4-1 Introduction to Modeling of Mechanical Systems ~ 157

Then, using %3 = J; and x4 = ¥, we get the state-space representation as

X 0 0 I 0rx 0 0
X 0 0 01 X 0 0 .
i = _KiMy KM 0 0| + /My u + 0 uy (stateequation)
X4 KMy —-Ky/Mp 0 0] Lxg 0 1/M,
X1
y=[1 0 0 0] 2 40 u;+0- 12 (output equation)
X

4-32)

where the state equation is a set of four first-order differential equations.

4-1-2 Rotational Motion

The rotational motion of a body can be defined as motion about a fixed axis. The extension
of Newton'’s law of motion for rotational motion states that the algebraic sum of moments
or torque about a fixed axis is equal to the product of the inertia and the angular
acceleration about the axis. Or

Ztorques =Ja (4-33)

where J denotes the inertia and « is the angular acceleration. The other variables generally
used to describe the motion of rotation are torque 7, angular velocity w, and angular
displacement 8. The elements involved with the rotational motion are as follows:

« Inertia. Inertia, J, is considered a property of an element that stores the kinetic
energy of rotational motion, The inertia of a given element depends on the
geometric composition about the axis of rotation and its density. For instance,
the inertia of a circular disk or shaft, of radius r and mass M, about its geometric
axis is given by

J =M (4-39)

When a torque is applied to a body with inertia J, as shown in Fig. 4-14, the torque
equation is written

do(t) _ sze(t)

T(1) = Ja(t) === =0 —

(4-35)

where 8(t) is the angular displacement; w(t), the angular velocity; and «(t), the
angular acceleration.
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Figure 4-14 Torque-inertia system.
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» EXAMPLE 3-1-4
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o) Figure 4-15 Torque torsional spring system.

» Torsional spring. As with the linear spring for translational motion, a torsional
spring constant K, in torque-per-unit angular displacement, can be devised to represent
the compliance of a rod or a shaft when it is subject to an applied torque. Fig. 4-15
illustrates a simple torque-spring system that can be represented by the equation

T(t) = K6(t) (4-36)
If the torsional spring is preloaded by a preload torque of TP, Eq. (4-36) is modified to

T(1) — TP = K6(f) (4-37)

 Friction for rotational motion. The three types of friction described for transla-
tional motion can be carried over to the motion of rotation. Therefore, Eqs. (4-6),
(4-7), and (4-8) can be replaced, respectively, by their counterparts:

+ Viscous friction.

_ g%\
T(r) = B~ (4-38)

« Static friction.
T(1) = £(F)lap (4-39)

+ Coulomb friction.

&

(¢

— g _dt .
T(t) = Ferz ) (4-40)

dt

——
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Table 4-2 shows the SI and other measurement units for inertia and the variables in
rotational mechanical systems.

The rotational system shown in Fig. 4-16(a) consists of a disk mounted on a shaft that is fixed at one
end. The moment of inertia of the disk about the axis of rotation is J. The edge of the disk is riding on
the surface, and the viscous friction coefficient between the two surfaces is B, The inertia of the shaft
is negligible, but the torsional spring constant is K.

Assume that a torque is applied to the disk, as shown; then the torque or moment equation about
the axis of the shaft is written from the free-body diagram of Fig. 4-16(b):

2
T(1) =Jdst£t)+B%(;)+K0(:) (4-41)

Notice that this system is analogous to the translational system in Fig. 4-5. The state equations may be
written by defining the state variables as x (r) = 6(¢) and x»(r) = dx; (t)/dt.
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Figure 4-16 Rotational system for Example 4-1-4.

TABLE 4-2 Basic Rotational Mechanical System Properties and Their Units

Symbol  SI Other
Parameter Used Units Units Conversion Factors
Inertia J kg-m> slug-£t* lg-cm =
Ib-ft-sec® 1.417 x 1075 oz-in.~sec?
ozin-sec’ {1 fisec?
= 192 oz-in.-sec?
= 32.21b-fi
1 0z-in-sec? = 386 0z-in?
1 g-cm-sec? = 980 g-cm®
Angular Displacement T Radian Radian Irad = ? = 57.3deg
Angular Velocity o radian/sec radian/sec I
lrpm = %0
= (.1047rad/sec
lrpm = 6deg/sec
Angular Acceleration A radian/sec>  radian/sec”
Torque T {N-m) Ib-ft 1 g-cm = 0.0139 oz-in.
dyne-cm oz-in. 1 1b-ft = 192 oz-in.
1 0z-in. = 0.00521 1b-ft
Spring Constant K N-m/rad ft-Ib/rad
Viscous Friction Coefficient B N-m/rad/sec  ft-Ib/rad/sec
Energy o J (joules) Btu 1] =1N-m
Calorie 1Btu = 1055)
lcal = 4.184]

EXAMPLE 4-1-5 Fig. 4-17(a) shows the diagram of a motor coupled to an inertial load through a shaft with a spring
constant K. A non-rigid coupling between two mechanical components in a control system often
causes torsional resonances that can be transmitted to all parts of the system. The system variables
and parameters are defined as follows:

T,{t) = motor torque

B,,, = motor viscous-friction coefficient
K = spring constant of the shaft

() = motor displacement

w(£) = motor velocity
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I Tos G “ Figure 4-17 (a) Motor-load

(b) system. (b) Free-body diagram.

J = motor inertia

6¢.(¢) = load displacement

wr(t) = load velocity

Ji. = load inertia
The free-body diagrams of the system are shown in Fig. 4-17(b). The torque equations of the
system are

d*0m(t) _ Bw dbm(t
a> Iy dt

26, (¢
Klom(t) — 0,(0] = 1, 5
In this case, the systern contains three energy-storage elements in J,,,, J;, and K. Thus, there should be three
state variables. Care should be taken in constructing the state diagram and assigning the state variables so
that a minimum number of the latter are incorporated. Eqs, (4-42) and (4-43) are rearranged as

)-Jﬁmle,,.(:) —~ L) +}::Tm(r) (4-42)

(4-43)

on(t) _ B don(t) _ K !

= - S ow(0) — (0] + - Ti) (4-44)
d?0L(r) K

ar = ‘TL'[GM(I) - GL(I)] (4-45)

The state variables in this case are defined as x((r) = 8,,(f) — OL(r), x2(t) = dB(£}/dr, and
x3(t) = dfy(t)/dt. The state equations are

dx (¢
B ) -al)
dxa(t K
;t( ) _ 0 (4-46)
=——x() - Zx)+—T,
dt m XI (t) JIH x’{( ) m }n([)

The SFG representation is shown in Fig. 4-18.

Bm - GL =X
‘Bu/ J L

Figure 4-18 Rotational system of Eq. (4-46) signal-flow graph representation.
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and using Eq. (2.123) for M,
~ FuSX1(5) — £,,5Xa(s) + [Mss + (£, +,,)5] X3(s) = 0 (2126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X(s), X»(s), or X3(s), or transfer function.

69

@ skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, G(s) = X(s)/F(s), for the translational
mechanical system shown in Figure 2.21.

Sy ——= M =1kg [«—— M;=1kg
fv,= 1 N-s/m

fv,=1N-s/m

. 3s+1
ANSWER: G(s) = s(s3+7s%+55+1)

The complete solution is at www.wiley.com/college/nise.

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8

2.6 Rotational Mechanical System
Transfer Functions

Having covered electrical and translational mechanical systems, we now move on
to consider rotational mechanical systems. Rotational mechanical systems are
handled the same way as translational mechanical systems, except that torque
replaces force and angular displacement replaces translational displacement. The
mechanical components for rotational systems are the same as those for transla-
tional systems, except that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the
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TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Torque-angular Torque-angular Impedence
Component velocity displacement Zy(s) = T(s)/0(s)

T(n 6

—| Spring
- W@ T =K f(; w(t)dt T(t) = K6(r) K
"

Viscous 7(s) 6(r)

damper
5’?—a|il ( f( f T(1) = Do(f) T(t) = dfi—([’) Ds
D

T 6(n

Inerti 2
4

Note: The following set of symbols and units is used throughout this book: 7°(¢) — N-m (newton-meters),
6(t) — rad(radians), w(¢) — rad/s(radians/second), K — N-m/rad(newton- meters/radian), D — N-m-s/rad
(newton- meters-seconds/radian). J — kg-m?(kilograms-meters? — newton-meters-seconds?/radian).

components look the same as translational symbols, but they are undergoing
rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia. The
values of K, D, and J are called spring constant, coefficient of viscous friction, and
moment of inertia, respectively. The impedances of the mechanical components are
also summarized in the last column of Table 2.5. The values can be found by taking
the Laplace transform, assuming zero initial conditions, of the torque-angular
displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except
that we test a point of motion by rotating it while holding still all other points of
motion. The number of points of motion that can be rotated while all others are
held still equals the number of equations of motion required to describe the
system.

Writing the equations of motion for rotational systems is similar to writing
them for translational systems; the only difference is that the free-body diagram
consists of torques rather than forces. We obtain these torques using superposition.
First, we rotate a body while holding all other points still and place on its free-body
diagram all torques due to the body’s own motion. Then, holding the body still, we
rotate adjacent points of motion one at a time and add the torques due to the
adjacent motion to the free-body diagram. The process is repeated for each point of
motion. For each free-body diagram, these torques are summed and set equal to zero
to form the equations of motion.

Two examples will demonstrate the solution of rotational systems. The first one
uses free-body diagrams; the second uses the concept of impedances to write the
equations of motion by inspection.
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G =xample 2.19 D

Transfer Function—Two Equations of Motion

PROBLEM: Find the transfer function, 8,(s)/T(s), for the rotational system shown
in Figure 2.22(a). The rod is supported by bearings at either end and is undergoing
torsion. A torque is applied at the left, and the displacement is measured at the

right.
Tin 6,1y €x(n
() vavi) Tt 6y(1) [2100] !
FAREY/ ) =
el ) THER ymmn) e
Bearing Bearing - K D, t
D; Torsion D,
(a) b)
(s 97 ) .
) ~| fl 0 FIGURE 2.22  a. Physical
|_| system; b. schematic;
(¢) ¢. block diagram

SOLUTION: First, obtain the schematic from the physical system. Even though
torsion occurs throughout the rod in Figure 2.22(a),’ we approximate the system
by assuming that the torsion acts like a spring concentrated at one particular point
in the rod, with an inertia J; to the left and an inertia J, to the right.m We also
assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can
be rotated while the other is held still. Hence, it will take two simultaneous
equations to solve the system.

Next, draw a free-body diagram of J4, using superposition. Figure 2.23(a)
shows the torques on J, if J; is held still and J; rotated. Figure 2.23(b) shows the
torques on J, if /; is held still and J, rotated. Finally, the sum of Figures 2.23(a) and
2.23(b) is shown in Figure 2.23(c), the final free-body diagram for J1. The same
process is repeated in Figure 2.24 for /5.

6,(x) Diection #,(5) Direction 6,(x) Direction
T =~ 5,526,(s) T((s) = J1526,(s)
~ Dysoys) ~ ~ }DISBI(N)
K8,(s) KBy(s) K8\(s) FIGURE 2.23  a. Torques on

>~ J1 due only to the motion of /;;

Kgy(s) b.torques onJ; due only to the

motion of J3; ¢. final free-body

@ ) ©) diagram for J,

®In this case the parameter is referred to as a distributed parameter.
10The parameter is now referred to as a lumped parameter.
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FIGURE 2.24 a.Torqueson
J2 due only to the motion of
J2; b, torques on J; due only
to the motion of Jy; ¢. final
free-body diagram for J,

TrylIt 2.9

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.128).

symss JIDIKTJ2D2...
thetal theta2
A=[(J1l*s"2+D1*s+K) —K
—K (J2%s"2+D2*s+K)];
B=[thetal
theta?2);
c=[T
0l
B=inv(A)*C;
theta2=B(2);
'theta?'
pretty(theta2)

Chapter2  Modeling in the Frequency Domain
6-(s) Direction 61 (s) Direction 6-(s) Direction
K8\(s) K6,(s)
~ stzo'z(s) ™ ‘:\ .123202(.9)
@f Ds8y(s) @ @/Dzsez(s)
S N
KOy(s) K&y(s)
@ ® ©
Summing torques respectively from Figures 2.23(c) and 2.24(c) we obtain the
equations of motion,
(J15% + D1s + K)6: (s) — Kby(s) = T(s) (2.127a)
—K81(s) + (Jos* + Das + K)8s(s) = 0 (2.127b)
from which the required transfer function is found to be
6, (S) K
= 2.12
T(s) A (2128)
as shown in Figure 2.22(c), where
i (J15* + Dis + K) -K
—-K (JzSZ + Dys + K)
Notice that Eqg. (2.127) have that now well-known form
Sum of
. Sum of
impedances impedances Sum of
connected |6(s) — bI:: tween 62(s) = | applied torques (2.129a)
to the motion 6 and 6 até,
at o, 1 2
Sum of
Sum of . S £
impedances impedances Sum o
—|™P 61(s) + | connected |6(s) = |appliedtorques | (2.129b)
between .
to the motion ato,
6, and 6,
at 6,

FIGURE 2.25 Three-degrees-
of-freedom rotational
system

Example 2.20 —

Equations of Motion By inspection

PROBLEM: Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in Figure 2.25.

f)|(f) T (1) 03“)
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