]
) ;3.4_2 Bolu’s Atomic Model

; :

;f'Many (heorists tried lo\ deyelop models that could ex-
.fplain the Cxpcrimegtul findings. However, most of thege
models could dcscgbc some results b}lt not all of them in
yconsistent Way without any conﬁ:adlctxons. After many
*offorts Nils Bohr (1885-1962) (Fig. 3.41) starting from
Rutherford’s atomic model finally developed in 1913
e famous planctary model of the atoms [3.3,4,17],
“which we will now discuss for atomic systems with
: anly one clectron (H atom, He' ion, Lit™ ion, etc.).
~ In Bohr's atomic model the clectron (mass me,
charee —¢) and the nucleus (mass my, charge +Ze)
' both move on circles with radius r, or rn, respectively,
“wound their center of mass. This movement of two bo-
dies can be described in the center of mass system by

the cme B ot H H
1€ movement of a single particle with reduced mass

/{ = (memy)/(m, +mN) & m, in the Coulomb poten-
tlfll Epo(r) around the center r — 0, where r is the
distance between clectron and nucleus. The balance

betw§ell Coulomb force and centripetal force yields the
equation

wo? 1 Ze?
= 4—]”‘; = (3.81)
which determines the radius
Ze?
T drrgguv? (52

of the circular path of the electron. As long as there are
no further restrictions for the kinetic energy (j1/2)v?
any radius r is possible, according to (3.82).

If, however, the electron is described by its mat-
ter wave, Aqg = 1/(v) a stationary state of the atom
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Fip. 3,42, Standing de Broglie matter wave illustrating the
quantum:condition for the angular momentum in Bohr's
model

must be described by a standing wave along the circle
(Fig. 3.42) since the electron should not leave the atom.
This gives the (quantum condition:

rr=ndgy (0 =1, 2, 3,0:.), (3.83)
which restricts the possible radii r (o the dis-
crete values (3.83). With the de Broglie wavelength
Ads = N /(pev) the relation

I
V=n—-— (3.84)

2mur
between velocity and radius is obtained, Inserting thig
into (3.82) yiclds the possible radii for the electron
circles:

22 2
== T, (3.85)
" b JIVA Z
where
2
ap = 80/1,, =52917x107"m=~054
mues ¥

i = 1) in the
i smallest radius of the electron (n = 1) in the
}l,gytdh,co;?n atom (Z = 1),’'which is named the Bohr'

radius.
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Figr, 3430, Radial dependence of Kinctic, Poteny,,

N o8 Ve . g vind,
enerpy of the electron in the Coulomty held the -‘t“{"
(n) Classical model (b) Quantum mechanicy) Mode|  §

The kinetic energy Ly of the atom jy g

i Uu‘h!qh.
mass system is obtained from (3.81) yy
- )
o, Zet ' £
I’ ==Y S e e—— “not 11
kin 2 24]”‘.“,, B I (ﬁl

and cquals —1/2 times its potential enetgy. The y
energy (Fig. 3.43)
) ] | . | Z?

E= hkin <+ Iipul = - Iipnl - “"z”;gr:“—r
IS negative and approaches zero for r — o Inser
ling (3.85) for r yiclds for the possible energy values,
of an clectron moving in the Coulomb potential of te
nucleus:

42 "
. Le” Z< VA v.
Ey =~ f 555 = —Ry' — (388
8eih2n2 n2
with the Rydberg congtang
4 f
Ry' =hcpy = _H€" (38
8elh?

expressed in tnergy unitg

' Joule,
This lllustrutcs that

he total encrgy of the aln
energy of g Mass system (which nearly equals ‘hti
HETEY of the g can only have discrete vale !
ates, which are described bi\lA
astationary eper =123, (Fig. 3.40). 51
state, In Boh'g 1 alom is called a ‘l”‘""tz;’j
the number of Periody » e QUantum number n eq"*"

] S Of the « : e wave !
along the cirey]y, Path of gy, ;;iz:l:ng de Broglic W™ -
on,

v v

Note:

I. The exact val

ue of ‘
depends, h

p : the Rydber constanl k)
dCCOFdlng to (3-89), oi the rcd”‘"“" }
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S.1.2 Solution of the R“‘“:ll I thy
With the product-ansag, "lliu”"" ‘\v‘,%
Vir, 0. @) = R(r) )"‘."”(?')u @)
for the wave functiog Vir, o
already obtained (4.65) [y, ”": I)' M Segy 414
converts for m - ;1 and ', /(/ll‘h;|l Y ',\," N ly
i_i LdR ) F) T \\'lnrh
r> dr (, (h) 1 h? (& ["‘Pul(l)) i
I+ 1) ‘ )
= — o R(r) .
The integer / describes, according (N "
quanlum nunllbcx’ of the orbity] n;”‘”:' .A.\(),illw inlvum
the particle with respect (o the ("‘iglil‘l‘; ! ”""“l‘nlumu

i unru‘lnliw

coordinate system, where the nucleyy IS
SIS Atres gy

Differentiation of (he first tern

aned mir O
Coulomb-potential for 1 1o (1) yields ( ”m“"“‘""wlm
d’R 2 dR
dr? 'y dy
) - , :
A . Ze I(1 1)
+ n l'. - — ) - )
[h'z ( A 47T(‘,‘()l') »? ]l“ 0. (&l

'Inlhe limit » — oo all terms with [/r-and /0" approuch
zero and (5.10) becomes for this limiting case:

d*R (r) 21 Sl

o2 = ~ﬁbl\’(r) : ("
The solutions of this equation describe the asympoic
b;l}avlm of the radial wave function R(r). Thep mbﬂ' |
bility of finding the electron in a spherical sllul“l- .,‘;“
volume 47,2 g, around the nucleus between il.’bj'(,j‘
and r + dr is given by 47| R|2dr. The absoluH
0}‘ the function R therefore gives the prnl)nlnhf ‘

ding the clectron within the unit volume of lllc,"
shell. . 8
Introducing w(r) = . g(r) into (5:10)
glecting g ; 2 yjclus

' € all terms with 1/r and 1/r7 Y%
= \/2//-\[1//1, the asymptotic solution

Wr > 00y = gcitr 4 gt
This giyeg for R(r) = Wr)/r

Ry =2 g B

) :

l’\ 'Sreal and the first term in (5.1 l

al part of g outgoing sphcrical wav

For g » Y
the Spatj

Y, ) = é eilkr—awr)
r b
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Fig. &2 ) In
potg and o
going  sphenval

waves as solutions
o the Schindinger
oquation far - an
clectton with b -
O anoa spheneal
p“h‘nh.ll RSN
de
CITANIE Wah e am
phnde tor £ < 0

p\‘mn\*u(.\\l_\

E<O

s doscnds an electron that can, with a positive

ey, leave the atom and can reac hr—o0
20 The second term corresponds 1o an mgoing
el wave that represents an electron coming from
2 x ad approaching the nucleus (this is called
fision process).

For £ <0 we substitate & = /=2 E/h =ik and
R e real asymptotic solutions

B

= 0) = Ae™ - Be™

(312

jR(f) mast be finite for all values of r (otherwise
ction R(r) could not be normalized) it follows
: §=0.We then obtain the asymptotic solution
R’x’ﬂ ) = Ae~Vr i

.

" ;““\I‘ﬂmnn.lll\ decreasing function which has
o l/eforr=1/x.

‘rth
¢ general solution, valid for all values of r, we
ansatz

\l(

RN =
; V)~u(r)e—u i (5.126)
N2 this i & -
F NS NG (5.10) we obtain for w(r) the equation
"l ,
hu(l_k.) de -2 W+D],
3() r dr r r:
(5.1
Rpe th 3
* abbrey 1ation a is
O ngz
gl

The reciprocal value )
procal value ry s 1 /as dme Y 70 26y gives,

ih\ \‘Il\hm' WO CENS) the Bohe tadios of the Towest enerpy
A

We wnte w(r) as the POWCE Series
1
uir) 3 b
.-

!

(5.14)

Inserting this mto (5.13) the comparison of the co
cticients of equal powers i royields the recursion
tormula

N
T : -,
JUA D =D
Since R(r) must be finite tor all values of 7, the power
series can only have a finite number of summands,
It the last nonvanishing coefficient in the power se-
ries (S 14) i b,y than b, becomes zero for j=n.
This immediately gives, from (5.15), the condition, that
only the coetficients by with j < ncontribute to the
series (5. 1. We therefore have the condition

(5.15)

Jing (5.16)

Since for j=n=b; =0w¢ obtain from (5.15)
5.17

a=nx.
With & = +/—2¢£/h this yields the condition for the
energy values

{

‘ 252 (Z2e 7
13‘n=—1"_;:—l »t, = —-Ry'— (5.18)
2un- Segh~ n-
with the Rydberg constant
4 :
e
Ry*' = 5.18a
Y= (3882)

Note that this formula is identical to that of Bohr's
model in (3.88).

 the discrete eigenvalues E, o
stem from the restraint ye(r —>
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