c, z· - Zo 

Here we can replace C1 by C (see Fig. 367), by the principle of deformation of path, since 
Zo, the point where the integrand in (5) is not analytic, is not a point of the annulus. This 
proves the formula for the an in (2). 

(b) The negative powers in (1) and the formula for bn in (2) are obtained if we consider 
h(z) (the second integral times -J/(2wi) in (3). Since z lies in the annulus, it lies in the 
exterior of the path C2 . Hence the situation differs from that for the first integral. The 
essential point is that instead of [see (7*) in Sec. 15.4] 

(6) (a) I z-::'°I<1 
z* - Zo 

we now have (b) 
1 

z* - Zo 1 < 1. 
z - Zo 

Consequently, we must develop the expression I/(z* - z) in the integrand of the second 
integral in (3) in powers of (::.* - Zo)/(z - Zo) (instead of the reciprocal of this) to get a 
convergent series. We find 

1 

z* - z ::.* - Zo - (z - ::'0) 

-1 

(1 _ z* - zo) . 
(z - Zo) 

z - Zo 
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Compare this for a moment with (7) in Sec. 15.4. to really understand the difference. Then 
go on and apply formula (8), Sec. 15.4. for a finite geometric sum. obtaining 

1 1 { z* - Zo (z* - Zo )2 ---=---- 1+ + + ... + 
Z* - Z ;: - Zo z - ':0 ::. - Zo 

__ 1 (Z* - zO)n+l 

z-z* Z-2o 

Multiplication by -f(.:*)/27Ti and integration over C2 on both sides now yield 

1 f f(z*) 
l1(z) = - --. --- dz* 

27Tl e
2 

z* - z 

_1_. {_1_ 1 f(z*) dz* + 1 1 (z* - 2o)f(z*) dz* + ... 
27TI Z - Zo re2 (z - ZO)2 re2 

+ 1 1 (z* - zo)nf(z*) dZ""'-} + Rn*(z) 
(z - zo)n+l r e2 

with the last term on the right given by 

(7) R*( 1 1 (z* - ::o)n+l f(z*) dz*. 
n z) = ?( )n+l r ok _7rIZ-2o e

2 
z-z' 

As before. we can integrate over C instead of C2 in the integrals on the right. We see that 
on the right, the power 1/(z - zo)n is multiplied by bn as given in (2). This establishes 
Laurent's theorem, provided 

(8) lim R~(z) = O. 
~x 

(c) COllvergellce proof of (8). Very often (1) will have only finitely many negative powers. 
Then there is nothing to be proved. Otherwise, we begin by noting that f(z*)/(z - z*) in 
(7) is bounded in absolute value, say. 

I f(z*) I < M 
z - z* 

for all z* on C2 

because f(z*) is analytic in the annulus and on C2, and z* lies on C2 and z outside, so 
that z - z* =/= O. From this and the ML-inequality (Sec. 14.1) applied to (7) we get the 
inequality (L = length of C2 , Iz* - zol = radius of C2 = const) 

~ 

l oki 1 ~ ML 
R;"(z) ~ 2 1 In+l Iz* - zoln+l ML = -

7T Z - Zo 27T I z* - 20 In+l 

Z - Zo 
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From (6b) we see that the expression on the right approaches zero as n approaches infinity. 
This proves (8). The representation (1) with coefficients (2) is now established in the given 
annulus. 

(d) C01lverge1lce of (1) i1l the e1llarged a1l1lulus. The first series in (1) is a Taylor 
series [representing g(z)]; hence it converges in the disk D with center Zo whose radius 
equals the distance of the singularity (or singularities) closest to zoo Also, g(z) must be 
singular at all points outside CI where fez) is singular. 

The second series in (I), representing h(z), is a power series in Z = 1/(z - Zo). Let the 
given annulus be 1"2 < Iz - zol < r l , where 1"1 and r2 are the radii of CI and C2, respectively 
(Fig. 367). This corresponds to 1/r2 > Izi > lirl' Hence this power series in Z must 
converge at least in the disk Izi < 1/r2' This corresponds to the exterior Iz - Zol > r2 of 
C2. so that h(z) is analytic for all z outside C2. Also, h(z) must be singular inside C2 where 
fez) is singular, and the series of the negative powers of (I) converges for all z in the exterior 
E of the circle with center Zo and radius equal to the maximum distance from <'0 to the 
singularities of fez) inside C2. The domain common to D and E is the enlarged open annulus 
characterized near the end of Laurent's theorem, whose proof is now complete. • 

Uniqueness. The Laurent series of a given analytic function fez) in its annulus of 
cOllvergence is ullique (see Team Project 24). However. fez) may have different Laurent selies 
ill two anlluli with the same center; see the examples below. The uniqueness is essential. As 
for a Taylor series, to obtain the coefficients of Laurent series, we do not generally use the 
integral formulas (2); instead, we use various other methods, some of which we shall illustrate 
in our examples. If a Laurent series has been found by any such process, the uniqueness 
guarantees that it must be the Laurent series of the given function in the given annulus. 

E X AMP L E 1 Use of Maclaurin Series 

Find the Laurent series of z -5 sin:: with center O. 

Solutio1l. By (14). Sec. 15.4. we obtain 

-5. ~ (-I)n 2n-4 I I I I 2 

:: SIn Z =:::0 (2n + I)! Z = ;:4 - 6;? + 120 - 5040 z + - ... (Izl > 0). 

Here the "annulus" of convergence is the whole complex plane without the origin and the pl'incipal part of 
the series at 0 is Z-4 - ~Z-2. • 

E X AMP L E 2 Substitution 

Find the Laurent series of z2e1/z with center O. 

Solution. From l12) in Sec. 15.4 with.:: replaced by liz we obtain a Laurent senes whose principal part is 
an infinite series, 

E X AMP L E 3 Development of 1/(1 - z) 

Develop 1/(1 - z) (a) in nonnegative powers of~, (b) in negative powers of z. 

Solutio1l. 

(a) 
I x 

-=L-n 
1- z -

n=O 

(Izl > 0) .• 

(valid if Izl < I). 

(b) 
I - z 

-] = I I I 
z(l - Z-l) = - n~o zn+l = - ~ - :;2 -... (valid if Izl > I) .• 
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E X AMP L E 4 Laurent Expansions in Different Concentric Annuli 

Find all Laurent series of 1I(~3 - ~ 4) with center O. 

Solution. Multiplying by IIz3
, we get from Example 3 

a:J I 
(I) -3--4 = L: ;;:n-3 = 

Z3 
+-

2 
Z -z n=O 

I x 

(II) -3--4 = - L: n+4 
z - Z n-O Z 

E X AMP L E 5 Use of Partial Fractions 
-2z + 3 

Solution. In terms of partial fractions, 

I 
f(::.) = -~ 

Z 

I 
+ -+I+z+'" 

Z 

3 
;; _ ... 

::.-2 

(a) and (b) in Example 3 take care of the first fraction. For the second fraction, 

x I 
(c) 

2 (I - ~ z) 

= L: 2n+l zn 
z-2 n=O 

= - L: 
2n 

(d) z - 2 
z (I -~) ';"n+l 

n=O ..... 

(I) From (a) and (c), valid for Izl < I (see Fig. 368), 

fez) = n~o (1 + 2nl+1) zn = % + % z + ~ Z2 + ... 

(II) From (c) and (b), valid for 1 < Izl < 2, 

= 1 a:J I 
1(z) = L: 2n+l ;;:n - L: 7n+1 = 2 

n=O n=O ~ 

(Ill) From ~d) and (b). valid for Izl > 2, 

00 1 2 
fez) = - L: (2n + I) n+l = - -

n=O Z Z 

y 

II 
...... III 

" I 

3 9 

x 

Fig. 368. Regions of convergence in Example 5 

(0 < Izl < 1). 

(Izl > 1). • 

(1::.1 < 2), 

(izi > 2). 

• 

If fez) in Laurent's theorem is analytic inside C2, the coefficients bn in (2) are zero by 
Cauchy's integral theorem, so that the Laurent series reduces to a Taylor series. Examples 
3(a) and 5(1) illustrate this. 
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~1=6J LAURENT SERIES NEAR A SINGULARITY 

ATO 

Expand the given function in a Laurent series that 
converges for 0 < Id < R and determine the precise region 
of convergence. (Show the details of your work.) 

l 
1. 

Z4 - Z5 
2. ;: cos-

Z 

e-z cosh 2;: 
3. _3 4. 

Z2 -<. 

Z-3e llz2 e
Z 

5. 6. 
Z2 - Z3 

17-141 LAURENT SERIES NEAR A SINGULARITY 

AT Zo 

Expand the given function in a Laurent series that 
converges for 0 < I:: - ::01 < Rand detennine the precise 
region of convergence. (Show details.) 

eZ sin ::: 
Zo = ~7T 7. -- , Zo = I 8. 

(z - ~7T)3 z- I 

9. 
cos.::: 

Z2 + ':::0 = i 10. 
7T)4 

, Zo = 7T 
I (::: -

ll. 2 ' ::0 = -; 
(z + i) - (z + i) 

Z3 

12. 2 
(Z + i) 

Zo = -i 

2. 1 
14. ::: smh -, ::0 = 0 

Z 

Z2 - 4 
13. , Zo = I 

Z - I 
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115-231 TAYLOR AND LAURENT SERIES 

Find all Taylor and Laurent series with center:: = ;:0 and 
determine the precise regions of convergence. 

15. 
Z3 

, :::0 = 0 16. 
Z2 

, :::0 = 
I - 1 -

Z2 
18. 17. , :::0 = 0 - Zo = 

I - ~4 -
" ~ 

_3 - 2;::.2 sinh;:; (. 

19. i)2 ::0 = i 20. 
1)4 ::0 = 

(;: - (:: -

4z - I 
21. 

Z4 
, :::0 = 0 22. _2 ::0 = ; 

- I ~. 

sin Z 
-~7T 23. 

~7T 
':::0 = 

Z + 

24. TEAM PROJECT. Laurent Series. (a) Uniqueness. 
Prove that the Laurent expansion of a given analytic 
function in a given annulus is unique. 
(b) Accumulation of singularities. Does tan (II:) 

have a Laurent series that converges in a region 
o < Izl < R? (Give a reason.) 
(c) Integrals. Expand the following functions in a 
Laurent series that converges for Izl > 0: 

I (et-I 
2 L--- dr, 
::: 0 1 

I IZ 

sin t - --dt. 
Z3 0 t 

25. CAS PROJECT. Partial Fractions. Write a program 
for obtaining Laurent series by the use of partial 
fractions. Using the program, verify the calculations in 
Example 5 of the text. Apply the program to two other 
functions of your choice. 

16.2 Singularities and Zeros. Infinity 
Roughly, a singular point of an analytic function fez) is a ::0 at which f(::) ceases to be 
analytic, and a ::ero is a z at which fez) = O. Precise definitions follow below. In this 
section we show that Laurent series can be used for classifying singularities and Taylor 
series for discussing zeros. 

Singularities were defined in Sec. 15.4, as we shall now recall and extend. We also 
remember that. by definition, a function is a single-valued relation, as was emphasized 
in Sec. 13.3. 

We say that a function fez) is singular or has a singularity at a point;:: = Zo if fez) is 
not analytic (perhaps not even defined) at z = zo, but every neighborhood of z = Zo 

contains points at which fez) is analytic. We also say that z = Zo is a singular point of fez). 
We call z = Zo an isolated singularity of fez) if z = Zo has a neighborhood without 

further singularities of fez). Example: tan z has isolated singularities at ± 7T12, ±37T/2, etc.; 
tan (lIz) has a nonisolated singularity at o. (Explain!) 
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Isolated singularities of fez) at z = Zo can be classified by the Laurent series 

(1) (Sec. 16.1) 

valid in the immediate neighborhood of the singular point z = zo, except at Zo itself, that 
is, in a region of the form 

o < Iz - zol < R. 

The sum of the first series is analytic at z = zo, as we know from the last section. The 
second series, containing the negative powers, is called the principal part of (1), as we 
remember from the last section. If it has only finitely many terms, it is of the form 

(2) + ... + 

Then the singularity of fez) at z = Zo is called a pole, and m is called its order. Poles of 
the first order are also known as simple poles. 

If the principal part of (I) hac; infinitely many terms, we say that fez) has at z = Zo an 
isolated essential singularity. 

We leave aside nonisolated singularities. 

E X AMP L E 1 Poles. Essential Singularities 

The function 

3 
fez) = z(z - 2)5 + (z - 2)2 

has a simple pole at z = 0 and a pole of fifth order at z = 2. Examples of functions having an isolated essential 
singularity at z = 0 are 

and 

~-l)'" 
sin - - L 

z - n-O (211 + 1)!in +1 z 

I 
+ 5' 5 - + .... 

3!Z3 .Z 

Section 16.1 provides further examples. For instance, Example I shows that z -5 sin;: has a fourth-order pole 
at O. Example 4 shows that l/(z3 - Z 4) has a third-order pole at 0 and a Laurent series with infinitely many 
negative powers. This is no contradiction, since this series is valid for Izl > 1; it merely tells us that in classifying 
singularities it is quite important to consider the Laurent series valid ill tile immediate Ileigllborllood of a singular 
point. In Example 4 this is the series (I), which has three negative powers. • 

The classification of singularities into poles and essential singularities is not merely a 
formal matter, because the behavior of an analytic function in a neighborhood of an 
essential singularity is entirely different from that in the neighborhood of a pole. 

E X AMP L E 2 Behavior Near a Pole 

fez) = I/z2 has a pole at z = 0, and If(z)1 ~ x as ;;; ....... 0 in any manner. This illustrates the foIlowin" 
eo 

theorem. • 
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THEOREM 1 Poles 

If f(z) is analytic and has a pole at z = Zo, then If(z)1 ~ (Xl as Z ~ Zo i17 anv manner. 

The proof is left to the student (see Prob. 12). 

E X AMP L E 3 Behavior Near an Essential Singularity 

THEOREM 2 

The function fez) = el/z has an essential singularity at z = O. It has no limit for approach along the imaginary 
axis; it becomes infinite if z ..... 0 through positive real values, but it approaches zero if <: --+ 0 through negative 
real values. It takes on any given value c = coia '* 0 in an arbitrarily small E-neighborhood of;:: = O. To see 
the letter. we set z = reill

, and then obtain the following complex equation for rand 8. which we must ~olve: 

ellz = e<'cos 0 - i sin tJ)/r = cOeia 

Equating the absolute values and the arguments, we have e'cos mh· = co' that is 

cos8= rlnco, and -sin 8 = ar 

respectively. From these two equations and cos2 8 + sin2 8 = r2(ln cO)2 + a 2r2 = I we obtain the formulas 

and 
a 

tan8= ---. 
Inca 

Hence r can be made arbitrarily small by adding multiples of 27T to a, leaving c unaltered. This illustrates the 
very famous Picard's theorem (with z = 0 as the exceptional value). For the rather complicated proof. see Ref. 
[D4J. voL 2. p. 258. For Picard. see Sec. 1.7. • 

Picard's Theorem 

If f(z) is analytic alld has all isolated essential singularity at a point zo, it takes Oil 

eve I}' value, with at most olle exceptional value, in an arbitrarily small E-neighborhood 

oJzo· 

Removable Singularities. We say that a function f(::) has a removable sillgulartty at 
z = Zo if f(z) is not analytic at z = Zo, but can be made analytic there by assigning a 
suitable value f(zo). Such singularities are of no interest since they can be removed as 
just indicated. Example: fez) = (sin z)/z becomes analytic at z = 0 if we define f(O) = I. 

Zeros of Analytic Functions 
A zero of an analytic function fez) in a domain D is a :: = :::0 in D such that f(zo) = O. 
A zero has order n if not only f but also the derivatives f', fIt, ... , f n - ll are all 0 at 
Z = Zo but fn)(Zo) *- O. A fIrst-order zero is also called a simple zero. For a second-order 
zero, f(Zo) = f' (zo) = 0 but f"(zo) *- O. And so on. 

E X AMP L E 4 Zeros 

The function L + ;::2 has simple zeros at :!:i. The function (1 - -;;4)2 has second-order zeros at:!: I and :!:i. The 
function (::: - a)3 has a third-order zero at Z = a. The function eZ has no zeros (see Sec. 13.5). The function 
sin z has simple zeros at 0, :!:7T, :!:27T, ... , and sin2 z has second-order zeros at these points. The function 
I - cos Z has second-order zeros at 0, :!:27T. :!:47T, ... , and the function (I - cos Z)2 has fourth-order zeros 
at these points. • 
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Taylor Series at a Zero. At an nth-order zero ::: = :::0 of f(:::), the derivatives f' (Zo), ..• , 
['n-1)(:::o) are zero, by definition. Hence the first few coefficients (/o, ... , an-l of the 
Taylor series (1), Sec. 15.4, are zero, too, whereas lin =1= 0, so that this series takes the 
form 

f(:::) = lIn(:: - zo)n + {/n+l(:: - ':0)'1+1 + ... 
(3) 

= (z - ::o)n [an + (/n+l(Z - <::0) + (/n+2(::: - :::0)2 + ... ] 

This is characteristic of such a zero, because if f(::) has such a Taylor series, it has an 
nth-order zero at ::: = :::0' as follows by differentiation. 

Whereas nonisolated singularities may occur, for zeros we have 

- ---------------------------------------------------------------, 
Zeros 

The zeros of an analytic filllction f(;::) (¥= 0) are isolated; that is, each of them has 
a neighborhood that c01l1aills no further :::eros of fez). 

I ROO F The factor (::: - :::0)" in (3) is zero only at ::: = :::0' The power series in the brackets 
[ ... ] represents an analytic function (by Theorem 5 in Sec. 15.3), call it g(z). Now 
g(Zo) = an =1= 0, since an analytic function is continuous, and because of this continuity, 
also g(:::) =1= 0 in some neighborhood of z = :::0' Hence the same holds of f(:::). • 

--R": • 4 

This theorem is illustrated by the functions in Example 4. 
Poles are often caused by zeros in the denominator. (Example: tan z has poles where 

cos::: is zero.) This is a major reason for the imp0l1ance of zeros. The key to the connection 
is the following theorem, whose proof follows from (3) (see Team Project 24). 

Poles and Zeros 

Let fez) be analytic at z = Zo and have a zero of nth order at z = :::0' Then lIf(z) 
has a pole of 1I1h order at .: = :::0; and so does h(:::)lf(:::), provided he:::) is allalytic 
at Z = 20 and 17(:::0) =1= 0. 

Riemann Sphere. Point at Infinity 
When we want to study complex functions for large Izl, the complex plane will generally 
become rather inconvenient. Then it may be better to use a representation of complex 
numbers on the so-called Riemann sphere. This is a sphere S of diameter 1 touching the 
complex z-plane at z = ° (Fig. 369), and we let the image of a point P (a number z in the 
plane) be the intersection P* of the segment PN with S, where N is the "North Pole" 
diametrically opposite to the origin in the plane. Then to each z there corresponds a point 
on S. 

Conversely, each point on S represents a complex number z, except for N, which does 
not con'espond to any point in the complex plane. This suggests that we introduce an 
additional point, called the point at infinity and denoted CG ("infinity") and let its image 
be N The complex plane together with :JO is called the extended complex plane. The 
complex plane is often called the finite complex plane, for distinction, or simply the 
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N 

Fig. 369. Riemann sphere 

complex plane as before. The sphere S is called the Riemann sphere. The mapping of 
the extended complex plane onto the sphere is known as a stereographic projection. 
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straight 
line through the origin?) 

Analytic or Singular at Infinity 
If we want to investigate a function .fez) for large 1z1, we may now set.;: = 1111" and investigate 
.f(z) = .fO/w) == g(w) in a neighborhood of w = O. We define .f(z) to be analytic or singular 
at infinity if g(w) is analytic or singular. respectively, at w = O. We also define 

(4) g(O) = lim g(w) 
zo->o 

if this limit exists. 
Furthermore, we say that f(z.) has an nth-order zero at infinity if f(l/w) has such a zero 

at w = O. Similarly for poles and essential singularities. 

E X AMP L E 5 Functions Analytic or Singular at Infinity. Entire and Meromorphic Functions 

The function f(z.) = 11z2 is analytic at x since g(w) = f(l/w) = .r2 is analytic at w = 0, and fez) has a second­
order zero at x. The function .t(;:) = 2

3 is singular at x and has a third-order pole there since the function 
g(w) = .to/w) = 1Iw3 has such a pole at w = O. The function eZ has an essential singularity at Cf) since eV", 

has such a singularity at II' = O. Similarly, cos z and sin z have an essential singularity at x. 
Recall that an entire function is one that is analytic everywhere in the (finite) complex plane. Liouville's 

theorem (Sec. l4...l) tells us that the only boullded entire functions are the constants, hence any nonconstant 
entire function must be unbounded. Hence it has a singularity at x, a pole if it is a polynomial or an essential 
singularity if it is not. The functions just considered are typical in this respect. 

An analytic function whose only singularities in the finite plane are poles is called a meromorphic function. 
Examples are rational function, with nonconstant denominator, tan ;:, cot z, sec z, and eSc z. • 

In this section we used Laurent series for investigating singularities. In the next section 
we shall use these series for an elegant integration method . 

.. .. -
[1-101 SINGULARITIES 

Determine the location and kind of the singularities of the 
following functions in the finite plane and at infinity. In the 
case of poles also state the order. 

1. tan2
7TZ 

3. cot Z2 

5. cos z - sin z 

2 3 
2. z + 

4. Z3e l/(Z-1l 

6. lI(cos z - sin z) 
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sin 3z 
7. (Z4 _ 1)4 

4 2 

CHAP. 16 Laurent Series. Residue Integration 

21. (1 - cos Z)2 

8 
8. -- + 2 

Z - 1 (z - 1) (;: - l)3 

23. (Zeros) If f(:) is analytic and has a zero of order 11 at 
z = :0' show that f2(Z) has a zero of order 211. 

24. TEAM PROJECT. Zeros. la) Derivative. Show that 
if f(:) has a zero of order 11 > I at: = :0' then I' (:) 
has a zero of order 11 - 1 at ::'0. 

9. cosh [lie + 1)] 10. e ll(Z-l)/(eZ - 1) 

11. (Essential singularity) Discuss e llz2 in a similar way 
as e llz is discussed in Example 3. 

(b) Poles and zeros. Prove Theorem 4. 

(e) Isolated k-points. Show that the points at which 
a nonconstant analytic function fez) has a given value 
k are isolated. 

12. (Poles) Verify Theorem I for f(:) = :::-3 - Z-I. Prove 
Theorem 1. 

113-221 ZEROS 

Determine the location and order of the zeros. 

(d) Identical functions. If ftC;:) are analytic in a 
domain D and equal at a sequence of points Zn in D 
that converges in D, show that fl(:) == .f2(::') in D. 

13. (z + 16i)4 

15. :::-3 sin3 7fZ 

17. (3z2 + l)e- Z 

19. (,2 + 4)(eZ 
- l)2 

14. (Z4 - 16)4 

16. cosh2
::: 

18. (Z2 - 1)2(e
Z2 

- L) 

20. (sin z - 1)3 

25. (Riemann sphere) Assuming that we let the image of 
the x-axis be meridians 0° and 180°, describe and 
sketch (or graph) the images of the following regions 
on the Riemann sphere: (a) Izl > LOO. (b) the lower 
half-plane, (c) ! ~ 1::.1 ~ 2. 

16.3 Residue Integration Method 
The purpose of Cauchy's residue integration method is the evaluation of integrals 

T. fez) dz 
c 

taken around a simple close path C. The idea is as follows. 
If fez) is analytic everywhere on C and inside C, such an integral is zero by Cauchy's 

integral theorem (Sec. 14.2), and we are done. 
If fez) has a singularity at a point z = Zo inside C, but is otherwise analytic on C and 

inside C, then fez) has a Laurent series 

fez) = 2:: an(z - zo)n + 
n~O 

z - Zo 

that converges for all points near z = Zo (except at z = Zo itself), in some domain of the 
form 0 < Iz - zol < R (sometimes called a deleted neighborhood, an old-fashioned term 
that we shall not use). Now comes the key idea. The coefficient hI of the first negative 
power lI(z - zo) of this Laurent series is given by the integral formula (2) in Sec. 16.1 
with 11 = 1, namely, 

hI = -2
1 

. T. fez) dz. 
7ft C 

Now, since we can obtain Laurent series by various methods, without using the integral 
formulas for the coefficients (see the examples in Sec. 16.1), we can find hI by one of 
those methods and then use the formula for hI for evaluating the integral, that is, 

(1) 
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Here we integrate conunterclockwise around a simple closed path C that contains z = Zo 
in its interior (but no other singular points of fez) on or inside C!). 

The coefficient hi is called the residue of fez) at z = Zo and we denote it by 

(2) hI = Res fez). 
Z=Zo 

E X AMP L E 1 Evaluation of an Integral by Means of a Residue 

Integrate the function f(z) = Z -4 sin z counterclockwise around the unit circle C. 

Solution. From (14) in Sec. 15.4 we obtain the Laurent series 

sin z 1 I Z z3 
f(z.) = -4- = "3 - -3'z + -5' - 71 + - ... z z . . . 

which converges for Izl > 0 (that is, for all z 1= 0). This series shows that J(z) has a pole of third order at z = 0 
and the residue b i = -113!. From (1) we thus obtain the answer 

J. sin z TTi r -4- dz = 27fib1 = - ""3 
c z 

E X AMP L E 2 CAUTION! Use the Right Laurent Series! 

Integrate f(z) = I/(z3 Z4) clockwise around the circle C: Izl = 112. 

• 

Solution. z3 - z4 = .:3(1 - z) shows that J(z) is singular at z = 0 and z = l. Now z = 1 lies outside C. 
Hence it is of no interest here. So we need the residue of ftz) at O. We find it from the Laurent series that 
converges for 0 < Izl < l. This is series (I) in Example 4, Sec. 16.1, 

1 1 I 1 
---=-+-+ +I+z+'" 
Z3 - Z4 l Z2 Z 

(0 < Izl < I). 

We see from it that this residue is 1. Clockwise integration thus yields 

J. dz r -3--4 = -27fi Res f(z) = -27fi. 
cZ-z z-o 

C4UTlON! Had we used the wrong series (II) in Example 4, Sec. 16.1, 

(Izl > 1), 

we would have obtained the wrong answer, 0, because this series has no power liz. • 
Formulas for Residues 
To calculate a residue at a pole, we need not produce a whole Laurent series, but, more 
economically, we can derive formulas for residues once and for all. 

Simple Poles. Two formulas for the residue of f(:::;) at a simple pole at Zo are 

(3) Res fez) = hI = lim (z - zo)f(z) 
Z=Zo Z----7Zo 

and, assuming that f(;:,) = p(z)lq(z), p(zo) =1= 0, and q(z) has a simple zero at Zo (so that 
fez) has at;:,o a simple pole, by Theorem 4 in Sec. 16.2), 

(4) p(z) 
Res fez) = Res -
Z=20 2=20 q(z) 
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PRO 0 F For a simple pole at z = Zo the Laurent series (1), Sec. 16.1, is 

(0 < Iz - zol < R). 

Here bl '* O. (Why?) Multiplying both sides by z - ':0 and then letting z ~ ':0' we obtain 
the formula (3): 

lim (z - ;;;o)f(z) = bi + lim (z - Zo)[ao + al(Z - zo) + ... ] = b i 
Z---i>Zo Z-+Zo 

where the last equality follows from continuity (Theorem L. Sec. 15.3). 
We prove (4). The Taylor series of q(::.) at a simple zero ':0 is 

, (.: - zol 
q(z) = (z - zo)q (zo) + 2! q"(zo) + 

Substituting this into f = plq and then f into (3) gives 

. p(z). (z - ':o)p(,:) 
Res fez) = lim (z - ::'0) -- = hm 
Z~Zo Z-+Zo q(z) Z-+Zo (.: - zo}[q'(;::o) + (z - ::.o)q"(zo)!2 + ... ] 

z - Zo cancels. By continuity, the limit of the denominator is q' (zo) and (4) follows .• 

E X AMP L E 3 Residue at a Simple Pole 

f(:) = (9: + 0/(:3 + ;::) has a simple pole at i because :2 + I = (: + i )(z - i). and (3) gives the residue 

9;:: + i 9: + i [ 9: + i ] !Oi 
Res = lim (: - i) . . = ---. = - = -5;. 
z~i ;::{;::2 + I) z~i ;::(;:: + I){:: - I) ;::{;:: + I) z~i -2 

By (4) with p{i) = 9; + i and l/ (;::) ~ 3;::2 + I we confirm the result. 

9;;: + i [9;:: + i ] !Oi 
Res 2 = -2-- = - = -5i. 
z~; :(;:: + I) 3~ + 1 Fi - 2 • 

Poles of Any Order. The residue of fez) at an mth-order pole at Zo is 

(5) 1 {d"'-I [ ]} ~~~ fez) = (m _ I)! !~~o dzm-I (z - zoynf(z) . 

In particular, for a second-order pole (m = 2), 

(5*) 

PROOF The Laurent series of f(z) converging near Zo (except at Zo itself) is (Sec. 16.2) 

where b1n '* O. The residue wanted is b l . Multiplying both sides by (z - zoyn gives 
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We see that hI is now the coefficient of the power (z - ;::0)',,-1 of the power series of 
g(;::) = (z - ::'o),"f(;::). Hence Taylor's theorem (Sec. 15.4) gives (5): 

hI = 
(m - l)! 

g'm-ll (:0) 

1 d"'-I 
-- [(7 - 7 )'''f(7)] • (m - l)! dzm-I "" ~o '.' 

E X AMP L E 4 Residue at a Pole of Higher Order 

THEOREM 1 

f(::;) = 50::;/(::;3 + 2::;2 - 7::; + 4) has a pole of second order at ;: = 1 because the denominator equals 
(;: + 4)(;: - 1)2 (verify!). From (5*) we obtain the residue 

d ( 50;: ) = lim - --
.~1 d;: z + 4 

200 
= -2 = 8. 

5 

Several Singularities Inside the Contour. 
Residue Theorem 

• 

Residue integration can be extended from the case of a single singularity to the case of 
several singularities within the contour C. This is the purpose of the residue theorem. The 
extension is surprisingly simple. 

Residue Theorem 

Let f(;::) he analytic imide a simple closed path C alld 011 C. except forfillite!y many 
singular points ::'1, Z2, •.. , z" inside C. Then the integral of f(z.) taken cO/lIlterclockll"ise 
around C equals 27Ti times the sum of the residues of f(;::) {{f Z.I, ••• , Zk: 

k 

(6) fefc::,) d::. = 27Ti 2:: ~~s fez). 
j~I J 

c 

Fig. 370. Residue theorem 
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PROOF We enclose each of the singular points Zj in a circle Cj with radius small enough that those 
k circles and C are all separated (Fig. 370). Then fez) is analytic in the multiply connected 
domain D bounded by C and Ch ... , Ck and on the entire boundary of D. From Cauchy's 
integral theorem we thus have 

(7) f fez) dz + f fez) dz + f fez) dz + ... + f fez) dz = 0, 
C ~ ~ ~ 

the integral along C being taken counterclockwise and the other integrals clockwise (as in 
Figs. 351 and 352, Sec. 14.2). We take the integrals over C1, ... , Ck to the right and 
compensate the resulting minus sign by reversing the sense of integration. Thus, 

(8) f fez) dz = f fez) dz + f fez) dz + ... + f fez) dz 
C C, C2 Ck 

where all the integrals are now taken counterclockwise. By (1) and (2), 

f fez) dz = 27Ti Res fez), 
~ z=~ 

j = 1, ... , k, 

so that (8) gives (6) and the residue theorem is proved. • 
This important theorem has various applications in connection with complex and real 
integrals. Let us first consider some complex integrals. (Real integrals follow in the next 
section.) 

E X AMP L E 5 Integration by the Residue Theorem. Several Contours 

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside 
C, (b) 0 is inside, I outside, (c) I is inside, 0 outside, (d) 0 and I are outside. 

1, 4 - 3;: r -2-- d;: 
C ;: - Z 

Solution. The integrand has simple poles at 0 and I, with residues [by (3)] 

4-3;: [4-3;:J Res --- = --- = -4. 
Z~O z(z - 1) z - I Z~O 

4-3z [4-3zJ Res --- = --- = I. 
z~l z(z - I) Z z~l 

[Confirm this by (4).] Ans. (a) 21Ti(-4 + 1) = -61Ti, (b) -81Ti, (c) 21Ti, (d) O. 

E X AMP L E 6 Another Application of the Residue Theorem 

Integrate (tan Z)/(Z2 - I) counterclockwise around the circle C: Izl = 312. 

• 

Solution. tan;:; is not analytic at ±1T/2, ±31T12, ... , but all these points lie outside the contour C. Because 
of the denominator Z2 - I = (z - 1)(z + I) the given function has simple poles at ± I. We thus obtain from 
(4) and the residue theorem 

f tanz (tanz 
-2-- dz = 21Ti Res -2-- + Res 

C Z - I z~l Z - 1 z~-l 

~an;: ) 
z - I 

= 21Ti -- + --(
tanzl tan;: I ) 
2;: z~l 2;:: z~-l 

= 21Ti tan 1 = 9.7855i. • 
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E X AMP L E 7 Poles and Essential Singularities 

Evaluate the following integral, where C is the ellipse 9x2 + i = 9 (counterclockwise, sketch it). 

1 (4::.
eTrZ 

+ ze'n'/Z) d::. Jc z - 16 

717 

Solution. Since::.4 
- 16 = 0 at ±2i and ±2. the first tenn of the integrand has simple poles at ±2i inside 

C, with residues [by (4); note that e27Ti = 1] 

Res 
z=-2i 

ze= 1 

16 

and simple poles at ±2, which lie outside C, so that they are of no interest here. The second term of the integrand 
has an essential singularity at 0, with residue 71'2/2 as obtained from 

AilS. 271';(-16 - 16 + !71'
2

) = 7r! 71"2 - !)i = 30.22 Ii by the residue theorem. 

. : c ; 

1. Verify the calculations in Example 3 and find the other 
residues. 

2. Verify the calculations in Example 4 and find the other 
residue. 

!3:@ RESIDUES 

Find all the singular points and the corresponding residues. 
(Show the details of your work.) 

1 
3. 2 4+z 

sin z 
5. 

7. cot Z 

11. tan z 

cos z 
4.~ 

6. 
Z2 + I 

Z2 - z 

8. sec z 
1/3 

10. 
;:4 - 1 

12. 
Z2 

Z4 - l 

13. CAS PROJECT. Residue at a Pole. Write a program 
for calculating the residue at a pole of any order. Use 
it for solving Probs. 3-8. 

~ RESIDUE INTEGRATION 

Evaluate (counterclockwise). (Show the details.) 

14. f 
c 

sin 7rZ 
--4- dz, 

z 
C: /z - i/ = 2 

15. f e lfz dz, C: Izl = 1 
c 

tc d7 
c: Iz - 11 = 1.4 16. 

sinh !7rz 

17. f tan TTZ dz. c: Izl = I 
c 

18. f tan 7rZ dz. C: Izl = 2 
c 

tc eZ 

c: Izl 19. --dz. = 4.5 
cos "-

20. f coth z dz. C: Izl = I c 
tc e' 

C: Iz - il = 1.5 21. --dz. 
cos 7rZ 

22. tc coshz 

Z2 - 3iz 
dz, C: Izl = ] 

23. fc 
tan 7rZ 

C: Iz + ~il = I -_-3- dz, 
<. 

24. f 
c 

I - 4::. + 6z2 

(Z2 + !){2 - z) dz. c: /z/ = I 

30::.2 
- 23z + 5 

(2z - ])2(3z - 1) dz, C: /z/ = I 25. f 
c 

(Izl > 0). 

• 
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16.4 Residue Integration of Real Integrals 
It is quite surprising that certain classes of complicated real integrals can be integrated 
by the residue theorem, as we shall see. 

Integrals of Rational Functions of cos () and sin () 
We first consider integrals of the type 

(1) 
2 ... 

J = f F(cos e, sin e) de 
o 

where F(cos e, sin 6) is a real rational function of cos e and sin e [for example, 
(sin2 e)/(5 - 4 cos e)] and is finite (doe5. not become infinite) on the interval of integration. 
Setting eill = z, we obtain 

(2) 
(z + +) 
(z - +) 

Since F is rational in cos e and sin e, Eq. (2) shows that F is now a rational function of 
;;;, say, f(.:). Since d;;;lde = ieill

, we have de = cl.:/i;:. and the given integral takes the form 

(3) J = J. f(::) ~.: 
Jc IZ 

and, as e ranges from 0 to 27T in (I), the vaIiable z = eil! ranges counterclockwise once 
around the unit circle Izi = 1. (Review Sec. 13.5 if necessary.) 

E X AMP L ElAn Integral of the Type (1) 

Show b} the pre,ent method that ,-271" de Jo V2 - cos e = 17T. 

Solution. We use cos fJ = ~(: + 1/:) and de = d:/i::.. Then the integral becomes 

= f i d::. 
c __ (_2- 7V2-+ I) 

2 ~ - .. 

2 J. d-

= - i Jc (::. - V2 - 1)(;: - V2 + 1) . 

We see that the integrand has a simple pole at ::'1 = V2 + I outside the unit circle C. so that it is of no interest 
here. and another simple pole at::2 = '\ '2 - I (where::. - V2 + I = 0) inside C with residue [by (3), Sec. 16.3] 

z~~~ (~- V2 - I):Z - V2 + I) = [ Z - ~ - I 1~V'2-1 

2 

Answer: 27Ti( -2/i)( -1/2) = 27T. (Here -21i is the factor in front of the last integral.) • 
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As anOlher large class, let us consider real integrals of the form 

(4) IX f(x) dx:. 
-x 

Such an integral, whose interval of integration is not finite is called an improper integral, 
and i( has the meaning 

(5') 
X 0 b 

I f(x) dx = lim I f(x) dx: + lim f f(x) dt. 
-x a_-:c a b-----')ox 0 

If both limits exist, we may couple (he (wo independent passages (0 -00 and x. and write 

(5) 
DO R 

I f(x) dx = lim I f(x) dx. 
-00 R-----')occ -R 

The limit in (5) is called the Cauchy principal value of the integral. It is written 

pr. v. I= f(x) dx. 
-x 

It may exist even if the limits in (5') do not. EXllmple: 

R (R2 R2) 
lim I x dol = lim - - - = 0, 
R~x -R R~x 2 2 

but 
b 

lim f xdx = x. 
b_x 0 

We assume that the function f(t) in (4) is a real rational function whose denominator 
is different from zero for all real x and is of degree at least (Wo units higher than the 
degree of (he numerator. Then the limits in (5') exist. and we may start from (5). We 
consider the corresponding contour integral 

(5*) f fez) d::. 
c 

around a path C in Fig. 371. Since .f(x) is rational, fez) has finitely many poles in the 
upper half-plane, and if we choose R large enough, then C encloses ali these poles. By 
the residue theorem we then obtain 

R f f(:o d::. = f f(::.) d::. + I f(x) dx = 27Ti 2: Res f(::.) 
c s -R 

Yj 

_L,T\ 
-R I R x] 

Fig. 371. Path C of the contour integral in (5*) 
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where the sum consists of all the residues of f(z) at the points in the upper half-plane at 
which f(z) has a pole. From this we have 

(6) 
R I f(x) dx = 27Ti ~ Res f(z) - I f(z) dz. 
-R S 

We prove that, jf R --') x, the value of the integral over the semicircle S approaches 
zero. If we set.: = Rei/!, then S is represented by R = const, and as z ranges along S. the 
variable e ranges from 0 to 7T. Since. by assumption, the degree of the denominator of 
f(z) is at least two units higher than the degree of the numerator, we have 

k 
If(z)1 < Izl2 (Izl = R > Ro) 

for sufficiently large constants k and Ro. By the ML-inequality in Sec. 14.1, 

II I k k7T 
f(z) dz < '2 TTR = -

s R R 

Hence, as R approaches infinity. the value of the integral over S approaches zero. and (5) 
and (6) yield the result 

(7) {>O f(x) dx = 27Ti ~ Res f(z) 
-00 

where we sum over all the residues of f(::.) at the poles of f(z) in the upper half-plane. 

E X AMP L E 2 An Improper Integral from 0 to 00 

Using (7), show that 

J
oe d-.: 

o 1+ x4 = 2\12 . 

7T 

y 

x 

Fig. 372. Example 2 

Solutioll. Indeed. fez) = 11(1 + Z4) has four simple poles at the poims Imake a sketch) 

Zl = e .... iJ4~ "7 _ 3wiJ4 
"'2 - e , 

The first two of these poles lie in the upper half-plane (Fig. 372). From (4) in the last section we find the residues 
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. [ 1 ] [ 1 ] _ 1 -3"';/4 _ 1 rri/4 Res fez) = 4 , = ~ - - e - - - e . 
Z~Zl (1 + z) Z~Zl 4z: Z~Zl 4 4 

Res fez) = [ 1 4' ] = [~J = ..!.. e-97Ti
/
4 = ..!.. e-wi

/
4

• 
Z~Z2 (1 + z) Z~Z2 4z Z~Z2 4 4 

(Here we used e"'; = -I and e -2"'; = 1.) By (1) in Sec. 13.6 and (7) in this section, 

cc 

f dr: 27Ti '/4 '/4 27Ti 7T 7T 7T 
-ro 1 + x4 = - 4 (e= - e--m ) = - 4 '2i'sin '4 = 7Tsin '4 = V2 . 

Since 1/(1 + x 4) is an even function, we thus obtain, as asserted, 

7T • 2V2 . 

Fourier Integrals 
The method of evaluating (4) by creating a closed contour (Fig. 371) and "blowing it up" 
extends to integrals 

(8) fro f(x) cos sx dx 
-00 

and fro f(x) sin sx tb 
-cc 

(s real) 

as they occur in connection with the Fourier integral (Sec. 11.7). 
If f(x) is a rational function satisfying the assumption on the degree as for (4), we may 

consider the corresponding integral 

f fez) eisz dz 
c 

over the contour C in Fig. 371 on p. 719. Instead of (7) we now get 

(9) f= f(x)eisx dx = 27Ti ~ Res [f(z)eisZ] 
-ro 

(s real and positive) 

(s > 0) 

where we sum the residues of f(z)eisz at its poles in the upper half-plane. Equating the 
real and the imaginary parts on both sides of (9), we have 

foo f(x) cos sx dx = -27T ~ 1m Res [f(z)eisZ], 
-00 

(10) (s> 0) 

fro f(x) sin sx d>o: = 27T ~ Re Res [f(z)eisZ]. 
-co 

To establish (9), we must show [as for (4)] that the value of the integral over the 
semicircle S in Fig. 371 approaches 0 as R -7 00. Now s > 0 and S lies in the upper 
half-plane y ~ O. Hence 

(s> 0, y ~ 0). 

From this we obtain the inequality /f(z)eisz
/ = /f(z)//eisz / ~ /f(z)/ (s > 0, y ~ 0). This 

reduces our present problem to that for (4). Continuing as before gives (9) and (10). • 
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E X AMP L E 3 An Application of (10) 

Show that I"" cos SX 7T -ks 
--- d~= - e 

-x k 2 + x 2 k 

cc 

I SIn.1X 
-2--2 d~=O 

-0:; k +x 
(S > O. k > 0). 

Solution. In fact, eisz/(k 2 + ;:2) has only one pole in the upper half·plane, namely. a simple pole at:: = ik. 
and from (4) in Sec. 16.3 we obtain 

Thus 

e
isz 

[ e
isz 

] e -ks Res --- = - = -.- . 
z~ik k2 + Z2 2:: z~ik 2fk 

:x: isx -ks 

I e. e 7T -ks 
-cc J... 2 + x2 d-.: = 27Tf 2ik = k e . 

Since eisx 
= cos sx + ; sin nc. this yield_ the above results lsee also (5) in Sec. 11.7.] 

Another Kind of Improper Integral 
We consider an improper integral 

(11) 
B I f(x) dx 

A 

whose mtegrand becomes infinite at a point a in the interval of integration. 

lim If(x)1 = 00. x __ a 

By definition. this integral (11) means 

(12) 
B Q-E B 

I f(x) d"l: = lim I f(x) dx + lim I f(x) dx 
A E_O A ~-O a+~ 

• 

where both E and TJ approach zero independently and through positive values. It may happen 
that neither of these two limits exists if E and TJ go to 0 independently, but the limit 

(13) lim [IO-;(x) dx + IB f(x) dX] 
E_O A a+E 

exists. This is called the Cauchy principal value of the integral. It is written 

For example, 

B 

pro V. I f(x) dL 
A 

pI. V. II {~~ = lim [I- E 

dr + II dx ] = 0: 
-1 .t E_O -1 x 3 

E x 3 

the principal value exists, although the integral itself has no meaning. 
In the case of simple poles on the real axis we shall obtain a formula for the principal 

value of an integral from -00 to 00. This formula will result from the following theorem. 
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THEOREM 1 Simple Poles on the Real Axis 

If f(:::;) has a simple poLe at z = a on the real axis, then (Fig. 373) 

lim I fez) dz = 7ri Res fez). 
7---+0 C

2 
2=a 

0, 
a-r a a+r x 

Fig. 373. Theorem 1 

PROOF By the definition of a simple pole (Sec. 16.2) the integrand fez) has for 0 < Iz - al < R 
the Laurent series 

f(:::;) = + gC:), b i = Res fez). 
:::;-a 2=a 

Here g(z) is analytic on the semicircle of integration (Fig. 373) 

and for all z between C2 and the x-axis, and thus bounded on C2 , say, Ig(z) I ~ M. By 
integration. 

I f(:::;) d:::; = f7i" b!e ireiB dB + I g(;;::) d:::; = b I 7ri + I g(:::;) dz. 
C2 ore C2 C2 

The second integral on the right cannot exceed M7rr in absolute value. by the ML-inequality 
(Sec. 14.1). and ML = M7rr~ 0 as r~ o. • 

Figure 374 shows the idea of applying Theorem l to obtain the principal value of the 
integral of a rational function f(x) from -:lJ to:xl. For sufficiently large R the integral over 
the entire contour in Fig. 374 has the value J given by 27ri times the sum of the residues 
of f(:::;) at the singularities in the upper half-plane. We assume that f(x) satisfies the degree 

Fig. 374. Application of Theorem 1 
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condition imposed in connection with (4). Then the value of the integral over the large 
semicircle S approaches 0 as R ~ x. For r ~ 0 the integral over C2 (clockwise!) 
approaches the value 

K = - 7Ti Res f(z) 
2=a 

by Theorem I. Together this shows that the principal value P of the integral from -00 to 
00 plus K equals J; hence P = J - K = J + 7Ti Resz~a f(z). [f f(z) has several simple 
poles on the real axis, then K will be -7Ti times the sum of the corresponding residues. 
Hence the desired formula is 

oc 

(14) pro V. I f(x) dx = 27Ti L Res f(z) + 7Ti L Res f(z) 
-oc 

where the first sum extends over all poles in the upper half-plane and the second over all 
poles on the real axis, the latter being simple by assumption. 

E X AMP L E 4 Poles on the Real Axis 

Find the principal value 

I
x d, 

pr. V. _= (x2 _ 30t + 2)(x2 + I) 

Solutioll. Since 

x 2 - 3x + 2 = (x - I )(x - 2), 

the integrand f(x), considered for complex ~, has simple poles at 

z= I, 

z = 2. 

:: = i, 

[ 
1 ] Res f(:d = 

z~l (z - 2)(~2 + I) z~l 

2 ' 

[ 
1 ] Res f(::) = 2 

z~2 (:: - 1)(:: + I) z~2 

I 

5 ' 

Resj(::) = [2 1 ] 
z~i (:: - 3.;: + 2)(;: + i) z~i 

3 - i 
=6+2;= 20' 

and ar .: = -; in the lower half-plane, which is of no interest here. From (14) we get the answer 

Ix d, ( 3 - i) (1 I ) W 

pro V. -x (x2 _ 3x + 2)(x2 + I) = 2wi w- + wi -"2 + 5" = 10 • 

More integrals of the kind considered in this section are included in the problem set. Try 
also your CAS, which may sometimes give you false results on complex integrals. 
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.. 1 ... 1.1 __ ... _-=- _ .. -.-.. ....... . _ ....... 
11-81 INTEGRALS INVOLVING COSINE AND SINE 

Evaluate the following integrals. (Show the details of your 
work.) 

r~ dO 
1. 

o 7 + 6 cos 0 

t~ dO 
3. 

o 37 - 12 cos 0 

rw dO 
5. 

0 5 - 4 sin (! 

f27< cos fJ 
7. -----dO. 

o 13 - 12 cos 20 

Him. cos 20 = 

8. t" 
o 

2 

+4cosO 
dO 

17 - 8 cos (! 

IW dO 
2. 

o 2 + cos 0 

t w dO 
-'. 8 - 2 sin 0 0 

t~ sin2 0 
6. 

o 5 - 4 cos (! 

IMPROPER INTEGRALS: 

dO 

INFINITE INTERVAL OF INTEGRATION 

Evaluate (showing the details): 

L: dx t' ~dx 9. 
x2 + 

10. 
-x x + I 

I: ell: L: dx 
tl. 

x6 + I 
12. 

(x2 - 2x + 5)2 

I
x dx 

13. -00 -c""Cx2O--+-4-)""""2 14. L: -x-'-4-~-x-I-6 

I"" X3 

15. ---8 dx 
-"" 1 + x 

16. L: -(X-;2;-+-1-~-;X"""2-+-9-) 

17. L: -(X-,.2;:----;-~-+-2-,)2;:- dx 

I
x x2 + I 

18. -4-- dx 
-x x + I 

"" . 

I smx 
19. -4-- dx 

_::>0 X + 1 

I= cosx 
20. -4-- dx 

-00 x + I I
co 

sin 3x 
21. -4-- dx 

-00 x + 1 

I
co 

cos 4x 
22. -x -x"O;"4-+-5-'x2::--+-4 dx 

725 

123-271 IMPROPER INTEGRALS: 
POLES ON THE REAL AXIS 

Find the Cauchy principal value (showing details): 

:>0 2 

I
oo 

x+2 
23. -3-- dx 

-cc x + x 
24. I -!--dx 

_:>0 x - I 

I
oo 

x+5 
25. -3-- dx 

-00 x - x 

26. I
CC dx 

-00 -x-;;4-+-3-x"""2---4 

27. L: 
28. TEAM PROJECT. Comments on Real Integrals. 

(a) Formula nO) follows from (9). Give the details. 
2 

(b) Use of auxiliary results. Integrating e-z around 
the boundary C of the rectangle with vertices -a, a, 
a + ib, -a + ib, letting a --> co, and using 

show that 

L"" 2 -v:,; _b2 
e-X cos 2bx dx = -- e . 

o 2 

(This integral is needed in heat conduction in Sec. 
12.6.) 

(c) Inspection. Solve Probs. 15 and 21 without 
calculation. 

29. CAS EXPERIMENT. Check your CAS. Find out to 
what extent your CAS can evaluate integrals of the 
form (1), (4). and (8) correctly. Do this by comparing 
the results of direct integration (which may come out 
false) with those of using residues. 

30. CAS EXPERIMENT. Simple Poles on the Real 
Axis. Experiment with integrals f~co f(x) dx. 
f(x) = [(x - al)(x - a2) ... (x - ak)r1. aj real and 
all different, k > L Conjecture that the principal value 
of these integrals is O. Try to prove this for a special 
k, say, k = 3. For general k. 
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= .1 S T ION SAN 0 PRO B L EMS 

1. Laurent series generalize Taylor senes. Explain the 
details. 

2. Can a function have several Laurent series with the same 
center? Explain. If your answer is yes, give examples. 

3. What is the principal part of a Laurent series? Its 
significance? 

4. What is a pole? An essential singularity,? Give 
examples. 

5. What is Picard's theorem? Why did it occur in this 
chapter? 

6. What is the Riemann sphere? The extended complex 
plane? Tts significance? 

7. Is elk2 analytic or singular at infinity? cosh;:.? (;:. - 4)3? 
Explain. 

8. What is the residue? Why is it important? 

9. State formulas for residues from memory. 

10. State some further methods for calculating residues. 

11. What is residue integration? To what kind of complex 
integrals does it apply? 

12. By what idea can we apply residue integration to real 
integrals from -x to x,? Give simple examples. 

13. What is a zero of an analytic function? How are zeros 
classified? 

14. What are improper integrals? Cauchy principal values? 
Give examples. 

15. Can the residue at a singular point be O? At a simple 
pole'? 

16. What is a meromorphic function? An entire function? 
Give examples. 

117-281 COMPLEX INTEGRALS 

Integrate counterclockwise around C. (Show the details.) 

tan ;:. 
17. -4 ' c: Izl = 1 

z 

sin 2;:. 
18. ~, c: 1::1 

IOz 
19. 2;:. + i ' C: k - 2il = 3 

iz+ 
20. Z2 _ i;:. + 2 ' C: /z - 1/ = 3 

21. c~sh 5z , C: k - il = 2 
z + 4 

4z3 + 7z 
22. , C: k + 11 = 1 

cos ;:. 

23. cot 8;:., C: 1:.::1 = 0.2 

,:2 sin z 
24. 4_2 _ 1 ,C: Iz - 11 = 2 

25. 
cos Z 

z'n ,11 = I 2 ... C- H .,., ., ..... 

Z2 + 1 1 
26. ;;.2 _ C: -x2 + v2 = 

2;:. 2 . 

15z +9 
, C: Iz - 31 = 27. 

Z3 
2 

- 9z 

15;:. +9 
, C: Izi 28. _3 _ =4 

9z 

129- 35 1 REAL INTEGRALS 

Evaluate by the methods of this 
details): 

[7T de 
29. 

0 25 - 24 cos e 

f7T de 
30. , k > 1 

0 k + cos e 

{7T de 
31. 

1 - ~ sin e 0 

{7T sin e 
32. de 

0 3 + cos e 

[: x 
33. + x 2 )2 

dx 
(l 

::>0 dx 
34. L + X 2)2 (1 

f~ + 2X2 
35. + 4X4 

dr 

chapter (showing the 

36. Obtain the answer to Prob. 18 in Sec. 16.4 from the 
present Prob. 35. 


