The Laplace Transform*

2-1 INTRODUCTION

The Laplace transform method is an operational method that can be used advanta-
geously for solving linear differential equations. By use of Laplace transforms, we can
convert many common functions, such as sinusoidal functions, damped sinusoidal func-
tions, and exponential functions, into algebraic functions of a complex variable s. Op--
erations such as differentiation and integration can be replaced by algebraic operations
in the complex plane. Thus, a linear differential equation can be transformed into an al-
gebraic equation in a complex variable s. If the algebraic equation in s is solved for the
dependent variable, then the solution of the differential equation (the inverse Laplace
transform of the dependent variable) may be found by use of a Laplace transform table
or by use of the partial-fraction expansion technique, which is presented in Section 2-5
and 2-6.

An advantage of the Laplace transform method is that it allows the use of graphical
techniques for predicting the system performance without actually solving system dif-
ferential equations. Another advantage of the Laplace transform method is that, when
we solve the differential equation, both the transient component and steady-state com-
ponent of the solution can be obtained simultaneously.

Outline of the Cﬁapter. Section 2-1 presents introductory remarks. Section 2-2
briefly reviews complex variables and complex functions. Section 2-3 derives Laplace
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transforms of time functions that are frequently used in control engineering. Section
2-4 presents useful theorems of Laplace transforms, and Section 2-5 treats the inverse
Laplace transformation using the partial-fraction expansion of B(s)/A(s), where A(s)
and B(s) are polynomials in s. Section 2-6 presents computational methods with MAT-
LAB to obtain the partial-fraction expansion of B(s)}/A(s), as well as the zeros and
poles of B(s)/A(s). Finally, Section 2-7 deals with solutions of linear time-invariant dif-
ferential equations by the Laplace transform approach.

2-2 REVIEW OF COMPLEX VARIABLES

i0

--an imaginary part or

AND COMPLEX FUNCTIONS

Before we present the Laplace transformation, we shall review the complex variable
and complex function. We shall also review Euler’s theorem, which relates the sinu-
soidal functions to exponential functions.

Complex Variable. A complex number has a real part and an imaginary part, both
of which are constant. If the real part and/or imaginary part are variables, a complex
quantity is called a complex variable. In the Laplace transformatlon we use the notatlon
s as a complex variable; that is,

§s=0 + jo

where o is the real part and w is the imaginary part.”

Complex Function. A complex function G(s), a:function of s, has a real part and

G(s) = G, +jG,

where G, and G are real quantities. The magnitude of G(s) is VG + G2, and the
. angle 6 of G(s) is tan™ (G /G ) The angle is measured counterclockw1se from the pos-
- itive real axis. The complex conjugate of G(s)is G(s) = G, - jG,.

Complex functions commonly eéncountered in hnear control systems analysxs are
single-valued functions of s and are uniquely determined for a given value of s.

A complex function G(s) is said to be analytic in a region if G(s) and all its deriva-
tives exist in that region. The derivative of an analytic function G(s) is given by

d - G+ As)-G(s) AG
ds Gls) = 11m0 As B L\lslr—n>0 As

-Since As = Ao + jAw, As can approach zero along an infinite number of different

paths. It can be shown, but is stated without a proof here, that if the derivatives taken
along two particular paths, that is, As = Ao and As = jAw, are equal, then the deriva-
tive is unique for any other path As = Ao + jAw and so the derivative exists.

For a particular path As = Ao (Wh1ch means that the path is parallel to the real
axis). :

d . (AG AG) G, aG,
hm =

— = + +j
" ds G(s) Ao I Ao do . / do
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For another particular path As = jAw (which means that the path is para]lel to the
imaginary axis).

d (AGx .AGy) Gy AG,

—_ = -+ = —
G(S> JAI}DQO jAw ]jAw rm dw

If these two values of the derivative are equal,
» an aGy GG)’ . an

+j—= -
do J Jo dw J dw
or if the following two conditions
3G, _ 9G, 3G, G,
and — =
ao dw do Jw

are satisfied, then the derivative dG (s)/ ds is uniquely determined, These two conditions
are known as the Cauchy—Riemann conditions. If these conditions are satisfied, the func-
tion G(s) is analytic.

As an example, consider the following G(s):

1
Gls) = s+ 1
Then
. 1
G(?'+]w). o‘+]w+1—G+]G
where
o+ 1 ~w
- - G o= —_—
G (o0 + 1) + o and Yoo+ 1P+ @

It can be seen that, except at s = ~1 (that is, & = =1, w = 0), G(s) satisfies the
Cauchy-Riemann conditions:

iG, GG W’ — (o + 1)

b0 W [(o+ 17+ P
G, 3G,  2w0(o +1)

B9 e [(o + 1) + o]

Hence G(s) = 1/(s + 1) is analytic in the entire s plane except at s = —1. The deriva-
tive dG (s)/ ds,except at s = 1,is found to be
d G(s) 3G, 4 G, 8G, 3G,
ds PR ™ w0 ! dw
1 1

(0 + jo+1)2  (s+ 1)

Note that the derivative of an analytic function can be obtained simply by differentiat-
ing G'(s) with respect to s. In this example,

i( ! )z___l_
ds\s +1 (s +1)*
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Points in the s plane at which the function G(s) is analytic are called ordinary points,
while points in the s plane at which the function G(s) is not analytic are called singular
points. Singular points at which the function G(s) or its derivatives approach infinity
are called poles. Singular points at which the function G(s) equals zero are called zeros.

If G(s) approaches infinity as s approaches —p and if the function

G(s)(s + p)*, forn=1,2,3,_..

has a finite, nonzero value at s = —p, then s = —p is called a pole of order n. If n = i,
the pole is called a simple pole. If n = 2, 3,..., the pole is called a second-order pole, a

third-order pole, and so on.
To illustrate, consider the complex function

_ K(s+2)(s + 10)
G) = G D + 5 + 15

G(s) haszerosats = —2,s = —10,simple polesats = 0,5 = —1, s = —5, and a double
pole (multiple pole of order 2) at s = ~15. Note that G(s) becomes zero ats = oc. Since
for large values of s

G(s) possesses a triple zero (multiple zero of order 3) at s = oo. If points at infinity are
included, G(s) has the same number of poles as zeros. To summarize, G(s) has five zeros
(s=-2,5s=-10,5s =00, s =00, s =00) and five poles (s =0, s = -1, 5 = =5,
s = —15,5 = —15).

Euler’s Theorem. The power series expansions of cos# and sin 6 are, respectively,

# g ¢

cos¢9=1—§? Z_ET

. e 6 ¢

s1n0—9—§+§—ﬂ
And so

. . 8y Gy - (o
cos® + jsing =1 + (j8) + o + 3 + 2 4o

Since

*=1+ +5—2+x—3+--~

CTITYT Ty
we see that

cosf + jsing = e (2-1)

This is known as Euler’s theorem.
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By using Euler’s theorem, we can express sine and cosine in terms of an exponen-
" tial function. Noting that ¢ is the complex conjugate of ¢/ and that

e/ = cos@ + jsinf
e’ = cosh — jsind

we find, after adding or subtracting these two equations, that

cosf = = (e + &) (2-2) |

[ g

sinf = — (e’ — &™) (2-3)

&

2-3 LAPLACE TRANSFORMATION

We shall first present a definition of the Laplace transformation and a brief discussion
of the condition for the existence of the Laplace transform and then provide examples
for illustrating the derivation of Laplace transforms of several common functions.

Let us define :

f(#) = afunction of time ¢ such that f(¢) = Ofor¢ < 0
5 = a complex variable »

£ = an operational symbol indicating that the quantity that it prefixes is to

be transformed by the Laplace integral [*¢™' dt
F(s) = Laplace transform of f{t)

Then the Laplace transform of f(¢) is given by

glf0) = Fio) = [ eralf] = [ foena

The reverse process of finding the time function f(¢) from the Laplace transform F(s)
is called the inverse Laplace transformation.The notation for the inverse Laplace trans-
formation is £7}, and the inverse Laplace transform can be found from F(s) by the fol-
lowing inversion integral:

: c+joo
FYUF(s)] = f) = —Z-jr—]/ F(s)e"ds, fort>0 (2-4)
- where ¢, the abscissa of convergence, is a real constant and is chosen larger than the real
parts of all singular points of F(s). Thus, the path of integration is parallel to the jw axis
and is displaced by the amount ¢ from it. This path of integration is to the right of alf sin-
gular points.

Evaluating the inversion integral appears complicated. In practice, we seldom use this
integral for finding f(¢). There are simpler methods for finding f(¢). We shall discuss
such simpler methods in Sections 2-5 and 2-6.

It is noted that in this book the time function f(¢) is always assumed to be zero for
negative time; that is, .

f(t) =0, fort <0

c—joo
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Existence of Laplace Transform. The Laplace transform of a function f () ex-
ists if the Laplace integral converges. The integral will converge if f(¢) is sectionally con-
tinuous in every finite interval in the range ¢+ > 0 and if it is of exponential order as ¢
approaches infinity. A function f(z) is said to be of exponential order if a real, positive
constant o exists such that the function

(@)

approaches zero as ¢ approaches infinity. If the limit of the function e ”'{f (¢)| approaches
zero for o greater than o, and the limit approaches infinity for o less than o, the value
o is called the abscissa of convergence.
For the function f(t) = Ae™
lim €™ Ae™|
t—00
approaches zero if ¢ > —a.The abscissa of convergence in this case is 0. = —a.The in-
tegral j(;""f (t)e™ dt converges only if o, the real part of s, is greater than the abscissa of
convergence o,. Thus the operator s must be chosen as a constant such that this integral
converges.
In terms of the poles of the function F(s), the abscissa of convergence o, corre-
sponds to the real part of the pole located farthest to the right in the s plane. For example,

_ for the following function F(s),

Fis) = K(s + 3)
(s) = (s +1)(s +2)

the abscissa of convergence o is equal to —1. It can be seen that for such functions as ¢,
sinwt, and ¢ sinwt the abscissa of convergence is equal to zero. For functions like
e, te™, e™ sin wt, and so on, the abscissa of convergence is equal —c. For functions
that increase faster than the exponential function, however, it is impossizble to figld suit-
able values of the abcissa of convergence. Therefore, such functions as ¢ and te’ do not
possess Laplace transforms.

The reader should be cautioned that although ¢’ (for 0 < ¢ < oo) does not possess

- a Laplace transform, the time function defined by

f(r)y=¢€", for0=t=<T <o
= 0, fort <0, T <t
does possess a Laplace transform since f(¢) = e for only a limited time interval
0 =t = T andnotfor 0 = ¢ = oco.Such a signal can be physically generated. Note that the
signals that we can physically generate always have corresponding Laplace transforms.

If a function f(¢) has a Laplace transform, then the Laplace transform of Af(t),
where A is a constant, is given by

LLAf(1)] = AL[f(1)]

This is obvious from the definition of the Laplace transform. Since Laplace transforma-
tion is a linear operation, if functions fi(¢) and f,(¢) have Laplace transforms, F(s) and
F,(s), respectively, then the Laplace transform of the function af;() + Bf,(t) is given by

Plafi(t) + Bfa(t)] = aFy(s) + BFy(s)

In what follows, we derive Laplace transforms of a few commonly encountered functions.
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Exponential Function. Consider the exponential function
f(1) =0, fort <0
= Ae™, fort=0

where A and a are constants. The Laplace transform of this exponential functlon canbe
obtained as follows:

SE[‘Ae‘“*] = / Aee™ di = A / elati gy =
- Jo 0 ‘

It is seen that the exponential function produces a pole in the complex plane.

In deriving the Laplace transform of f(¢) = Ae ™, we required that the real part
of s be greater than —a (the abscissa of convergence). A question may immediately
arise as to whether or not the Laplace transform thus obtained is valid in the range
where o < —a in the s plane. To answer this question, we must resort to the theory
of complex variables. In the theory of complex variables, there is a theorem known
as the analytic extension theorem. It states that, if two analytic functions are equal for
a finite length along any arc in a region in which both are analytic, then they are
‘equal everywhere in the region. The arc of equality is usually the real axis or a por-
tion of it: By using this theorem the form of F(s) determined by an integration in
which s is allowed to have any real positive value greater than the abscissa of con-
vergence holds for any complex values of s at.which F(s) is analytic. Thus, although
we require the real part of s to be greater than the abscissa of convergence to make
- the integral j(;°°f (t)e™ dr absolutely convergent, once the Laplace transform F(s) is
obtained, F(s) can be considered valid throughout the entire s plane except at the
_poles of F(s).

A
s+ o

Step Function. Consider the step function
f@)y =0, fort'< 0
=A,  fort>0

" where A is a constant. Note that it is a special case of the exponentlal function Ae
where a = 0.The step function is undefined at ¢+ = 0. Its Laplace transform is given by

~txt

I[A] = / Acdt =2
0 :

* In performing this integration, we assumed that the real part of s was greater than zero
(the abscissa of convergence) and therefore that hm e was zero. As stated earlier, the
Laplace transform thus obtained is valid in the entlre s plane except at the pole s = 0.

The step function whose height is unity is called uniz-step function. The unit-step
function that occurs at ¢ = t, is frequently written as 1{¢ — f,). The step function of

- height A that occurs at ¢ = 0 can then be written as f (t) = A1(t). The Laplace trans-
forni of the unit-step function, which is defined by

1(t) = (), fort <0
' =1, fort >0

Section 2-3 / Laplace Transformation. : 15



16

is1/s,or .
#[1(n) =

Physically, a step function occurring at # = 0 corresponds to a constant signal suddenly
applied to the system at time ¢ equals zero.

Ramp Function. Consider the ramp function
flr) =0, fort <0
= Ar, fort =0
where A is a constant. The Laplace transform of this ramp function is obtained as

o0 o0 Ae_st
[
0 o

st

F[At] = / Ate™ dt = At
0

A [® A
=—/ e"”dl‘=—£
s Jo s

Sinusoidal Function. The Laplace transform of the sinusoidal function
f(t) =0, fort <0

= Asinwt, fort =0

-5

where A and o are constants, is obtained as follows. Referring to Equation (2-3), sin ot
can be written

1, . )
: — Jot _ —jot
SN wi 2] (6 e )

Hence
. A o N B
BCE[A smwt] = ——/ (efwl — ¢ jwt)e st gy
2j Jo

A 1 A 1 Aw

22_js—-jw_2—js+jw s? + w?

Similarly, the Laplace transform of A cos wt can be derived as follows:

As
§% + w?

L[Acoswt] =

Comments. The Laplace transform of any Laplace transformable function f(¢) can
be found by multiplying f(¢) by ¢ and then integrating the product from ¢ = 0 to
t = co. Once we know the method of obtaining the Laplace transform, however, it is
not necessary to derive the Laplace transform of f(¢) each time. Laplace transform ta-
bles can conveniently be used to find the transform of a given function f(#). Table 2-1
shows Laplace transforms of time functions that will frequently appear in linear control

systems analysis.
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Table 2-1 Laplace Transform Pairs

f(@®) F(s)
1 Unit impulse 8(¢) 1
. 1
2 Unit step 1(z) P
3 z <
sZ
oo 1
4 m (n=1,2,3..) -
n!
5 " (n=1,23,..) e
1
—al
6 ¢ s+ a
7 te™ 1
(s + a)?
1 1
e =1,2,3,... —
8 m-1n" ¢ (n=1.23..) (s + a)
n!
n,—at -
9 " (n=1,23..) e
. [
10 i sin wt
e 5L+ o
: s
11 ¢
cos w R
12 sinh wr = e
13 coshwt = _S e
1, 1
14 a (t=e) s(s + a)
1 —aft __ bt 1
15 52" ) 5+ a5+ b)
1 5
16 b —bt __ —~al
. p b ) (s + a)(s + B)
"1 1 1
17 —11+ be — et ] _—
ab[ a——b(e ae™") s(s + a)(s + b)
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Table 2-1  (continued)
1
18 = (1 —e™ — ate™) N 5
a s(s + a)
1 1
19 —lat —1+e" _—
a’ ( ) si (s + a)
20 e sinwt —
(s + a)* + o?
+
21 e cos wt __s_za_z
(sta)+tow
22 B et ging, VT — 2t (0<g<1) <k |
V1= " 2+ 2w,s + o
1
- ———"“"sin(w, V1 — %t — ¢)
V1-2 "
s
» ¢ = tan™ A 5 s+ 2w,s + o2
4
0<¢<l, 0<¢<uw/2)
1
1 — ——=e¢"sin(w,V1 - 2t + ¢)
V1-7 !
2
24 ST ©n
¢ = tan™ %— s(s? + 2w,s + o)
(0<¢<1, 0<o¢<nu/2)
: 2
@
25 1 — coswt
5(s? + o)
. 3
[
26 t — sinwt
w @ sqs? + w?)
3
27 sinwt — wt coswt 2 5
(s* + &%)
1 . s
28 B tsinwt (s2 N wz)z
2 — o2
29 t cos wt
(S2 + w2)2
30 COSwyf — COS Wyt 2 % wh . :
w3 = w%( S “2 ) (w1 wZ) (sz + w%)(sz + w%)
1 2
31 — (sinwt + wt coswt) 2 5
20 (s> + w?)
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Table 2-2 Properties of Laplace Transforms

1| $[AF(1)] = AF(s)
2 L) £ K] = Als) £ B(s)
3 210 = ¥ - f08)
d2

4 2] L0 ] = 9F) - s502) = F02)

" )
5 2] L 10| = vF0) - Es"-*}@:t)_

-1) k 1
where (1) =L £()

T e el
7 ] [ [ror] -2 E[ [+ [roar]
s {froe]

9 /0 mf(t) dt=lmF(s) if l "F () d exists
10 Sle*f(t)] = F(s + a)
11 : LLf@ - it = a)] = e™F(s) a=0
dF
12 £lef(n)] = - d(:)
d2
13 &[ef ()] = =7 F(s)
14 L)) = (- 1)"£F( Yy (n=1,23,...)
15 sg[% f(t)} = / “F(s)ds if!li_x)%% F(1) exists
16 $[f(;11—>} = aF(as)
17 ol [ - npear| = Fo)Re)
18 2 060] = 5 [ PG~ P
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