CHAPTER] 6

Laurent Series.
Residue Integration

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive integer
powers (and a constant term) and converges in a disk, a Laurent series (Sec. 16.1) is a
series of positive and negative integer powers of 7 — 7, and converges in an annulus (a
circular ring) with cenfer zy. Hence by a Laurent series we can represent a given function
f(2) that is analytic in an annulus and may have singularities outside the ring as well as
in the “hole™ of the annulus.

We know that for a given function the Taylor series with a given center z, is unique.
We shall see that, in contrast, a function f(z) can have several Laurent series with the
same center o and valid in several concentric annuli. The most important of these series
is that which converges for 0 < |z — zo| << R, that is, everywhere near the center zq, except
at z¢ itself. where 7 is a singular point of f(z). The series (or finite sum) of the negative
powers of this Laurent series is called the principal part of the singularity of f(z) at 2,
and is used to classify this singularity (Sec. 16.2). The coefficient of the power 1/(z — o)
of this series is called the residue of f(z) at zp. Residues are used in an elegant and
powerful integration method, called residue integration, for complex contour integrals
(Sec. 16.3) as well as for certain complicated real integrals (Sec. 16.4).

Prerequisite: Chaps. 13, 14, Sec. 15.2.
Sections that may be omitted in a shorter course: 16.2, 16.4.
References and Answers to Problems: App. 1. Part D, App. 2.

16.1 Laurent Series

Laurent series generalize Taylor series. If in an application we want to develop a function
f(z) in powers of z — zp when f(z) is singular at z, (as defined in Sec. 15.4). we cannot
use a Taylor series. Instead we may use a new kind of series, called Laurent series,!
consisting of positive integer powers of 7 — zy (and a constant) as well as negative integer
powers of z — Z; this is the new feature.

Laurent series are also used for classifying singularities (Sec. 16.2) and in a powerful
integration method (“residue integration”, Sec. 16.3).

A Laurent series of f(z) converges in an annulus (in the “hole” of which f(z) may have
singularities). as follows.

1PIERRE ALPHONSE LAURENT (1813-1854), French military engineer and mathematician, published the
theorem in 1843.
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THEOREM 1

CHAP. 16 Laurent Series. Residue Integration

| Laurent’s Theorem

Let f(z) be analvtic in a domain containing two concentric circles Cy and Cy with

center 7o and the annulus between them (blue in Fig. 367). Then f(2) can be
represented by the Laurent series

o o) ox bn
=2 ac- " +> ——
n=0 n=1 (Z ZO)
e} =ag+ ay(z — z0) + asz —zp)> + - - -
b b
- + 1 + 2 5 + PP
z— 2 (z — zp)

consisting of nonnegative und negative powers. The coefficients of this Laurent series
are given by the integrals

1 J@® 1
@ a,=-— 3@ _ S _

=
(zF — zo)"*! dz*, b, =

27 2

(e — 2oy () de,
C

C

taken counterclockwise around any simple closed path C that lies in the annulus
and encircles the inner circle, as in Fig. 367. [The variable of integration is denoted
by z* since z is used in (1).]

This series converges and represents f(z) in the enlarged open annulus obtained
from the given annulus by continuously increasing the outer circle Cy and decreasing
C, until each of the two circles reaches a point where f(z) is singular.

In the important special case that zg is the only singular point of f(2) inside C,,
this circle can be shrunk to the point zq, giving convergence in a disk except at the
center. In this case the series (or finite sum) of the negative powers of (1) is called
the principal part of the singularity of f(2) at z,,.

(&

Fig. 367. Laurent’s theorem

COMMENT. Obviously, instead of (1). (2) we may write (denoting b,, by a_,,)

ac

a” f@) =2 alz — zo"

n=—o0
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PROOF

where all the coefficients are now given by a single integral formula, namely,

2" a, = dz* n=0,=%1,=x2,---).

B 3g =%

27 o (@* — zg)"!

We prove Laurent’s theorem. (a) The nonnegative powers are those of a Taylor series.
To see this, we use Cauchy’s integral formula (3) in Sec. 14.3 with z* (instead of z) as
the variable of integration and z instead of Z,. Let g(z) and /(<) denote the functions
represented by the two terms in (3), Sec. 14.3. Then

dz*.

% 1 %k
@ @ =g+ h) = ) e - D
27 I, z

2ari o 7 — =z 7F —

Here 7 is any point in the given annulus and we integrate counterclockwise over both C;
and C,, so that the minus sign appears since in (3) of Sec. 14.3 the integration over C, is
taken clockwise. We transform each of these two integrals as in Sec. 15.4. The first integral
is precisely as in Sec. 15.4. Hence we get precisely the same result, namely, the Taylor
series of g(z).

1 o* =
@ g = — jg # dzx = a,(z — zo)"
2ati c, ¥z

n=0

with coefficients [see (2), Sec. 15.4, counterclockwise integration]

1 J@*)
&) an = S — — a1 9=
2ai @ — z¢)

Here we can replace C; by C (see Fig. 367), by the principle of deformation of path, since
Zo, the point where the integrand in (5) is not analytic, is not a point of the annulus. This
proves the formula for the a,, in (2).

(b) The negative powers in (1) and the formula for b,, in (2) are obtained if we consider
h(z) (the second integral times —1/(24ri) in (3). Since z lies in the annulus, it lies in the
exterior of the path C,. Hence the situation differs from that for the first integral. The
essential point is that instead of [see (7*) in Sec. 15.4]

¥ — 7z

<1 we now have (b) < 1.

© (@

7* — 20 Z— 2
Consequently, we must develop the expression 1/(z* — z) in the integrand of the second
integral in (3) in powers of (Z* — zg)/(z — zg) (instead of the reciprocal of this) to get a
convergent series. We find
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CHAP. 16 Laurent Series. Residue Integration

Compare this for a moment with (7) in Sec. 15.4, to really understand the difference. Then
go on and apply formula (8), Sec. 15.4. for a finite geometric sum. obtaining

1 1 ¥ —z ¥ — 79 \2 =z V'
=— 1+ 2 4 o v+ (=
¥ -z I— 2 Z— o I~ Zp z— 2
1 Z=1c_zo)n+1
22— \z— 2 )

Multiplication by —f(<*)/2i and integration over C, on both sides now yield

1 )
h(z) = QT A dz*
S { fﬁ @y e+ ——— b @ - ) de +
2@ 2= 2 g, T 3
s fﬁ (&% — 2" () de*
(z — z0)

+ —( T 55 (2% — 2o)"f(*) dz* }+R (2)

with the last term on the right given by

- )n+1

1 *— g
7 Ri@) = — ),mfﬁ 2208 sy e

27i(z — 29 G, Z— 2z

As before. we can integrate over C instead of C, in the integrals on the right. We see that
on the right, the power 1/(z — z,)" is multiplied by b,, as given in (2). This establishes
Laurent’s theorem, provided

®) Jim Riz) = 0.

(¢) Convergence proof of (8). Very often (1) will have only finitely many negative powers.
Then there is nothing to be proved. Otherwise, we begin by noting that f(z*)/(z — z*) in
(7) is bounded in absolute value, say,

f@®

p— <M for all z* on C,

because f(z*) is analytic in the annulus and on C,, and z* lies on C, and z outside, so
that z — z* # 0. From this and the ML-inequality (Sec. 14.1) applied to (7) we get the
inequality (L = length of C,, [¢* — zo| = radius of C, = consf)

n+1

ML
2

¥ — 7
Z— 2o

[Ri@)| =

1 % n+1 5y
Zafy — gt Tl ML=
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

From (6b) we see that the expression on the right approaches zero as i approaches infinity.
This proves (8). The representation (1) with coefficients (2) is now established in the given
annulus.

(d) Convergence of (1) in the enlarged annulus. The first series in (1) is a Taylor
series [representing g(z)]; hence it converges in the disk D with center z, whose radius
equals the distance of the singularity (or singularities) closest to zg. Also, g(z) must be
singular at all points outside C; where f(z) is singular.

The second series in (1), representing h(z), is a power series in Z = 1/(z — zg). Let the
given annulus be r, < |z — zg| < r;, where ry and r,, are the radii of C, and C, respectively
(Fig. 367). This corresponds to 1/ry > |Z| > 1/r;. Hence this power series in Z must
converge at least in the disk |Z| < 1/r,. This corresponds to the exterior |z — zo| > 75 of
Cs. so that A(z) is analytic for all z outside C,. Also, h(z) must be singular inside Cy, where
f(2) is singular, and the series of the negative powers of (1) converges for all 7 in the exterior
E of the circle with center zy and radius equal to the maximum distance from z, to the
singularities of f(z) inside Cs. The domain common to D and E is the enlarged open annulus
characterized near the end of Laurent’s theorem, whose proof is now complete. |

Uniqueness. The Laurent series of a given analytic function f(z) in its annulus of
convergence is unique (see Team Project 24). However, f(z) may have different Laurent series
in two annuli with the same center; see the examples below. The uniqueness is essential. As
for a Taylor series, to obtain the coefficients of Laurent series, we do not generally use the
integral formulas (2); instead, we use various other methods, some of which we shall illustrate
in our examples. If a Laurent series has been found by any such process, the uniqueness
guarantees that it must be he Laurent series of the given function in the given annulus.

Use of Maclaurin Series

Find the Laurent series of 22 sin £ with center 0.

Solution. By (14). Sec. 15.4. we obtain

5 _iﬂn_zn—tl_i A, 1 2, >0
< 5"‘"'n:0 en+ S T A7 62 T 10 5040 ¢ (il = ).

Here the “annulus” of convergence is the whole complex plane without the origin and the principal part of
the series at 0 is z~% — 1:72 ]

Substitution

Zellz

Find the Laurent series of z with center 0.

Solution. TFrom (12) in Sec. 15.4 with z replaced by 1/z we obtain a Laurent series whose principal part is
an infinite series,

1 1 1 1 1
20 24 L oo L N
ce N (1 Iz ) “ T2 31z 41-2 (< >0. 0

Development of 1/(1 — z)

Develop 1/(1 — z) (a) in nonnegative powers of Z, (b) in negative powers of z.

Solution.
l x
(a) T = > " (valid if |4 < 1).
< n=0
1 -1 = 1 1 1
®) T a—— =-2 g =-C -3 aidifld>1). B
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EXAMPLE 4 Laurent Expansions in Different Concentric Annuli
Find all Laurent series of 1/(:3 - 24) with center 0.

Solution. Multiplying by 1/2%, we get from Example 3

i | 1 1
M i DI ST e el IR A (0 < |g] < .
T —z =0 b4 4 4
1 z o1 1 I
an s - X A= a5 («>n. W
A 0 2 < z

EXAMPLE 5 Use of Partial Fractions

—2z+3
Find all Taylor and Laurent series of f(z) = 35—~ with center 0.
Z“—3z+2
Solution. 1In terms of partial fractions,
) = 1
©= z—1 =2

(a) and (b) in Example 3 take care of the first fraction. For the second fraction,

1 1 °° ”
© L5 = ] =2 PYES IS (4 <2,
¢ 201 — %z =0
2
1 1 o "
(D -5 = =-2 o1 (| > 2).
z—2 2 =
z {1 —— n=0 ~
z
(I) From (a) and (c), valid for |z| < 1 (see Fig. 368),
b 1 3 5 9
= 1+ L R i
@@ ngo( 2n+1)z st 7t g’
(D) From (c) and (b), valid for 1 < |z| < 2,
Z z 1 1 1, P
f(z):zowz”‘20ﬁ=3+zz+gz v T BT
n= n=0 * - ~
(IT1) From (d) and (b). valid for [z > 2,
bl 1 2 3 5 9
f@=-2Q@+D g =-- -2~ 3 @ |
n=0 < < z g <
y
~ I

Fig. 368. Regions of convergence in Example 5

If f(z) in Laurent’s theorem is analytic inside C,, the coefficients b,, in (2) are zero by
Cauchy’s integral theorem, so that the Laurent series reduces to a Taylor series. Examples
3(a) and 5(I) illustrate this.
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PROBLEMSE1 16

1-6] LAURENT SERIES NEAR A SINGULARITY
ATO

Expand the given function in a Laurent series that

converges for 0 < || < R and determine the precise region

of convergence. (Show the details of your work.)

1 l
1. -—— 2. Zcos —
o — 2z z
e *? cosh 2z
3 —
L
V4
2 €
5. 7 3l 6
P

LAURENT SERIES NEAR A SINGULARITY

AT z,
Expand the given function in a Laurent series that
converges for 0 < |z — zo] < R and determine the precise

region of convergence. (Show details.)

e* sin 2

oo et @i O
, 2=z
9 1 . 10 CcOoS 2 _
.zz+1, o —1 . (:_7‘_)4, 20 k
11 ! o= —i
T GriP—@+n o !

3 2

z . Z—4
lz.m, Z0 = —i 13. o1 Zp = |

1
14. Z2sinh —, =0
z
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TAYLOR AND LAURENT SERIES

Find all Taylor and Laurent series with center 7 = 2o and
determine the precise regions of convergence.

1 1
15. 3, =0 16. 5> o= 1
11—z 1 -z
72 ]
17. T4 70=0 18. —, zp=1
19 2 -2 20 sinh z _
N (:_i)z . wp— 1 . (:_1)4, 0=
4z — 1 1 .
21. A1 20=20 22.2—2. o= 1
sin z
23. z+%7r’ :0=—%7T

24. TEAM PROJECT. Laurent Series. (a) Uniqueness.
Prove that the Laurent expansion of a given analytic
function in a given annulus is unique.

(b) Accumulation of singularities. Does tan (1/7)
have a Laurent series that converges in a region
0 < [z] < R? (Give a reason.)

(c) Integrals. Expand the following functions in a
Laurent series that converges for |z] > 0:

lfet_ld lfzsintd
5 T, Y 1.
2 1 2 Jy 1

< Yo
25. CAS PROJECT. Partial Fractions. Write a program
for obtaining Laurent series by the use of partial
fractions. Using the program, verify the calculations in
Example 5 of the text. Apply the program to two other
functions of your choice.

16.2 Singularities and Zeros. Infinity

Roughly, a singular point of an analytic function f(z) is a 3, at which f(2) ceases to be
analytic, and a zero is a z at which f(z) = 0. Precise definitions follow below. In this
section we show that Laurent series can be used for classifying singularities and Taylor

series for discussing zeros.

Singularities were defined in Sec. 15.4, as we shall now recall and extend. We also
remember that. by definition, a function is a single-valued relation, as was emphasized

in Sec. 13.3.

We say that a function f(2) is singular or has a singularity at a point z = z; if f(z) is
not analytic (perhaps not even defined) at z = z;,, but every neighborhood of 7 = z,
contains points at which f(z) is analytic. We also say that z = z,, is a singular point of f(z).

We call z = z, an isolated singularity of f(z) if z = z, has a neighborhood without
further singularities of f(z). Example: tan z has isolated singularities at * 71/2, +37/2, etc.;
tan (1/z) has a nonisolated singularity at 0. (Explain!)
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EXAMPLE 1

EXAMPLE 2

CHAP. 16 Laurent Series. Residue Integration

Isolated singularities of f(z) at z = zy can be classified by the Laurent series

o oo bn
1) f@=2 az =" + 2 ——— (Sec. 16.1)
n=0 n=1 (z ~ z)

valid in the immediate neighborhood of the singular point z = z, except at z,, itself, that
is, in a region of the form

0<|z—z| <R

The sum of the first series is analytic at £ = z,, as we know from the last section. The
second series, containing the negative powers, is called the principal part of (1), as we
remember from the last section. If it has only finitely many terms, it is of the form

bl b'm
@) Ay
Z— 2 (z — zo)

(b, # 0).

Then the singularity of f(z) at z = z, is called a pole, and m is called its order. Poles of
the first order are also known as simple poles.

If the principal part of (1) has infinitely many terms, we say that f(z) has at z = z; an
isolated essential singularity.

We leave aside nonisolated singularities.

Poles. Essential Singularities

The function
1 . 3
-2 @-2°

f = -

has a simple pole at z = 0 and a pole of fifth order at z = 2. Examples of functions having an isolated essential
singularity at z = O are

1/z i ! 1 1 !
e = =14+ =+ +
o 12" Z 212
and
1 Z —n" 1 1 1
sin — =2 o 2 v 2ntl T 3T 5
Z a0 @Gn+ Dz z 3!z 5'z

Section 16.1 provides further examples. For instance, Example | shows that 7”2 sin z has a fourth-order pole

at 0. Example 4 shows that 1/z% — 2% has a third-order pole at 0 and a Laurent series with infinitely many
negative powers. This is no contradiction, since this series is valid for |z] > 1; it merely tells us that in classifying
singularities it is quite important to consider the Laurent series valid in the immediate neighborhood of a singular
point. In Example 4 this is the series (1), which has three negative powers. |

The classification of singularities into poles and essential singularities is not merely a
formal matter, because the behavior of an analytic function in a neighborhood of an
essential singularity is entirely different from that in the neighborhood of a pole.

Behavior Near a Pole

N = 17,2 .
f(z) = 1/z% has a pole at £ = 0, and |f(z)] — o as  — 0 in any manner. This illustrates the following
theorem. [ ]
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THEOREM 1

EXAMPLE 3

THEOREM 2

EXAMPLE 4

Poles

If f(z) is analvtic and has a pole at z = zg, then |f(z)| — ® as 7~ zq in any manner.

The proof is left to the student (see Prob. 12).

Behavior Near an Essential Singularity

The function f(z) = ¢! has an essential singularity at ¢ = 0. It has no limit for approach along the imaginary
axis; it becomes infinite if z — O through positive real values, but it approaches zero if z — 0 through negative
real values. It takes on any given value ¢ = cp€*® # 0 in an arbitrarily small e-neighborhood of z = 0. To see
the letter, we set z = re*”, and then obtain the following complex equation for r and 6, which we must solve:

ellz = (l€0s 6—isin Ofr _ Coem_
ati o o : o X N . . (cos O _ :
Equating the absolute values and the arguments, we have ¢ = cp, that is
cos 68 = rlncg, and —sin 0 = ar

respectively. From these two equations and cos® 0 + sin® 6 = r¥(In co)2 + ¢?r% = 1 we obtain the formulas

1 a
and tan § = —

2_ -
(In co)2 + P Incg ’

Hence r can be made arbitrarily small by adding multiples of 277 to «, leaving ¢ unaltered. This illustrates the
very famous Picard’s theorem (with z = 0 as the exceptional value). For the rather complicated proof, see Ref.
[D4], vol. 2, p. 258. For Picard, see Sec. 1.7. [ |

Picard’s Theorem

If f(2) is analytic and has an isolated essential singularitv at a point zg, it takes on
every value, with at most one exceptional value, in an arbitrarily small e-neighborhood

of zo-

Removable Singularities. We say that a function f(2) has a removable singulariry at
Z = zg if f(z) is not analytic at z = z,, but can be made analytic there by assigning a
suitable value f(z,). Such singularities are of no interest since they can be removed as
just indicated. Example: f(z) = (sin z)/z becomes analytic at z = 0 if we define f(0) = 1.

Zeros of Analytic Functions

A zero of an analytic function f(z) in a domain D is a 2 = z; in D such that f(z;) = 0.
A zero has order n if not only f but also the derivatives f', ", - - -, f® Y are all 0 at
7 = zo but f™(zo) # 0. A first-order zero is also called a simple zero. For a second-order
zero, f(zo) = f'(zo) = 0 but £"(z5) # 0. And so on.

Zeros

The function | + :2 has simple zeros at *i. The function (1 — :4)2 has second-order zeros at =1 and *i. The
function (z — tz)3 has a third-order zero at z = a. The function €° has no zeros (see Sec. 13.5). The function
sin z has simple zeros at 0, *77, =277, - - -, and sin” z has second-order zeros at these points. The function
1 — cos z has second-order zeros at 0, 247, *4r, - - -, and the function (I — cos z)z has fourth-order zeros
at these points. [ ]
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THEOREM 3

I ROOF

CHAP. 16 Laurent Series. Residue Integration

Taylor Series at a Zero. At an nth-order zero £ = 3, of f(2), the derivatives f'(zo), - - *
Fo V(2 are zero, by definition. Hence the first few coefficients aq, * * -, a,_, of the
Taylor series (1), Sec. 15.4, are zero, too, whereas «,, # 0, so that this series takes the
form

FQ) =a(z — 700" + apaq(T — :0)n+1 b

3 y
=@ )" la, + a1z —29) T Guualc — "+ 1 (q, #F0).

This is characteristic of such a zero, because if f(z) has such a Taylor series, it has an
nth-order zero at £ = g, as follows by differentiation.
Whereas nonisolated singularities may occur, for zZeros we have

! Zeros

The zeros of an analvtic function () (¥ 0) are isolated; that is, each of them has
a neighborhood that contains no further zeros of f(z).

The factor (z — z)" in (3) is zero only at T = Z,. The power series in the brackets
[- - -] represents an analytic function (by Theorem 5 in Sec. 15.3), call it g(z). Now
g(z0) = a,, # 0, since an analytic function is continuous, and because of this continuity,
also g(2) # 0 in some neighborhood of z = ;. Hence the same holds of f(2). |

This theorem is illustrated by the functions in Example 4.

Poles are often caused by zeros in the denominator. (Example: tan z has poles where
cos 2 is zero.) This is a major reason for the importance of zeros. The key to the connection
is the following theorem, whose proof follows from (3) (see Team Project 24).

| Poles and Zeros

‘ Let f(z) be analvtic at 7 = zy and have a zero of nth order at 7 = zy. Then 1/f(z)
has a pole of nth order at = = 2y, and so does h(2)/f(2), provided h(Z) is analvtic

I at z = z4 and h(zg) # 0.

Riemann Sphere. Point at Infinity

When we want to study complex functions for large |z, the complex plane will generally
become rather inconvenient. Then it may be better to use a representation of complex
numbers on the so-called Riemann sphere. This is a sphere S of diameter 1 touching the
complex z-plane at z = 0 (Fig. 369), and we let the image of a point P (a number z in the
plane) be the intersection P* of the segment PN with S, where N is the “North Pole”
diametrically opposite to the origin in the plane. Then to each z there comresponds a point
on S.

Conversely, each point on § represents a complex number z, except for N, which does
not correspond to any point in the complex plane. This suggests that we introduce an
additional point, called the point at infinity and denoted (“infinity”) and let its image
be N. The complex plane together with % is called the extended complex plane, The
complex plane is often called the finite complex plane, for distinction, or simply the
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Fig. 369. Riemann sphere

complex plane as before. The sphere S is called the Riemann sphere. The mapping of
the extended complex plane onto the sphere is known as a stereographic projection.
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straight
line through the origin?)

Analytic or Singular at Infinity

If we want to investigate a function f(z) for large |z|, we may now set £ = 1/w and investigate
f(2) = f(1/w) = g(w) in a neighborhood of w = 0. We define f(2) to be analytic or singular
at infinity if g(w) is analytic or singular, respectively, at w = 0. We also define

@ 2(0) = lim g(w)

if this limit exists.
Furthermore, we say that f(z) has an nth-order zero at infinity if f(1/w) has such a zero
at w = 0. Similarly for poles and essential singularities.

EXAMPLE 5 Functions Analytic or Singular at Infinity. Entire and Meromorphic Functions

The function f() = /22 is analytic at oc since g(w) = f(lhw) = w?is analytic at w = 0, and f(z) has a second-
order zero at . The function f(2) = 2is singular al o¢ and has a third-order pole there since the function
gw) — f(1/w) = 1/® has such a pole at w = 0. The function ¢ has an essential singularity at ¢ since ¢
has such a singularity at w = 0. Similarly, cos z and sin z have an essential singularity at oc.

Recall that an entire function is one that is analytic everywhere in the (finite) complex plane. Liouville’s
theorem (Sec. 14.4) tells us that the only bounded entire functions are the constants, hence any nonconstant
entire function must be unbounded. Hence it has a singularity at oc, a pole if it is a polynomial or an essential
singularity if it is not. The functions just considered are typical in this respect.

An analytic function whose only singularities in the finite plane are poles is called a meromorphic function.
Examples are rational functions with nonconstant denominator, tan z, cot z, sec z, and ¢sc z. |

In this section we used Laurent series for investigating singularities. In the next section
we shall use these series for an elegant integration method.

[1-10] SINGULARITIES 2 3

- _ 1. tan® 7z 22+ -
Determine the location and kind of the singularities of the z <
following functions in the finite plane and at infinity. In the 3. cotz® 4, Bt/

case of poles also state the order. 5. cosz — sinz 6. 1/(cos z — sin z)
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8.

9.
11.

12.

13. (z + 160)*
15. 773 sin® @z
17. 3z%2 + e 7

CHAP. 16 Laurent Series. Residue Integration

21. (1 — cos z)? 22, &F — ¢%*

23. (Zeros) If f(2) is analytic and has a zero of order n at
8 z = Zo. show that f%(z) has a zero of order 2n.

(Essential singularity) Discuss e’
is discussed in Example 3.

+ —_—
z—1? (z— 1P 24. TEAM PROJECT. Zeros. \a) Derivative. Show that
cosh [1/(z2 + 1)]

10. V=D — 1) if f(<) has a zero of order n > 1 at £ = g, then o
. has a zero of order n — 1 at 2.
in a similar way (b) Poles and zeros. Prove Theorem 4.

(c) Isolated k-points. Show that the points at which

Iz

(Poles) Verify Theorem 1 for f(z) = z7> — z7*. Prove a nonconstant analytic function f(z) has a given value

k are isolated.

(d) Identical functions. If f,(z) are analytic in a
domain D and equal at a sequence of points z,, in D

Determine the location and order of the zeros. that converges in D, show that f,(2) = fs(2) in D.
14. (z* — 16)* 25. (Riemann sphere) Assuming that we let the image of
9 the x-axis be meridians 0° and 180°, describe and
16. cosh®z . . .
5 9, 2 sketch (or graph) the images of the following regions
18 " — D% — D on the Riemann sphere: (a) |z| > 100, (b) the lower
20. (sinz — 1)® half-plane, (c) £ = |z] = 2.

19. (2 + 4)(e& — 1)?

16.3 Residue Integration Method

The purpose of Cauchy’s residue integration method is the evaluation of integrals
jg fR dz
c

taken around a simple close path C. The idea is as follows.

If f(z) is analytic everywhere on C and inside C, such an integral is zero by Cauchy’s
integral theorem (Sec. 14.2), and we are done.

If f(z) has a singularity at a point z = z, inside C, but is otherwise analytic on C and
inside C, then f(z) has a Laurent series

i b b
f(Z)ZEan(z—zO)”+Z_1 + e

n=0 20 (z — 20)

that converges for all points near z = z, (except at 7 = gz itself), in some domain of the
form 0 < |z — zy| < R (sometimes called a deleted neighborhood, an old-fashioned term
that we shall not use). Now comes the key idea. The coefficient b, of the first negative
power 1/(z — zo) of this Laurent series is given by the integral formula (2) in Sec. 16.1
with n = 1, namely,

b= - $ o
1_27Ti Cf&') Z

Now, since we can obtain Laurent series by various methods, without using the integral
formulas for the coefficients (see the examples in Sec. 16.1), we can find b; by one of
those methods and then use the formula for b, for evaluating the integral, that is,

@ jéf(z) dz = 2arib,.
c
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m

Here we integrate conunterclockwise around a simple closed path C that contains z = 2,

in its interior (but no other singular points of f(z) on or inside C!).
The coefficient b, is called the residue of f(z) at z = z, and we denote it by

@ by = Res f(2).

EXAMPLE 1 Evaluation of an Integral by Means of a Residue

Integrate the function f(z) = 2% sin z counterclockwise around the unit circle C.

Solution. From (14) in Sec. 15.4 we obtain the Laurent series
3

) e e - — e —— p — e
T T T T

sin z 1 1 z z

which converges for |z > 0 (that is, for all z # 0). This series shows that f(z) has a pole of third order at z = 0

and the residue ; = —1/3!. From (1) we thus obtain the answer
sin z i i
2 dz:2'mb1:—?
c <

EXAMPLE 2 CAUTION! Use the Right Laurent Series!

Integrate f(z) = 14z°  z%) clockwise around the circle C: lo| = 172.

Solution. % - * = 231 — 2) shows that f(z) is singular at z = 0 and z = 1. Now z = 1 lies outside C.
Hence it is of no interest here. So we need the residue of f(z) at 0. We find it from the Laurent series that

converges for 0 < |¢g] < 1. This is series (I) in Example 4, Sec. 16.1,

1

Z —z z <

We see from it that this residue is 1. Clockwise integration thus yields

dz
3 2 = —27iRes f(z) = =2
c T — 2 z=0

CAUTION! Had we used the wrong series (II) in Example 4, Sec. 16.1,

we would have obtained the wrong answer, 0, because this series has no power 1/z.

Formulas for Residues

1 1 1
A_a- @t et tliat 0 <l <.

(>,

To calculate a residue at a pole, we need not produce a whole Laurent series, but, more

economically, we can derive formulas for residues once and for all.

Simple Poles. Two formulas for the residue of f(z) at a simple pole at z; are

3) Res f(z) = b; = zlgnzo (z — 2f(@

2=2;

and, assuming that f(z) = p(2)/g(z), p(zo) # 0, and ¢(z) has a simple zero at z; (so that

f(z) has at 25 a simple pole, by Theorem 4 in Sec. 16.2),

4@ Res f(z) = Res P _ p,(ZO) .
2= 2=z, q(z) q (20)
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For a simple pole at z = z, the Laurent series (1), Sec. 16.1, is

by

f@= +oag + ay(z — zp) Fax(z — P+ - (0 < |z — z| <R).

Z— Jo

Here by # 0. (Why?) Multiplying both sides by z — 2, and then letting 7 — 24, we obtain
the formula (3):

lim (z = zo)f(z) = by + lim (z = Zoag + al(z —z9) + -] = b,
2—2g —Zg

where the last equality follows from continuity (Theorem 1. Sec. 15.3).
We prove (4). The Taylor series of ¢(2) at a simple zero g, is

(z— Z0)2

")

4(2) = (2 — 20)q (z0) +

Substituting this into f = p/g and then f into (3) gives

Res f(2) = lim (z — 2p) L‘:) = lim , 4] .
2=z z—2 q(2) =% (7 — Zo)[(/ (2o) + (€ — Zo)y (o) 2+ - ]

2 — o cancels. By continuity, the limit of the denominator is ¢'(zo) and (4) follows. W

Residue at a Simple Pole

Q=09+ DB+ Hhasa simple pole at i because 24+ 1=(+i)z— i) and(3) gives the residue

= —J

e e Il e
e :(:2+1)_zl—l-ni(‘ " criz-n Lzz+nl. -2

By (4) with p(i) = 9i + { and q'(:) =322 + | we confirm the result,

9z + i Oz + i 10¢
Res 2 = 2 = —— = —5i. |
z=i Z(“+ 1) 35+ 1 =i -2

Poles of Any Order. The residue of f(z) at an mth-order pole at z; is

2=z, m — D) zoz

l . dm—l
%) Res f(z) = lim g1 (z = 2)"f@@) |-
In particular, for a second-order pole (im = 2),
(5% Res () = lim {[ = w0)’f2))'}.

The Laurent series of f(z) converging near z, (except at z; itself) is (Sec. 16.2)

bm bm—l bl
f@= + — t+ -+
=" -z m! I3

tag+ay(z — ) + -

where b,, # 0. The residue wanted is b;. Muliiplying both sides by (z — 7)™ gives

(= 20"f@ = by, + by (T~ 20) + -+ by(z — ) + ao(z — z0)™ + - -
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EXAMPLE 4

THEOREM 1

We see that b, is now the coefficient of the power (z — o)™ ! of the power series of
£(2) = (z — 70)™f(2). Hence Taylor’s theorem (Sec. 15.4) gives (5):

1
b, = ,(m—1) -
1 n — D) 8 (zo0)

1 d'm— 1

= [z — 2)™f ()] [ |

(m— 1) d"1

Residue at a Pole of Higher Order

f = 50:/(:3 + 2:2 — 7z + 4) has a pole of second order at = 1 because the denominator equals
(+ 4z — l)2 (verity!). From (5*) we obtain the residue

d
Res f() = lim — [ — D?f(2)]
z2=1 21 d:

- d 50z
- zfll dz \z+4

Several Singularities Inside the Contour.
Residue Theorem

Residue integration can be extended from the case of a single singularity to the case of
several singularities within the contour C. This is the purpose of the residue theorem. The
extension is surprisingly simple.

Residue Theorem

Let f(z) be analvtic inside a simple closed path C and on C, except for finitely many
singular points 74, 2o, - - - , 7 inside C. Then the integral of f(z) taken counterclockwise
around C eqguals 2 i times the sum of the residues of f(2) at z,, -+ +, 7

k
) $ #2) dz = 2mi S Res £(2).
C =1 =2

Fig. 370. Residue theorem
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EXAMPLE 5

EXAMPLE 6

CHAP. 16 Laurent Series. Residue Integration

We enclose each of the singular points z; in a circle C; with radius small enough that those
k circles and C are all separated (Fig. 370). Then f(z) is analytic in the multiply connected
domain D bounded by Cand Cy, - - -, C}, and on the entire boundary of D. From Cauchy’s
integral theorem we thus have

) FrQd+$ f@d+$ f@d+ -+ fd=0,
c (o Cp Ci
the integral along C being taken counterclockwise and the other integrals clockwise (as in

Figs. 351 and 352, Sec. 14.2). We take the integrals over Cj, - - -, Cy. to the right and
compensate the resulting minus sign by reversing the sense of integration. Thus,

®) Prd=¢ [+ fad+ -+ f@de
C Cy Cy Cy
where all the integrals are now taken counterclockwise. By (1) and (2),
jg f(z) dz = 271i Res f(2), j=1,---,k
Cj Z:ZJ-
so that (8) gives (6) and the residue theorem is proved. |

This important theorem has various applications in connection with complex and real
integrals. Let us first consider some complex integrals. (Real integrals follow in the next
section.)

Integration by the Residue Theorem. Several Contours

Evaluate the following integral counterclockwise around any simple closed path such that (a) O and 1 are inside
C, (b) O is inside, 1 outside, (c) 1 is inside, O outside, (d) 0 and 1 are outside.

4 — 3z
=z, dz

c < Z

Solution. The integrand has simple poles at 0 and 1, with residues [by (3)]

R 4—3:_[4—3:] 4 R 4*3:_[4—32] :
oz—-1 Lz=1l,6” % =1zc-1 z ... "

[Confirm this by (4).] Ans. (a) 27i(—4 + 1) = —67i, (b) —87i, (¢) 2i, (d) 0. |

Another Application of the Residue Theorem
Integrate (tan /2 — 1) counterclockwise around the circle C: lo| = 312.

Solution. tan z is not analytic at *71/2, *37/2, - - -, but all these points lie outside the contour C. Because
of the denominator z2 — 1 = (z — 1)z + 1) the given function has simple poles at *1. We thus obtain from
(4) and the residue theorem

56 tan z p amilk tan z R tan
z = 27ri{ Res ——— + Res
szfl =1 22— 1 2

tan z
= 2mi
'm( 2

<

= 2mitan 1 = 9.7855i. n
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EXAMPLE 7 Poles and Essential Singularities

Evaluate the following integral, where C is the ellipse ox? + y2 = 9 (counterclockwise, sketch it).

{5 )

c - 16

Solution. Sincez* — 16 =0 at *2i and *2. the first term of the integrand has simple poles at *2i inside
C, with residues [by (4); note that ¢ = 1]

R Ze'rrz [ Ze'n'z :I 1
es = =-—
=25 216 43 2=2i 16

R ze™ [ e™* :I 1
es —J/—— =| —%= =—-—
="2i 2216 43 Lo 16

and simple poles at =2, which lie outside C, so that they are of no interest here. The second term of the integrand
has an essential singularity at 0, with residue %2 as obtained from

2 3 2
Y R S U [P L (< > 0)
rrooE z a2 33 : 2 A=
Ans. 2mi(—5 — & + 7% = ma® — Hi = 30.221i by the residue theorem. [ |
= — . B

1. Verify the calculations in Example 3 and find the other

residues.

2. Verify the calculations in Example 4 and find the other

residue.

3-12| RESIDUES

Find all the singular points and the corresponding residues.
(Show the details of your work.)

1

3. ) 2
5 sin z
-

7. cotz
1

11. tanz

@ -1

15. 95 ed;, Clgd=1
C

16% dz C:lz—1 =14
) c sinh%'n'z ’ g ’

17. 9€ tan mzdz, C:lz] =1
c

A coiz 18. fﬁc tan 7wz dz, C:lz] =2
2 ez
o T 19. 95 dz. C:lz| =45
- — c €Osz
8. secz 20. 95 cothzdz, C:lzl =1
173 ¢
0. 55— &
z 21. 95 dz, C:lz—il=15
Z2 c COS 772
12. 54— 1 cosh
Z 22.95 = - ds Cile =1
c T — 3iz

13. CAS PROJECT. Residue at a Pole. Write a program

for calculating the residue at a pole of any order. Use
it for solving Probs. 3-8.

4-25| RESIDUE INTEGRATION
Evaluate (counterclockwise). (Show the details.)

sin 772
14. 56(: A dz, C:lz—il=2

C <
24% | — 4z + 672 & C -
Je @+hHe-» T el =

302 — 23z +
s § 0 Ters
c 2z—1D*(3z - 1)

tan 7z
23 ff =—dz, Clz+1ii=1

& Cilo =1
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CHAP. 16 Laurent Series. Residue Integration

16.4 Residue Integration of Real Integrals

EXAMPLE 1

It is quite surprising that certain classes of complicated real integrals can be integrated
by the residue theorem, as we shall see.

Integrals of Rational Functions of cos 6 and sin 0

We first consider integrals of the type

27
() J= f F(cos 0, sin 0) do
[1]

where F(cos 0, sin 0) is a real rational function of cos @ and sin 8 [for example,
(sin? )/(5 — 4 cos )] and is finite (does not become infinite) on the interval of integration.
Setting "’ = z, we obtain

05 6 = 1 ( i + —iﬁ) — l + l
cos 6 = 2 e e =3 z -
@
1 . ; 1 1
. - i —ify — g o— —
sin 8 % (e e ") 2 (N Z )

Since F is rational in cos 6 and sin 8, Eq. (2) shows that £ is now a rational function of
2, say, f(2). Since d=/d6 = i¢*, we have d6 = dz/i7 and the given integral takes the form

dz
© I=$ 10 =

and, as 6 ranges from O to 277 in (1), the variable z = & ranges counterclockwise once
around the unit circle |z] = 1. (Review Sec. 13.5 if necessary.)

An Integral of the Type (1)

ks
de
Show by the present method that Jl —F— =2,
> pres o V2 - cos @

Solution. We use cos 0 = %(: + 1/2) and d6 = dz/iz. Then the integral becomes

36 [::/(Jr') 235 i -

C _ C _1 2 _» -
V2 5 S =2Vt )

24 d
iJec—-V2-Dz—V2+1)°

We see that the integrand has a simple pole at 5; = V2 + 1 outside the unit circle C. so that it is of no interest
here, and another simple pole at zp = V2 — 1 (where 7 — V241 = 0) inside C with residue [by (3), Sec. 16.3]

1 I
Res =
=% - V2= V2+1) [: -V2-1 ]z=\/’§—1
1
)

Answer: 2ai(—2/i)(—1/2) = 2. (Here —2/i is the factor in front of the last integral.) [ |
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As another large class, let us consider real integrals of the form

@ f_ Fx) dx.

Such an integral, whose interval of integration is not finite is called an improper integral,
and it has the meaning

ox 0 b
5" f f(x) dx = lim f FGO) dx + tl)im f F(x) dx.
— a——x J, —x Jg
If both limits exist, we may couple the two independent passages to —oc and =, and write
o R
(5 f f(x) dx = lim f f0) dx.
—oo R J_p

The limit in (5) is called the Cauchy principal value of the integral. It is written

pr. v. f “ fx) dx.

It may exist even if the limits in (5") do not. Example:

(R L o
lim xdv=Ilm {— — — ] =0, but lim f X dx = .
R—-x J_p R»x 2 2 b—x Jg

We assume that the function f(x) in (4) is a real rational function whose denominator
is different from zero for all real x and is of degree at least two units higher than the
degree of the numerator. Then the limits in (5") exist, and we may start from (5). We
consider the corresponding contour integral

(5% jgc f@) dz

around a path C in Fig. 371. Since f(x) is rational, f(z) has finitely many poles in the
upper half-plane, and if we choose R large enough, then C encloses all these poles. By
the residue theorem we then obtain

R
jgf(z) dz =f f(zxydz + f f&x) dx = 2 2 Res f(z)
C S —R

R x
R ]

Fig. 371.  Path C of the contour integral in (5*)
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EXAMPLE 2

CHAP.16 Laurent Series. Residue Integration

where the sum consists of all the residues of f(z) at the points in the upper half-plane at
which f(z) has a pole. From this we have

R
(6) f f(x) dx = 2mi >, Res f(z) — fs f(2) dz.
-R

We prove that, if R — o, the value of the integral over the semicircle S approaches
zero. If we set 7 = Re®, then S is represented by R = const, and as z ranges along S, the
variable 0 ranges from O to 7. Since, by assumption, the degree of the denominator of
f(2) is at least two units higher than the degree of the numerator, we have

k
If(2)| < Fl? (2 =R >Ry

for sufficiently large constants k and R,. By the ML-inequality in Sec. 14.1,

k kar
<F7TR=—R— (R > Ry).

fs @) dz

Hence, as R approaches infinity. the value of the integral over S approaches zero. and (5)
and (6) yield the result

oKX

7 f f(x) dx = 2mi >, Res f(z)

where we sum over all the residues of f(z) at the poles of f(z) in the upper half-plane.

An Improper Integral from O to o

Using (7), show that

W e~ N
\\ .
Nx\
K
R

Fig. 372. Example 2

Solution. Tndeed, f(z) = 1/(1 + z%) has four simple poles at the points tmake a sketch)

7 = e’h‘il‘l’ 20 = e31ril4,

5= 8_3’"/4, 0= L’_‘”iﬂ.

The first two of these poles lie in the upper half-plane (Fig. 372). From (4) in the last section we find the residues
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1 1 1 . 1 ;
- I —3wifd _ /4
Res = = = e =——e"".
o @ [ (1 + 2% :| 2=z [ 4 :| = 4 4

1 1 1 1
Res f(z) = [_] = [—] = = g 9T~ — i
s A+ Y | 42 | ey 4 4
(Here we used e™ = —1and e 27 = 1.) By (1) in Sec. 13.6 and (7) in this section,
o 2mi 2
X s _rifa wl .. 7 .7 T
[ _ = -2 .9 — = — = .
J;ool+x4 4 (e € ) 2 i sm4 1Tsm4 3

Since /(1 + x4) is an even function, we thus obtain, as asserted,
o0 00
J‘ dx 1 J‘ dx T -
o l+x472_ml+x4_2\@.

Fourier Integrals

The method of evaluating (4) by creating a closed contour (Fig. 371) and “blowing it up”
extends to integrals

oo

(8) f fx) cos sx dx and f F(x) sin sx dx (s real)

as they occur in connection with the Fourier integral (Sec. 11.7).
If f(x) is a rational function satisfying the assumption on the degree as for (4), we may
consider the corresponding integral

jg f) ¥ dr (s real and positive)
c

over the contour C in Fig. 371 on p. 719. Instead of (7) we now get

© [ seye= ax = 2mi 3 Res [1(2)e™] (s> 0)

isz

where we sum the residues of f(z)e** at its poles in the upper half-plane. Equating the
real and the imaginary parts on both sides of (9), we have

oC

f f(x) cos sx dx = —27 >, Im Res [f()e*],
(10) - (s > 0)

f f(x) sin sx dx = 27 D, Re Res [f(z)e™?].
To establish (9), we must show [as for (4)] that the value of the integral over the

semicircle S in Fig. 371 approaches 0 as R — «. Now s > 0 and S lies in the upper
half-plane y = 0. Hence

€57 = |eB =t )| = e e =1-eY=1 (s>0, y = 0).

From this we obtain the inequality |f(z)e**| = |f(2)] [¢*"] = |f(z)] (s >0, y = 0). This
reduces our present problem to that for (4). Continuing as before gives (9) and (10). W
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EXAMPLE 3 An Application of (10)

COS $X T _pes sIn s¥
Show that - g dv=—e ", ﬁdt=0 (s> 0.k>0).
_x K+ x k o KT+ x

Solution. In fact, €5/(k? + z2) has only one pole in the upper half-plane, namely, a simple pole at 7 = ik,
and from (4) in Sec. 16.3 we obtain

R eisz eisz e—ks
€S —5 o = B = N .
z=ik k2 + 72 2z d2=ix 2ik

Thus
x 5T o ) e—ks T
_mmcl_\—}m 2k -re .
Since "% = cos sx + i sin sx. this yields the above results [see also (15) in Sec. 11.7.] |

Another Kind of Improper Integral

We consider an improper integral
B
(10 [ #00 ax
A
whose mtegrand becomes infinite at a point @ in the interval of integration,
lim |f(x)| = co.
T—a
By definition, this integral (11) means
B a—e B
(12) ff(x) dvy = lim J- f() dx + lim J- fx) dx
A 0 A n—0 atn

where both € and 7 approach zero independently and through positive values. It may happen
that neither of these two limits exists if € and 77 go to O independently, but the limit

a—e B
(13) Ll_r)r(l) [J-A f) dx + J- fx) dle

ate

exists. This is called the Cauchy principal value of the integral. It is written

B
pr. v. fA f) dx.

o [ e R[5 ] -0

1 —

For example,

the principal value exists, although the integral itself has no meaning.
In the case of simple poles on the real axis we shall obtain a formula for the principal
value of an integral from —oo to o, This formula will result from the following theorem.
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THEOREM 1

PROOF

Simple Poles on the Real Axis

If f(2) has a simple pole at z = a on the real axis, then (Fig. 373)

fim 160 e = e

//\CZ
o i
a-r a a+r X

Fig. 373. Theorem 1

By the detinition of a simple pole (Sec. 16.2) the integrand f(z) has for 0 < |z — a| <R
the Laurent series

b,

fQ) = + g(2), b, = l}f,f ).

I—a
Here g(z) is analytic on the semicircle of integration (Fig. 373)

Co: z=a + ré¥. 0=6=m

and for all 7 between C, and the x-axis, and thus bounded on Cs, say, |g(z)] = M. By

integration,

™

J-c fodz: = J- :;6 ire’ de + fc g(x)dz = bymi + fc g(2) dz.

o]

The second integral on the right cannot exceed Marr in absolute value, by the ML-inequality
(Sec. 14.1). and ML = Mair - Oas r — 0. |

Figure 374 shows the idea of applying Theorem 1 to obtain the principal value of the
integral of a rational function f(x) from — to =. For sufficiently large R the integral over
the entire contour in Fig. 374 has the value J given by 27/ times the sum of the residues
of f(2) at the singularities in the upper half-plane. We assume that f(x) satisfies the degree

7

-R a-r a a+r R

Fig. 374. Application of Theorem 1
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condition imposed in connection with (4). Then the value of the integral over the large
semicircle S approaches 0 as R — =, For r — 0 the integral over C, (clockwise!)
approaches the value

K = —i Res f(2)
z=a

by Theorem 1. Together this shows that the principal value P of the integral from —o to
o plus K equals J; hence P = J — K = J + i Res,_, f(2). If f(z) has several simple
poles on the real axis, then K will be —ari times the sum of the corresponding residues.
Hence the desired formula is

14) pr.v. [ () dx = 2mi 3 Res f(2) + mi 3 Res f2)

where the first sum extends over all poles in the upper half-plane and the second over all
poles on the real axis, the latter being simple by assumption.

Poles on the Real Axis

Find the principal value

ac

f dx
T. V. .
P w (2 =3+ D2+ 1)

Solution. Since

2o+ 2=0@—-Dx-2).

the integrand f(x). considered for complex z, has simple poles at

1
P l, R ) = -
¢ R 1@ [(z—z)(:zﬂ)]z:l
-_1
=-.
SR
z=2 es fQ)=1 —————
2=2 @—IE+1) -2
=1
=5
1
=1, Res f(3) =
! z=if() (:2_3Z+2)(Z+i)]z=i
_ 1 _ 33—
T6+2 2
and at = = —i in the lower half-plane, which is of no interest here. From (14) we get the answer
a2
. dx N Rk A WY 0 B 7 -
Y e @ —%1202+) T\ "\T275) "0

More integrals of the kind considered in this section are included in the problem set. Try
also your CAS, which may sometimes give you false results on complex integrals.
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e - D,

S S L]

INTEGRALS INVOLVING COSINE AND SINE

Evaluate the following integrals. (Show the details of your

work.)
. fz" d6 5 f” d6
“Jo T+ 6cosB “Jo 2+ cosb
4 J-2-rr de
“Jo, 8—2sin@

27 do
N —_—
o 37— 12cos @
5 fz” de 6. J‘z" sin® @ 40
"Jo 5—4sinB 5—4cosh
257
[
o

_ 1, |1
Hint. cos 260 = — |z° + —5

r4
2a
s [
(V]

E IMPROPER INTEGRALS:
INFINITE INTERVAL OF INTEGRATION

Evaluate (showing the details):

cos 6
13 — 12 cos 26

1+4cosb
17 — 8cos A

9fm dx 10 fm * 4
o2 "l 1
11 fw dv 12 fw dx
T+ " (% — 2x + 5)?
13 fx dx 14 fm dx
T (2 + 42 T J_o xt+ 16
15 fm 2, 16 foo dx
S P ") @+ DB +9)
17 fm ul dx
. (2 — 2x + 2)2
18 J‘x 241 " " J-OO sin x
"l oA Y "1
20 fm cos x 4 21 J‘m sin 3x d
._oox4+lx ._ch4+1x
PYN Ik S,

-."- e s
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IMPROPER INTEGRALS:
POLES ON THE REAL AXIS

23-27

Find the Cauchy principal value (showing details):

o0 20 2
23f 2 2 Y i
T B x Tl o at—1

* x+5
ZS.J- 3 dx

e X°— X

26f dx
T x*+3x%2 -4

20

27 f dx
: P |

-2

28. TEAM PROJECT. Comments on Real Integrals.
(a) Formula (10} follows from (9). Give the details.

(b) Use of auxiliary results. Integrating ¢~ around

the boundary C of the rectangle with vertices —a, q,
a + ib, —a + ib, letting ¢ — oo, and using

f°° » Vr
e dx = ——,
o 2
show that
> Ve
J- e=*” cos 2bx dx = 2’ e,
0

(This integral is needed in heat conduction in Sec.
12.6.)

(c) Inspection. Solve Probs.
calculation.

29. CAS EXPERIMENT. Check your CAS. Find out to
what extent your CAS can evaluate integrals of the
form (1), (4). and (8) correctly. Do this by comparing
the results of direct integration (which may come out
false) with those of using residues.

30. CAS EXPERIMENT. Simple Poles on the Real
Axis. Experiment with integrals [%, f(x) dx.
f&) =[x — a)x — ap) - - - (x — )], g; real and
all different, k > 1. Conjecture that the principal value
of these integrals is 0. Try to prove this for a special
k, say, k = 3. For general k.

15 and 21 without
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726 CHAP. 16 Laurent Series. Residue Integration
-l
-
1. Laurent series generalize Taylor series. Explain the

. Ise

details.

. Can a function have several Laurent series with the same

center? Explain. If your answer is yes. give examples.

. What is the principal part of a Laurent series? lts

significance?

. What is a pole? An essential singularity? Give

examples.

. What is Picard’s theorem? Why did it occur in this

chapter?

. What is the Riemann sphere? The extended complex

plane? Its significance?

2 . . . . .
12" analytic or singular at infinity? cosh z? (z — 4)3?

Explain.

. What is the residue? Why is it important?

9. State formulas for residues from memory.

10.
11.

12.

13.

14.

15.

16.

State some further methods for calculating residues.

What is residue integration? To what kind of complex
integrals does it apply?

By what idea can we apply residue integration to real
integrals from — to %x? Give simple examples.

What is a zero of an analytic function? How are zeros
classified?

What are improper integrals? Cauchy principal values?
Give examples.

Can the residue at a singular point be 0? At a simple
pole?

What is a meromorphic function? An entire function?
Give examples.

COMPLEX INTEGRALS

Integrate counterclockwise around C. (Show the details.)

17.

18.

19.

20.

tan Z

Gl =1

sin 22

G le =1

10z C 1-3
2246’ k-2 =
ic+1 )
_2_i:+2,C.lz—l|—3

cosh 5z .
21, — Clz—i]=2
“+4
43 + 7z
2. —,C:+ 1 =1
COs 2

23. cot8z, C: |z] = 0.2

2, S0z Cilz—1]=2
24, 4:2_1, Sz =
cos
5. 2 n=n2 0=
22+ 1 1
26.%2_,6’: Ex2+_v2=l
27 15z +9 c:| 3 =2
o9t
15: +9
28.-m:,€:|;’|=4

REAL INTEGRALS

Evaluate by the methods of this chapter (showing the
details):

2 d6
w [T
o 25—24cos@

T de
SO.f — k> 1
o k+cosb

29

-
“Jo 1—1sing

27 .
k) f _Sinb g
“Jo 3+cosb

oo

X
33. fx m dx

o0

34f x
o a4+ X%

“ 242
3B | ——dx
(1} 1 + 4x

36. Obtain the answer to Prob. 18 in Sec. 16.4 from the
present Prob. 35.



