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Outline of the Chapter. Section 4-1 has just presented introductory material for
the chapter. Section 4-2 discusses liquid-level systems. Section 4-3 treats pneumatic
systems—in particular, the basic principles of pneumatic controllers. Section 4-4 first
discusses hydraulic servo systems and then presents hydraulic controllers. Finally,
Section 4-5 analyzes thermal systems and obtains mathematical models of such systems.

4-2 LIQUID-LEVEL SYSTEMS

In analyzing systems involving fluid flow, we find it necessary to divide flow regimes
into laminar flow and turbulent flow, according to the magnitude of the Reynolds num-
ber. If the Reynolds number is greater than about 3000 to 4000, then the flow is turbu-
lent. The flow is laminar if the Reynolds number is less than about 2000. In the laminar
case, fluid flow occurs in streamlines with no turbulence. Systems involving laminar flow
may be represented by linear differential equations.

Industrial processes often involve flow of liquids through connecting pipes and tanks.
The flow in such processes is often turbulent and not laminar. Systems involving turbu-
lent flow often have to be represented by nonlinear differential equations. If the region
of operation is limited, however, such nonlinear differential equations can be linearized.
We shalil discuss such linearized mathematical models of liquid-level systems in this sec-
tion. Note that the introduction of concepts of resistance and capacitance for such liquid-
level systems enables us to describe their dynamic characteristics in simple forms.

Resistance and Capacitance of Liquid-Level Systems. Consider the flow
through a short pipe connecting two tanks. The resistance R for liquid flow in such a
pipe or restriction is defined as the change in the level difference (the difference of the
liquid levels of the two tanks) necessary to cause a unit change in flow rate; that is,

change in level difference, m

change in flow rate, m®/sec

Since the relationship between the flow rate and level difference differs for the laminar
flow and turbulent flow, we shall consider both cases in the following,

Consider the liquid-level system shown in Figure 4-1(a). In this system the liquid
spouts through the load valve in the side of the tank. If the flow through this restriction
is laminar, the relationship between the steady-state flow rate and steady-state head at
the fevel of the restriction is given by

Q0=KH
where Q = steady-state liquid flow rate, m*/sec
K = coefficient, m?/sec
H = steady-state head, m
For laminar flow, the resistance R, is obtained as
dH H
R ="==—
aQ  Q
The laminar-flow resistance is constant and is analogous to the electrical resistance.
If the flow through the restriction is turbulent, the steady-state flow rate is given by

0= KVH (4-1)
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Figure 4-1

(a) Liquid-level
system; (b) head
versus flow rate
curve.
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where Q = steady-state liquid flow rate, m’/sec
K = coefficient, m*®/sec
H = steady-state head, m

The resistance R, for turbulent flow is obtained from

dH
R = 70
Since from Equation (4-1) we obtain
K
dQ = ——=dH
O ovE
we have
dd _2VH 2VHVH _2H
aQ K e o
Thus,
2H
)

The value of the turbulent-flow resistance R, depends on the flow rate and the head. The
value of R,, however, may be considered constant if the changes in head and flow rate
are small.

By use of the turbulent-flow resistance, the relationship between Q and H can be
given by

T
Such linearization is valid, provided that changes in the head and flow rate from their
respective steady-state values are small.

In many practical cases, the value of the coefficient K in Equation (4-1), which depends
on the flow coefficient and the area of restriction, is not known. Then the resistance may
be determined by plotting the head versus flow rate curve based on experimental data
and measuring the slope of the curve at the operating condition. An example of such a plot
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is shown in Figure 4-1(b). In the figure, point P is the steady-state operating point. The tan-
gent line to the curve at point P intersects the ordinate at point (O, -H ) Thus, the slope
of this tangent line is 2/ /Q. Since the resistance R, at the operating point P is given by
2H /Q, the resistance R, is the slope of the curve at the operating point.

Consider the operating condition in the neighborhood of point P. Define a small
deviation of the head from the steady-state value as /# and the corresponding small
change of the flow rate as g. Then the slope of the curve at point P can be given by

Slope of curve at point P = h = -2—5— = R,
. 7 ¢
The linear approximation is based on the fact that the actual curve does not differ much
from its tangent line if the operating condition does not vary too much.

The capacitance C of a tank is defined to be the change in quantity of stored liquid
necessary to cause a unit change in the potential (head). (The potential is the quantity
that indicates the energy level of the system.)

__ change in liquid stored, m’

change in head, m

It should be noted that the capacity (m?®) and the capacitance (m?) are different. The
capacitance of the tank is equal to its cross-sectional area. If this is constant, the capac-
itance is constant for any head.

Liquid-Level Systems. Consider the system shown in Figure 4-1(a). The vari-
ables are defined as follows:

Q = steady-state flow rate (before any change has occurred), m®/sec

g; = small deviation of inflow rate from its steady-state value, m*/sec

g, = small deviation of outflow rate from its steady-state value, m>/sec

H = steady-state head (before any change has occurred), m

h = small deviation of head from its steady-state value, m

As stated previously, a system can be considered linear if the flow is laminar. Even if

the flow is turbulent, the system can be linearized if changes in the variables are kept
small. Based on the assumption that the system is either linear or linearized, the differential

equation of this system can be obtained as follows: Since the inflow minus outflow during
the small time interval dt is equal to the additional amount stored in the tank, we see that

Cdh = (q,- - qo) dt
From the definition of resistance, the relationship between g, and 4 is given by
h

q() = R
The differential equation for this system for a constant value of R becomes

dh
RC=+ h = Rq (4-2)

Note that RC is the time constant of the system. Taking the Laplace transforms of both
sides of Equation (4-2), assuming the zero initial condition, we obtain

(RCs + 1)H(s) = RQ(s)
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Figure 4-2
Liquid-level system
with interaction.
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where
H(s)=%[h] and  Qfs) = ¥[q]
If g; is considered the input and / the output, the transfer function of the system is
H(s) R
Qi(s) RCs+1
If, however, g, is taken as the output, the input being the same, then the transfer
function is
Qo(s) 1

0(s) RCs + 1
where we have used the relationship

0,(s) = 5 H(s)

Liquid-Level Systems with Interaction. Consider the system shown in Figure
4-2.In this system, the two tanks interact. Thus the transfer function of the system is not
the product of two first-order transfer functions.

In the following, we shall assume only small variations of the variables from the
steady-state values. Using the symbols as defined in Figure 4-2 , we can obtain the

following equations for this system:
ok

R, =4q (4-3)
¢ %1 =q - q (4-4)
e (4-5)
Cz% =q1— 42 (4-6)

If g is considered the input and g, the output, the transfer function of the system is

Qz(s) 1
— - (47
0(s)  RCR,Cys* + (RiCy + RCy + RyCy)s + 1

Q+q
—-

Tank 1 Tank 2

Ry Hy+ hy Ry Q
L +
4 S B P A
/ — [
c gty C,

: Steady-state flow rate
: Steady-state liquid level of tank 1
: Steady-state liquid level of tank 2

st
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It is instructive to obtain Equation (4-7), the transfer function of the interacted
system, by block diagram reduction. From Equations (4-3) through (4-6), we obtain the
elements of the block diagram, as shown in Figure 4-3(a). By connecting signals prop-
erly, we can construct a block diagram, as shown in Figure 4-3(b). This block diagram
can be simplified, as shown in Figure 4-3(c). Further simplifications result in
Figures 4-3(d) and (e). Figure 4-3(e) is equivalent to Equation (4-7).

Hy(s) 1 Qi1 H(s) 1 Oa(s)
e [—— Pt —— -
R Ry
Hy(s)
Q(s) 1 Hi(s) Qi(s) < 1 Hy(s)
s [ g Cos
A Qas)
(a)
O(s) 1| e 1 (26 < e S Qa(s)
C 18 R] g Cys Hz(.s')r R, o
(b)
RyC5 |t

06) N [ 1 T o) . " 0:(5)
Vatinvalon orll nas 5 vell oo manVie¥an rovll nan ol o s

(c)
o(s) 1 1 Q)
RiCis+1 RyCrs+ 1 -

Figure 4-3
(a) Elements of the RyC 15 [~ tpmmesd
block diagram of the
system shown in (d)
Figure 4-2; (b) block .
diagram of the O(s) 1 O(s)
system; (c)-(e) — RIC{RyCo8% + (R\Cy + RyCy + R,Cs + 1 >
successive reductions
of the block diagram. (e
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Notice the similarity and difference between the transfer function given by
Equation (4-7) and that given by Equation(3-72). The term R,C, s that appears in the
denominator of Equation (4-7) exemplifies the interaction between the two tanks.
Similarly, the term R, C,s in the denominator of Equation (3-72) represents the inter-
action between the two RC circuits shown in Figure 3-23,

4-3 PNEUMATIC SYSTEMS
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In industrial applications pneumatic systems and hydraulic systems are frequently
compared. Therefore, before we discuss pneumatic systems in detail, we shall give a brief
comparison of these two kinds of systems.

Comparison Between Pneumatic Systems and Hydraulic Systems. The fluid
generally found in pneumatic systems is air; in hydraulic systems it is oil. And it is pri-
marily the different properties of the fluids involved that characterize the differences
between the two systems. These differences can be listed as follows:

1. Air and gases are compressible, whereas 0il is incompressible, (except at high pres-
sure).

2. Air lacks lubricating property and always contains water vapor. Oil functions as a
hydraulic fluid as well as a lubricator.

3. The normal operating pressure of pneumatic systems is very much lower than that
of hydraulic systems.

4. Output powers of pneumatic systems are considerably less than those of hydraulic
systems.

5. Accuracy of pneumatic actuators is poor at low velocities, whereas accuracy of
hydraulic actuators may be made satisfactory at all velocities.

6. In pneumatic systems, external leakage is permissible to a certain extent, but in-
ternal leakage must be avoided because the effective pressure difference is rather
small. In hydraulic systems internal leakage is permissible to a certain extent, but
external leakage must be avoided.

7. No return pipes are required in pneumatic systems when air is used, whereas they
are-always needed in hydraulic systems. ‘

8. Normal operating temperature for pneumatic systems is 5° to 60°C (41° to 140°F).
The pneumatic system, however, can be operated in the 0° to 200°C (32° to 392°F)
range. Pneumatic systems are insensitive to temperature changes, in contrast to
hydraulic systems, in which fluid friction due to viscosity depends greatly on tem-
perature. Normal operating temperature for hydraulic systems is 20° to 70°C (68°
to 158°F).

9. Pneumatic systems are fire- and explosion-proof, whereas hydraulic systems are
not, unless nonflammable liquid is used.

In what follows we begin with a mathematical modeling of pneumatic systems. Then
we shall present pneumatic proportional controllers.

We shall first give detailed discussions of the principle by which proportional
controllers operate. Then we shall treat methods for obtaining derivative and integral
control actions. Throughout the discussions, we shall place emphasis on the
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Figure 4-25

Block diagram for
the system shown in
Figure 4-24.

E(s) X(s) ¥(s)

A 4

Iy

a+b

a As) Ty s
a+b T1T2s2+(T1+2T2)S+1

A block diagram for this system is shown in Figure 4-25. The transfer function
Y (s)/E(s) can be obtained as )

K
Y(s) b s
E(s)_a+b1+ a K_ Tys
at+bs TTs*+ (T, +20)s + 1
Under normal operation of the system we have
a K 1is

— > 1
a+b s TTs*+ (T +2T)s + 1
Hence
Y(s) bTLs + (T +2h)s + 1
E(s) a Tys
K;
= Kp + “S‘ + KdS
where
b T+ 2T b1 3
Kp—a T1 s K'_ a‘Tla Kd_ T2

Thus, the controller shown in Figure 4-24 is a proportional-plus-integral-plus-derivative
controller (PID controller).

4-5 THERMAL SYSTEMS
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Thermal systems are those that involve the transfer of heat from one substance to
another. Thermal systems may be analyzed in terms of resistance and capacitance,
although the thermal capacitance and thermal resistance may not be represented
accurately as lumped parameters since they are usually distributed throughout the sub-
stance. For precise analysis, distributed-parameter models must be used. Here, however,
to simplify the analysis we shall assume that a thermal system can be represented by a
lumped-parameter model, that substances that are characterized by resistance to heat
flow have negligible heat capacitance, and that substances that are characterized by heat
capacitance have negligible resistance to heat flow.

There are three different ways heat can flow from one substance to another: con-
duction, convection, and radiation. Here we consider only conduction and convection.
(Radiation heat transfer is appreciable only if the temperature of the emitter is very
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high compared to that of the receiver. Most thermal processes in process control systems
do not involve radiation heat transfer.)
For conduction or convection heat transfer,

qg = K A#

where g = heat flow rate, kcal/sec
A6 = temperature difference, °C
K = coefficient, kcal/sec °C
The coefficient K is given by

kA
K = INa for conduction
= HA, for convection

where k = thermal conductivity, kcal/m sec °C
A = area normal to heat flow, m?
AX = thickness of conductor, m
H = convection coefficient, kcal/m? sec °C

Thermal Resistance and Thermal Capacitance. The thermal resistance R for
heat transfer between two substances may be defined as follows:

change in temperature difference, °C

change in heat flow rate, kcal/sec

The thermal resistance for conduction or convection heat transfer is given by
d(A) 1 |

dg K
Since the thermal conductivity and convection coefficients are almost constant, the
thermal resistance for either conduction or convection is constant.
The thermal capacitance C is defined by

change in heat stored, kcal
change in temperature, °C

or
C =mc

where m = mass of substance considered, kg
specific heat of substance, kcal/kg °C

C

Thermal System. Consider the system shown in Figure 4-26(a). It is assumed
that the tank is insulated to eliminate heat loss to the surrounding air. It is also assumed
that there is no heat storage in the insulation and that the liquid in the tank is perfectly
mixed so that it is at a uniform temperature. Thus, a single temperature is used to describe
the temperature of the liquid in the tank and of the outflowing liquid.
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Let us define

®; = steady-state temperature of inflowing liquid, °C
O, = steady-state temperature of outflowing liquid, °C
G = steady-state liquid flow rate, kg/sec
M = mass of liquid in tank, kg

¢ = specific heat of liquid, kcal/kg °C

R = thermal resistance, °C sec/kcal

C = thermal capacitance, kcal/°C

H = steady-state heat input rate, kcal/sec

Assume that the temperature of the inflowing liquid is kept constant and that the heat

190

input rate to the system (heat supplied by the heater) is suddenly changed from H to
H + h;, where h; represents a small change in the heat input rate. The heat outflow rate
will then change gradually from H to H + h,. The temperature of the outflowing lig-
uid will also be changed from @, to @, + 6 For this case, h,, C, and R are obtained,
respectively, as

h, = Geo
C = Mc

e 1
R"ho_Gc

The heat balance equation for this system is
Cdf = (h; — h,)dt
or

do
CE'—I’l"—“ho
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which may be rewritten as

RC@+9=Rhi
dt

Note that the time constant of the system is equal to RC or M /G seconds. The transfer

function rélating 6 and %; is given by

O(s) R
H(s) RCs+1

where @(s) = £[6(t)] and H(s) = £[h(1)].

In practice, the temperature of the inflowing liquid may fluctuate and may act as a
load disturbance. (If a constant outflow temperature is desired, an automatic controller
may be installed to adjust the heat inflow rate to compensate for the fluctuations in the
temperature of the inflowing liquid.) If the temperature of the inflowing liquid is sud-
denly changed from @, to @, + 6; while the heat input rate H and the liquid flow rate
G are kept constant, then the heat outflow rate will be changed from HtoH + h,,and
the temperature of the outflowing liquid will be changed from 8, to @, + 6. The heat

balance equation for this case is

C do = (Ge; — h,)dt

or
C ﬁ = GCQ,— - ho
dt
which may be rewritten
dt

The transfer function relating 6 and 6, is given by

() __ 1
O,(s) RCs +1

where O(s) = £[6(t)] and O(s) = L[6,(t)].

If the present thermal system is subjected to changes in both the temperature of the
inflowing liquid and the heat input rate, while the liquid flow rate is kept constant, the
change # in the temperature of the outflowing liquid can be given by the following
equation:

RC® 1 o=9 + Rh,
di '

A block diagram corresponding to this case is shown in Figure 4-26(b). Notice that the
system involves two inputs.
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