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G skill-Assessment Exercise 2.4 JEEEED

PROBLEM: Find the differential equation corresponding to the transfer function,
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ANSWER: — +6—+2c =2~

The complete solution is at www.wiley.com/college/nise.

G sill-Assessment Exercise 2.5 D

PROBLEM: Find the ramp response for a system whose transfer function is
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ANSWER: c¢(t) = —l— — ie"‘hr + le—Sr Control Solutions
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The complete solution is at www.wiley.com/college/nise.

In general, a physical system that can be represented by a linear, time-invariant
differential equation can be modeled as a transfer function. The rest of this chapter will
bedevoted to the task of modelingindividual subsystems. We willlearnhow torepresent
electrical networks, translational mechanical systems, rotational mechanical systems,
and electromechanical systems as transfer functions. As the need arises, the reader can
consult the Bibliography at the end of the chapter for discussions of other types of
systems, such as pneumatic, hydraulic, and heat-transfer systems (Cannon, 1967).

@ 2.4 Electrical Network Transfer Functions

In this section, we formally apply the transfer function to the mathematical modeling
of electric circuits including passive networks and operational amplifier circuits.
Subsequent sections cover mechanical and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist of
three passive linear components: resistors, capacitors, and inductors.”> Table 2.3
summarizes the components and the relationships between voltage and current and
between voltage and charge under zero initial conditions.

We now combine electrical components into circuits, decide on the input and
output, and find the transfer function. Our guiding principles are Kirchhoff’s laws.
We sum voltages around loops or sum currents at nodes, depending on which
technique involves the least effort in algebraic manipulation, and then equate the
result to zero. From these relationships we can write the differential equations for
the circuit. Then we can take the Laplace transforms of the differential equations
and finally solve for the transfer function.

? Passive means that there is no internal source of energy.
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TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Impedance Admittance
Component ‘Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) = I(s)/ V(s)
C;;Lgm v(t) = %/Oli(r)df i(t) = Cd:;—(:) V() = %q(t) é Cs
BRI RCEYC
_/m_ V() :L%(;) i(r) =% 01V(t)dr v(t):L% Ls _Ll_s

Note: The following set of symbols and units is used throughout this book: v(t) — V (volts), i(t) — A (amps), g(¢) — Q (coulombs), C — F (farads),
R - Q (ohms), G — Q (mhos), L — H (henries).

simple Circuits via Mesh Analysis

Transfer functions can be obtained using Kirchhoff’s voltage law and summing
voltages around loops or meshes.> We call this method loop or mesh analysis and
demonstrate it in the following example.

G :omple 2.c T

Transfer Function—Single Loop via the Differential Equation

L R PROBLEM: Find the transfer function relating the capacitor voltage, V¢(s), to
the input voltage, V(s) in Figure 2.3.

+ SOLUTION: In any problem, the designer must first decide what the input and
v ) C < "e) output should be. In this network, several variables could have been chosen to be
it ’I\ the output —for example, the inductor voltage, the capacitor voltage, the resistor
voltage, or the current. The problem statement, however, is clear in this case: We

FIGURE 2.3 RLC network are to treat the capacitor voltage as the output and the applied voltage as the input.
Summing the voltages around the loop, assuming zero initial conditions,

yields the integro-differential equation for this network as

di(t) . 1/,
—= = = 2.61
L 7 + Ri(t) + C/o i(r)dr =v(t) (2.61)
Changing variables from current to charge using i(t) = dq(t)/dt yields
dq(t)  ,de) 1
— — - 2
L pr +R T + Cq(t) v(t) (2.62)
From the voltage-charge relationship for a capacitor in Table 2.3,
q(t) = Cve(?) (263)
Substituting Eq. (2.63) into Eq. (2.62) yields
dvc(t) dvc(?)
= 2.64
LC P +RC i +vc(t) =v() (2.64)

3 A particular loop that resembles the spaces in a screen or fence is called a mesh.
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Taking the Laplace transform assuming zero initial conditions, rearranging terms,
and simplifying yields V(s)

49

L
LC

(LCs* + RCs + 1)V¢(s) = V(s) (2.65)
Solving for the transfer function, V¢(s)/V(s), we obtain

as shown in Figure 2.4.

R

L

S+ Ts+—

1
LC

V( ()

FIGURE 2.4 Block diagram of

Vels) 1/LC series RLC electrical network
= (2.66)
V(s) R 1
S2+—=5s+-—
L " LC

Let us now develop a technique for simplifying the solution for future
problems. First, take the Laplace transform of the equations in the voltage-current
column of Table 2.3 assuming zero initial conditions.

For the capacitor,

V(s) = él (s) (2.67)
For the resistor,

V(s) = RI(s) (2.68)
For the inductor,

V(s) = Lsl(s) (2.69)
Now define the following transfer function:

% — Z(s) (2:70)

Notice that this function is similar to the definition of resistance, that is, the ratio of
voltage to current. But, unlike resistance, this function is applicable to capacitors and
inductors and carries information on the dynamic behavior of the component, since it
represents an equivalent differential equation. We call this particular transfer function
impedance. The impedance for each of the electrical elements is shown in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution
for the transfer function. The Laplace transform of Eq. (2.61), assuming zero initial
conditions, is

(Ls +R+ é)](s) =V(s) (2.71)

Notice that Eq. (2.71), which is in the form
[Sum of impedances|/(s) = [Sum of applied voltages] (2.72)

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of
Figure 2.5 could have been obtained immediately from the circuit of Figure 2.3
simply by replacing each element with its impedance. We call this altered circuit
the transformed circuit. Finally, notice that the transformed circuit leads imme-

Ls

1 +
—_ Vels
Cs ~ L )

1(s)

diately to Eq. (2.71) if we add impedances in series as we add resistors in series. fGyRE 2.5 Laplace-transformed

Thus, rather than writing the differential equation first and then taking the petwork
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Transfer Function—Single Loop via Transform Methods
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Laplace transform, we can draw the transformed circuit and obtain the Laplace
transform of the differential equation simply by applying Kirchhoff’s voltage law to
the transformed circuit. We summarize the steps as follows:

1. Redraw the original network showing all time variables, such as v(¢), i(¢), and
vc(t), as Laplace transforms V(s), I(s), and V¢(s), respectively.

2. Replace the component values with their impedance values. This replacement is
similar to the case of dc circuits, where we represent resistors with their resistance
values.

We now redo Example 2.6 using the transform methods just described and bypass
the writing of the differential equation.

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods
without writing a differential equation.

SOLUTION: Using Figure 2.5 and writing a mesh equation using the impedances as
we would use resistor values in a purely resistive circuit, we obtain

(Ls +R+ %) I(s) = V(s) (2.73)
Solving for I(s)/V(s), 1) .
s
CRpras e
Cs

But the voltage across the capacitor, V¢ (s), is the product of the current and the
impedance of the capacitor. Thus,

Vels) = I(s)

Cs
Solving Eq. (2.75) for I(s), substituting I(s) into Eq. (2.74), and simplifying yields
the same result as Eq. (2.66).

(2.75)

Simple Circuits via Nodal Analysis

Transfer functions also can be obtained using Kirchhoff’s current law and summing
currents flowing from nodes. We call this method nodal analysis. We now demon-
strate this principle by redoing Example 2.6 using Kirchhoff’s current law and the
transform methods just described to bypass writing the differential equation.

Example 2.8

Transfer Function—Single Node via Transform Methods

PROBLEM: Repeat Example 2.6 using nodal analysis and without writing a
differential equation.
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SOLUTION: The transfer function can be obtained by summing currents flowing out
of the node whose voltage is V¢ (s) in Figure 2.5. We assume that currents leaving the
node are positive and currents entering the node are negative. The currents consist of
the current through the capacitor and the current flowing through the series resistor
and inductor. From Eq. (2.70), each I(s) = V(s)/Z(s). Hence,

Vels) , Vels) = V(s)
1/Cs R+Ls

=0 (2.76)

where V(s)/(1/Cs) is the current flowing out of the node through the capacitor,
and [V¢(s) — V(s)]/(R + Ls) is the current flowing out of the node through the
series resistor and inductor. Solving Eq. (2.76) for the transfer function, V¢ (s)/V (s),
we arrive at the same result as Eq. (2.66).

Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed
network. We now demonstrate this technique.

G :omple 2.0 TEED

Transfer Function—Single Loop via Voltage Division

PROBLEM: Repeat Example 2.6 using voltage division and the transformed
circuit.

SOLUTION: The voltage across the capacitor is some proportion of the input
voltage, namely the impedance of the capacitor divided by the sum of the
impedances. Thus,

Vels) = ( Ve v (2.77)

1
LS+R+G)

Solving for the transfer function, V¢ (s)/V(s), yields the same result as Eq. (2.66).
Review Examples 2.6 through 2.9. Which method do you think is easiest for
this circuit?

The previous example involves a simple, single-loop electrical network. Many
electrical networks consist of multiple loops and nodes, and for these circuits we
must write and solve simultaneous differential equations in order to find the transfer
function, or solve for the output.

Complex Circuits via Mesh Analysis

To solve complex electrical networks—those with multiple loops and nodes—using
mesh analysis, we can perform the following steps:

1. Replace passive element values with their impedances.

2. Replace all sources and time variables with their Laplace transform.

3. Assume a transform current and a current direction in each mesh.
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4. Write Kirchhoff’s voltage law around each mesh.
5. Solve the simultaneous equations for the output.
6. Form the transfer function.

Let us look at an example.

T Ry

Transfer Function—Multiple Loops

PROBLEM: Given the network of Figure 2.6(a), find the transfer function,
12(s)/V (s)-

SOLUTION: The first step in the solution is to convert the network into Laplace
transforms for impedances and circuit variables, assuming zero initial conditions.
The result is shown in Figure 2.6(b). The circuit with which we are dealing requires
two simultaneous equations to solve for the transfer function. These equations can
be found by summing voltages around each mesh through which the assumed
currents, /1(s) and I(s), flow. Around Mesh 1, where I;(s) flows,

Ril(s) + LsIy(s) — Lsl,(s) = V(s) (2.78)

Around Mesh 2, where I5(s) flows,

LsIx(s) + Rola(s) + ézz (s) — LsI;(s) =0 (2.79)

ve ()

iyn

(@)
R] RZ
1 +
Wis) (* Ls a;:
1(s) I>(s)
®)
FIGUR.E 2.6 a, Two-loop Vis) LCs2 Iis)
electrical network; LN

| (Ry+ R)LCS2HRR,C + L)s + R,

b. transformed two-loop
electrical network; ©
¢. block diagram
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Combining terms, Egs. (2.78) and (2.79) become simultaneous equations in I1(s)
and I,(s):
(Ry + Ls)I1(s) — LsI(s) = V(s) (2.80a)

— LsIy(s) + <Ls +Ry+ é) L(s)=0 (2.80b)

We can use Cramer’s rule (or any other method for solving simultaneous
equations) to solve Eq. (2.80) for I,(s).* Hence,

’ (Ri+Ls) V(s)
-L
s) =

s 0

Ix( X A (2.81)
where
(R1 + Ls) —Ls
A= 1
—Ls (LS + R+ —)
Cs
Forming the transfer function, G{(s), yields
2
Gls) = I(s) Ls _ LCs (2.82)

V() A (Ri+R)LCs2+ (RiR,C+L)s+ Ry

as shown in Figure 2.6(c).

We have succeeded in modeling a physical network as a transfer function: The
network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c).
Before leaving the example, we notice a pattern first illustrated by Eq. (2.72). The
form that Eq. (2.80) take is

Sum of

( Sum of impedances Sum of applied
impedances | [;(s) — co mfn to the Z7(s) = | voltages around] (2.83a)
| around Mesh 1 onto Mesh 1
two meshes
. Sum of Sum of Sum of applied
impedances .
~| common to the Ii(s) +[ impedances ]Iz(s) = [voltages around] (2.83b)
around Mesh 2 Mesh 2
two meshes

Recognizing the form will help us write such equations rapidly; for example, mechani-
cal equations of motion (covered in Sections 2.5 and 2.6) have the same form.

Studentswhoareperforming the MATLABexercises andwant toexplore
the added capability of MATLAR's Symbolic Math Toolbox should now
run ch2sp4 in Appendix F at www.wiley.com/college/nise, where
Example 2.10 is solved. You will learn how to use the Symbolic
Math Toolbox to solve simultaneous equations using Cramer's
rule. Specifically, the Symbolic Math Toolbox will be used to solve
for the transfer function in Eq. (2.82) using Eq. (2.80).

53

Symbolic Math

4See Appendix G (Section G.4) at www.wiley.com/college/nise for Cramer’s rule.
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Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer function is to use nodal analysis rather than
mesh analysis. The number of simultaneous differential equations that must be
written is equal to the number of nodes whose voltage is unknown. In the previous
example we wrote simultaneous mesh equations using Kirchhoff’s voltage law. For
multiple nodes we use Kirchhoff’s current law and sum currents flowing from each
node. Again, as a convention, currents flowing from the node are assumed to be
positive, and currents flowing into the node are assumed to be negative.

Before progressing to an example, let us first define admittance, Y(s), as the
reciprocal of impedance, or

__1 _1s
(s) = 7o) " V) (2.84)

When writing nodal equations, it can be more convenient to represent circuit
elements by their admittance. Admittances for the basic electrical components
are shown in Table 2.3. Let us look at an example.

G, :rol- 211 I

Transfer Function—Multiple Nodes

PROBLEM: Find the transfer function, V(s)/V (s), for the circuit in Figure 2.6(b).
Use nodal analysis.

SOLUTION: For this problem, we sum currents at the nodes rather than sum
voltages around the meshes. From Figure 2.6(b) the sum of currents flowing from
the nodes marked V (s) and V¢(s) are, respectively,

Vi(s)=V(s) Vi(s)  Vils)=Vels)
L R +—r ot 7 =0 (2.85a)
CsVe(s) + %ZVL(S) =0 (2.85b)

Rearranging and expressing the resistances as conductances,” G; = 1/R; and
G, = 1/R;, we obtain,

1
(Gl + G, +B> Vi(s) - GyVc(s) = V(s)Gy (2.86a)
=G V() + (G2 + Cs)Ve(s) =0 (2.86b)
G\G, Solving for the transfer function, V¢(s)/V(s), yields
V(s) c s Vids)
. " G1G,
G\GL+C G .
(G + Gz)s2+%s+l% Vels) c '
= GiGL+C G (287)
FIGURE 2.7 Block diagram of the network of V(s) (G1 + G,)s? + —1—%6—,——5 + ﬁ
Figure 2.6 as shown in Figure 2.7.

% In general, admittance is complex. The real part is called conductance and the imaginary part is called
susceptance. But when we take the reciprocal of resistance to obtain the admittance, a purely real quantity
results. The reciprocal of resistance is called conductance.
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Another way to write node equations is to replace voltage sources by
current sources. A voltage source presents a constant voltage to any load;
conversely, a current source delivers a constant current to any load. Practically,
a current source can be constructed from a voltage source by placing a large
resistance in series with the voltage source. Thus, variations in the load do not
appreciably change the current, because the current is determined approxi-
mately by the large series resistor and the voltage source. Theoretically, we rely
on Norton’s theorem, which states that a voltage source, V(s), in series with an
impedance, Z(s), can be replaced by a current source, /(s) = V(s}/Z(s), in
parallel with Z(s).

In order to handle multiple-node electrical networks, we can perform the
following steps:

. Replace passive element values with their admittances.
. Replace all sources and time variables with their Laplace transform.

WO =

. Replace transformed voltage sources with transformed current sources.
. Write Kirchhoff’s current law at each node.

. Solve the simultaneous equations for the output.

. Form the transfer function.

a U &

Let us look at an example.

Transfer Function—Multiple Nodes with Current Sources
PROBLEM: For the network of Figure 2.6, find the transfer function,

Viis)
sources. J\/\/\/

SOLUTION: Convert all impedances to admittances and all voltage ; 1 _
. e ) . B v, CD G Cs 5
sources in series with an impedance to current sources in parallel with

G omple 2.12 D

Ve(s)/V(s), using nodal analysis and a transformed circuit with current G Vo)
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Al

an admittance using Norton’s theorem.

Redrawing Figure 2.6(b) to reflect the changes, we obtain Fig-
ure 2.8, where G, =1/R;, G =1/R,, and the node voltages—the
voltages across the inductor and the capacitor—have been identified
as V.(s) and V(s), respectively. Using the general relationship,
I(s) = Y(s)V(s), and summing currents at the node V/ (s),

Gy VL(S) + LLS VL(S) + Gz[VL (S) — Vc(S)] = V(s)Gy (2‘88)

FIGURE 2.8 Transformed network
ready for nodal analysis

Summing the currents at the node V¢(s) yields
CsVe(s)+ Ga[Vel(s) = Vi(s)] =0 (2.89)

Combining terms, Egs. (2.88) and (2.89) become simultaneous equations in V¢(s)
and V' (s), which are identical to Eq. (2.86) and lead to the same solution as Eq. (2.87).

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its
direct relationship to Figure 2.8, namely
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. Sum of admittances .
Sum of admittances Vi(s) — | common tothet Vels) = Sum of applied
connected toNode 1| * ontothetwo | Vels) = currents at Node 1
nodes
(2.90a)
itt
B iﬁﬁ;ﬁiﬂ?&g?&f Vi(s) + Sum of admittances (6) = Sum of applied
nodes L connected to Node 2 " | currents at Node 2

(2.90b)

A Problem-Solving Technique

In all of the previous examples, we have seen a repeating pattern in the equations
that we can use to our advantage. If we recognize this pattern, we need not write the
equations component by component; we can sum impedances around a mesh in the
case of mesh equations or sum admittances at a node in the case of node equations.
Let us now look at a three-loop electrical network and write the mesh equations by
inspection to demonstrate the process.

G cxample 2.13 D

Mesh Equations via Inspection

PROBLEM: Write, but do not solve, the mesh equations for the network shown in
Figure 2.9.

wh—-

/2(\):

l

Vi) f_) 15
I
FIGURE 2.9 Three-loop 1(8) S(5)

electrical network

SOLUTION: Each of the previous problems has jllustrated that the mesh
equations and nodal equations have a predictable form. We use that knowledge
to solve this three-loop problem. The equation for Mesh 1 will have the following
form:




