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Block Diagram Representation

3.1 Introduction :

If the given system is complicated, it is very difficult to analyse it as a whole.
With the help of transfer function approach, we can find transfer function of each and
every element of the complicated system. And by showing connection between the
elements, complete system can be splitted into different blocks and can be analysed
conveniently.

Basically block diagram is a pictorial representation of the given system. It is a
very simple way of representing the given complicated practical system. In block
diagram, the interconnection of system components to form a system can be
conveniently shown by the blocks arranged in proper sequence. It explains the cause
and effect relationship existing between input and output of the system, through the
blocks.

To draw the block diagram of a practical system, each element of practical system
is represented by a block. The block is called as functional block. It means, block
explains mathematical operation on the input by the element to produce the
corresponding output. The actual mathematical function is indicated by inserting
corresponding transfer function of the element inside the block. For a closed loop
systems, the function of comparing the different signals is indicated by the summing
point while a point from which signal is taken for the feedback purpose is indicated
by take off point in block diagrams. All these summing points, blocks and take off
points are then must be connected exactly as per™ actual elements connected in
practical system. The connection between the blocks is shown by lines called as
branches of the block diagram. An arrow is associated with each and every branch
which indicates the direction of flow of signal along the branch. The signal can travel
along the direction of an arrow only. It cannot pass against the direction of an arrow.
Hence block diagram is a unilateral property of the system.

In short any block diagram has following five basic elements associated with it :
1) Blocks.

2) Transfer functions of elements shown inside the blocks.

3) Summing points.

4) Take off points.

5) Arrows.

(47)
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Controiler

Pneumatic
valve

Float

Fig. 3.1
For example consider the liquid level system as shown in Fig. 3.1. So to represent
this by block diagram, identify the elements which are
i) Controller (ii) Pneumatic valve (iii) Tank (iv) Float.

Hence indicating them by blocks, the block diagram can be developed as in
Fig.3.2.

Forward path

| e rcm— > Take off point
+ @ “ “ ‘rn | | Y Actual
level eumatic a

- Controller valve Tank |“"'"Ieval
Summing )
point b
* 1
. ﬂ Float .
position Feedback path

e

Fig. 3.2 Liquid level control
Consider another example of bottle filling mechanism. When bottle gets filled by
the contents upto the required level it should get replaced by an empty bottle. This
system can be made closed loop and hence can be shown as in Fig. 3.3 (See Fig. on
next page)

‘In the system shown, conveyor belt is driven by the controller as well as valve
position is also controlled by the controller.

When empty bottle comes at the specific position, weight sensor senses the weight
and gives signal to controller. Controller stops conveyor movement and opens the
valve so bottle starts getting filled. When required level is achieved, again weight
sensor sensing the proper weight sends a signal to controller which sends signals to
start movement of belt and also closing the valve position with proper time delay till
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next empty bottle comes at the proper position.

{ Valve controlling
* signal

"""" Valve

Controller

Empty Fil:ad
1 bottle

I otﬂeg
L[ honnhée
B ® O

__ Weight Conveyor
sensor belt

Fig. 3.3
This system can be represented as a block diagram as shown in Fig. 3.4

Valve
CO'/"PE"'HW position [ Tank |—’—
Referance* ' Filled bottle
Controlier —» > +
Weight
signal - 1
Belt dmiingl o
mechanism | | Feedback
| weight .

<
| sensor

Fig. 3.4 Automatic bottle filling mechanism
3.1.1 Advantages of Block Diagram :

1)  Very simple to construct the block diagram for complicated systems.
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2)  The function of individual element can be visualised from block diagram.

3) Individual as well as overall perfurmancé of the system can be studied by using
transfer functions shown in the block diagram.

4) Overall closed loop T.F. can be easily calculated by using block diagram
reduction rules.

3.1.2 Disadvantages :

1) Block diagram does not include any information about the physical construction
of the system.

2) Source of energy is generally not shown in the block diagram. So number of
different block diagrams can be drawn depending upon the point of view of
analysis. So block diagram for given system is not unique.

3.2 Simple or Canonical Form of Closed Loop System :

A block diagram in which, forward path contains only one block, feedback path
contains only one block, one summing point and one take off point represents simple
or canonical form of a closed loop system. This can be achieved by using block
diagram reduction rules
without disturbing output of
the system. This form is very
useful as its closed loop
transfer function can be easily
calculated by using standard

result. This result is derived in
this section . .

The simple form can be
shown as in Fig. 3.5.

R(s) E(s)

C(s)

Fig. 3.5
where , R(s) Laplace of reference input r(t)

-
C(s) — Laplace of controlled output c(t)
E(s) — Laplace of error signal e(t)

B(s) — Laplace of feedback signal b(t)

G(s) — Equivalent forward path transfer function .

H(s) — Equivalent feedback path transfer function .
G(s) and H(s) can be obtained by reducing complicated block diagram by using block

diagram reduction rules.

3.2.1 Derivation of T.F. of Simple Closed Loop System :

Referring to Fig. 3.5, we can write following equations as,
E(s) = R (s) + B(s) w (1)
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B(s) = C(s) H(s) D
C(s) = E(s) G(s) . (3)
B(s) = C(s) H(s) and substituting in equation (1)
E(s) = R (s) £ C(s) H(s)
C(s)
Bls) =
(s) co)
C(s) _ .
'(—j(—si = R(S) + C(S) H(b]
C(s) = R(s) G(s) £ C(s) G(s) H(s)
C(s) [1 £ G(s) H(s) ]= R(s) G(s)
CE) _ _ Ges)
R(s) 1xG(s)H(s) Gls)
+ sign — negative feedback R(s) i 1 + G(s) H(s) ..
- sign — positive feedback. Closed Loop TF.
This can be represented as in Fig. 3.6
Fig. 3.6

This can be used as a standard result to eliminate such simple loop in a

complicated system reduction procedure.

3.3 Rules for Block Diagram Reduction :

Any complicated system if brought into its simple form as shown in Fig. 3.5, its
T.F. can be calculated by using the result derived eariler. To bring it into simple form

it is necessary to reduce the block diagram
that system and the value of any feedback
signal should not get disturbed. This can
be achieved by  using following
mathematical rules while block diagram
reduction.

Rule 1 : Associative law : Consider
two summing points as shown in Fig. 3.7.

but using proper logic such that output of

Ry=Ry+R3

Fig. 3.7

Ry+R; Ri+R;3-R;

Now change the position of two
summing points. Qutput remains same.

So associative law holds good for
summing points which are directly
connected to each other (i.e. there is no
intermediate  block  between two
summing points).
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Consider summing points with a block in between as shown in Fig. 3.9.

Ry, ° (R - R,) Gy + R,

Now intérchange two
summing points.

Ry + -
-EI (Ry +R3) G4-R;

Ry

So the output does not remain
same. So associative law s
applicable to summing points
which are directly connected to
each other.

~ Fig. 3.10
Rule 2 : For blocks in series :

The transfer functions of the blocks which are connected in series get multiplied
with each other.

Consider system as shown in Fig. 3.11

R{Er’a' R{S)GaIGz

R(s) C(s)
G,
Fig. 3.11
C(s) = R(s) [G1 G, G3]
So instead of three different blocks, only | g [ Cls)
one block with T.F. [Gl G2 Ga] can be ” G, 62{33
shown in system (Fig. 3.12)

Fig. 3.12
Output in both cases is same.

It is important to note that if there is take off or summing point in between the
blocks, the blocks cannot be said to be in series.

Consider the combination of the blocks as shown the Fig. 3.13
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. sl i, 3
- -~

—

Take off point —

Fig. 3.13
In this combination GG, are in series and can be combined as GG, but G is
now not in series with GG, as there is take off point in between. To call G 3 to be in
series with GG, it is necessary to shift the take off point before GG, or after G ;.
The rules for such shifting are discussed later.

Rule 3 : For blocks in parallel. :

The transfer functions of the blocks which are connected in parallel get added
algebraically (considering the sign).

Consider system as shown in Fig. 3.14.

R(s) .

R(s) G,

Fig. 3.14
C(s) =-R(s) G +R(s) G, +R(s) G 5
= R(s) [G2 +G 3 =G4 ]
Now replace three block with only one block with T.F. G, + G 5 - G (Fig. 3.15)
C(s) = R(s) [Go+G3-G,]

R(s) ” G, + Gy G, “ C(s)

Fig. 3.15
Output is same. So blocks which are in parallel get added algebraically.
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The students may make
G, mistakes  while identifying
blocks in parallel in following
+ cases. If there exists a takeoff
r G - point as shown in the Fig. 3.16
" ‘ along with blocks G,;, G,
Shiftx .............. Take off point which appear to be in parallel.
Fig. 3.16

But unless and untill this takeoff point is shifted before the block, blocks can not
be said to be in parallel. Shifting of takeoff point is discussed next. Secondly the
shifting a take off point after a summing point needs some adjustment to keep out put
same. In above case the take off point can not be shown after summing point without
any alteration. This type of shifting is discussed as critical rules later as such shifting
makes the block diagram complicated and should be avoided as far as possible.

Not valid

Avoid such shifting
as far as possible
Fig. 3.17(a)

G1 +

H1 o

L 4

sdme.

Fig. 3.18

Without any alteration
such shifting is invalid
Fig. 3.17(b)

Similarly consider a configuraion as
shown in the Fig. 3.18.

This combination is not the parallel
combination of G; and H,. For a parallel
combination the direction of signals
through the blocks in parallel must be

In this case direction of signal through G, and H, is opposite. Such a combination
is called as minor feedback loop and reduction rule for this is discussed later.
Rule 4 : Shifting a summing point behind the block :

R

=

G

C(s)

Fig. 3.19
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C(s) = RG+y
Now we have to shift summing point behind the block.

Now output must remain same.

R+ x
= G + C(s)
+
X
Fig. 3.20
R+ x)G = C(s)
RG+xG = RG+y
xG = vy
X = % so signal y must be multiplied with é to keep output same.

-
C(s)=RG +y

Fig. 3.21
Thus while shifting a summing point behind the block i.e. before the block, add a
block having T.F. as reciprocal of the T.F. of the block before which summing point is
to be shifted, in series with all the signals at that summing point.

Rule 5 : Shifting a summing point beyond the block.
Consider the combination shown in the Fig. 3.22.

R+y

Fig. 3.22
Now to shift summing point after block keeping nut'put same, consider the shifted
summing point without any change.
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R RG
e —— G * -
C=RG +yG
X
Fig. 3.23
RG+x = RG +yG
x = yG

i.e. signal y must get multiplied with T.F. of block beyond which summing point

is to be shifted.
R “ RG
G
! é; C=RG+yG

® =(R+Yy)G

Iy

Fig. 3.24

Thus while shifting a summing point after a block, add a block having T.F. same
as that of block after which summing point is to be shifted, in series with all the
signals at that summing point.

Rule 6 : Shifting a take off point behind the blocks :
Consider the combination shown in the Fig. 3.25.

R RG
—o—" G I = C
y

Fig. 3.25
C = RG

y = RG
To shift take off point behind block value of signal taking off must remain same.

Though shifting of take off point without any‘ change does not affect output
directly, the value of feedback signal which is changed affects the output indirectly
which must be kept same. But without any change it is just R as shown in Fig. 3.26.
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R ™71

- G +»C=RG
y

Fig. 3.26
But it must be equal to RG. So a block with T.F. G must be introduced i.e. signal
taking off after the block must be
multiplied with T.F. of that block while

shifting behind the block. B s o l]__c

This while shifting a take off point
behind the block, add a block having

RG

T.F. same as that of the block behind G
which take off point is to be shifted, in
series with all the signals taking off from $Y=RE

that take off point.

Rule 7 : Shifting a take-off point beyond the block :
Consider the combination shown in the Fig. 3.28.

R "
& G “ » C=RG

R
Ly:

R

Fig. 3.28 Fig. 3.29
To shift take off point beyond the block, value of ‘y’ must remain same. To keep
value of ‘y’ constant it must be multiplied by ‘1/G’. While shifting a take off point
beyond the block, add a block in series with all the signals which are taking off from
that point, having T.F. as reciprocal of the T.F. of the block beyond which take off
point is to be shifted.

Rule 8 : Removing minor feedback loop :

This includes the removal of internal simple forms of the loops by using standard
result derived earlier in section 3.2.

After eliminating such a minor loop if summing point carries only one signal
input and one signal output, it should be removed from the block diagram to avoid
further confusion.
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C(s) Ry(s) G'(s) C'(s)
> N —] - —
1% G'(s) H'(s)
e
Fig. 3.30
Rule 9 : For multiple input system use superposition theorem :
R 2
R; -+
System —
R, .
Fig. 3.31
Consider only one input at a time treating all other as zero
Consider Ry, R, = R3 = e, R, =0 and find output C,,
Then consider R, R; = Rj =........R, =0 and find output C,
At the end when all inputs are covered take algebraic sum of all the outputs.
Total output C = Ci+Cy +...cuuu. Gy

Same logic can be extended to find the outputs if system is multiple input
multiple output type. Separate ratio of each output with each input is to be calculated,
assuming all other input and outputs zero. Then such components of outputs can be
added to get resultant outputs of the system. In very few cases, it is not possible to
reduce the block diagram to its simple form by use of above discussed nine rules. In
such case there is a requirement to shift a summing point before or after a takeoff
point to solve the problem. These rules are discussed below but reader should avoid
to use these rules unless and until it is the requirement of the problem. Use of these
rules in simple problems may complicate the block diagram. The use of these rules in
actual problem solving is illustrated in solved problem no. 21.

3.3.1 Critical Rules :
Rule 10 : Shifting take off point after a summing point. Consider a situation as
shown in Fig. 3.32.

R ,"d’ \\‘ R1 c
1 - - »-
B .. > C1 =R1+y
+ =Rty z 1=
y Z

Fig. 3.32 Fig. 3.33
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Now after shifting the take off point , let signal taking off be ‘2’ as shown in
Fig. 3.33.
Now zZ = Rl Ty
But we want feedback signal as x = R, only.

So signal ‘v’ must be inverted and added to C; to keep feedback signal value
same. And to add the signal, summing point must be introduced in series with take
off signal. So modified configuration becomes as shown in Fig. 3.34.

R
—1——® -:-C1:R1:y
+

?

+|

¥ x=R1

Fig. 3.34
Rule 11 : Shifting take off point before a summing point :

Consider a situation as shown in Fig. 3.35.

» C=Ryzy

- —

Fig. 3.35
. Now after shifting the take off point, let signal taking off be 'z’ as shown in
Fig. 3.36.

Now z = R; only because nothing is clanged.

R
1 . C

Ryty

i+

y

Fig. 3.36
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But we want feedback signal x again which is Ry £ y. Hence to z, signal ‘y’ must
be added with same sign as it is present at summing point which can be achieved by
using summing point in series with take off signal as shown in Fig. 3.37.

R,

+

I+

:

K=R1I?

Fig. 3.37
Thus it can be noticed that shifting of take off point before or after a summing
point adds an additional summing point in the block diagram and this complicates the
block diagram. No doubt, in same rare cases, it is not possible to reduce the block
diagram without such shifting of take off point before or after a summing point. Apart
from such cases, students should not use such shifting which will complicate the
simple block diagrams.

3.3.2 Procedure to solve block diagram reduction problems :
Step 1 : Reduce the blocks connected in series.
Step 2 : Reduce the blocks connected in parallel.
Step 3 : Reduce the minor internal feedback loops.

Step 4 : As far as possible try to shift take off point towards right and summing
points to the left. Unless and until it is the requirement of problem do not use rule 10
and 11.

Step 5 : Repeat step 1 to 4 till simple form is obtained.

Step 6 : Using standard T.F. of simple closed loop system obtain the closed loop
C(s) '

T.F. -— of the overall system.
R(s)

Solved Problems on Block Diagram Reduction

Ex. 3.1  Reduce the given block diagram to its canonical (simple) form and hence obtain the
equivalent transfer function @
R(s)
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G,

C

Sol. ;

¥ C

R(s) G, G, | C(s)
"® 1+G, G, H, | Sa* G I -
- J
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R(s) G G;(G3+G,) CE.S}
1+ G1 Gz H1

+ e =

=]

G'l Gz (Ga + Gﬂ)
R(s) 1+G,G,H, C(s)
- .
Gy Gy (Gy+ Gy) H,
1+G; G2 Hy

1=

C(s) _ Gy G2 (G3+Gy)

R(s) 1+G; G, H1 -G, G,(G3+G4)H,

Ex. 3.2

st}

Sol. : No blocks are connected in series or parallel. Blocks having transfer functions
G, and Hy form minor feedback loop so eliminating that loop we get,

C(s)

Always try to shift take off point towards right i.e. output and summing point
towards left i.e. input.
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R(s) - G, Cl(s)

G, G,
R(s) T+G,H, C(s)
-
Cls) . GG,
- - T+ G, H,

I Hy (1+G,yH,)

&

lH,n ;GEHE_}_l_
2

L&
G, G,
R(s) 1+G,H,+ G, G, C(s)
e *
% G‘l Gz H'I {1 + Gg HEJ
{1 *"'Gz H2+G1 Gz} 62
Simplifying ) €1 G,
R(S} 1+G]G2+GQH2+G1H1+G1G2H1H2
Ex. 3.3
|
|
R(s) \ 1 C)
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Sol. : No blocks are connected in series or parallel so reducing minor feedback loop
formed by blocks with transfer function G, andH;.

C(s)
|8
R(s) GG, | & C(s)
1+GyH, | L2
[~
Hy |
-
After simplification
i Gy G,

Gy G,

R(s) 1+ G, H, C(s)
i L=
R Lo
1+G, H,
L
R(s) GG, G, C(s) Gy G, G,
1+ G, H +G, G, H, R(s) 1+G H +GyGyH, | Cls)
—_—— ——
Gy G,y Gy Hy
1+17G,H,+G, G, H,
Ha

After simplification,
C{S) G1G2 Gg
R(S) 1+GIH1+GIGEH2+GIG2G3H3 _
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Ex. 34

R(s) @ 3

-+

2]

—a

Sol. : No blocks are in series or parallel, similarly there is no minor feedback loop
existing. Hence shifting takeoff point towards right as shown we get,

L Y

B3
Hy/ Gy II
G,

C(s)

G, G, pb—eo—

C(s)
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| Ha! Gs. ‘

R(s) = A G G, G, | ¢
! 2 I 1+G, G, Hy

&
_.I
' 1

R(s)

After simplification

/ G;G3 G,
{ 1+G3G4H;+ G, G Hy

C(s)
—

R(s) G,G,G3G, C(s)

H,
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G,G,G3G,
R[S}L 1+G3G4Hy+ G, G3H, C(s)
Gy G G3 G4 H;
1 3G, G, Hy+ G, G,
C(S) _ G1G263G4

After simplification, — =
R(E) I+G3G4H3+GEG3H2+G]GQ_G3G4H1

Gs )
R(s) p C(s)
4 u
e -
. | H, '
Hz -

Ex. 3.5

-

Sol. : No blocks are in series or parallel, similarly there is no minor feedback loop so
shifting takeoff point towards right as shown by dotted line we get,

Gs 1/G,
R(s C(s
v

Gg
G,
R(s G,G Cls
(s) G, R 1+GZG;-|H | Ge + (s)
@; | 2 G3 Hy

L

il

&

i
Pl

'
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Cs
Gy
R(s) X GG, Gy G + C(s)
> 4
1+G,G,H, )
= L
H ~
= ]
_______ After simplification
..r"'"" « | G3G4+Gs
. g,
R(s) Gy G, G, Gs C(s)
G4 + L 2 4=
I Hy
L=
R(s) Gy G, Gy G;3 G4+ Gg C(s)
Hy
R(s) G, G, (G5 G, + Gs) C(s)
-
1+ G, Gy Hy
| H,
GGy (G3 G4+ Gs)
R(s) 1+G,G3H, C(s)
+ —

4+ Gy Gy (G364 +Gg) Hy
1+ Gy Gy Hy
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The block diagram is usetul for graphically representing control system dynamics and
is used extensively in the analysis and design of control systems. An alternate approach
for graphically representing control system dynamics is the signal flow graph approach,
due to S. J. Mason. It is noted that the signal flow graph approach and the block dia-
gram approach yield the same information and one is in no sense superior to the other.

Signal Flow Graphs. A signal flow graph is a diagram that represents a set of
simultaneous linear algebraic equations. When applying the signal flow graph method
to analyses of control systems, we must first transform linear differential equations into
algebraic equations in s. ,

A signal flow graph consists of a network in which nodes are connected by direct-
ed branches. Each node represents a system variable, and each branch connected be-
tween two nodes acts as a signal multiplier. Note that the signal flows in only one
direction. The direction of signal flow is indicated by an arrow placed on the branch,
and the multiplication factor is indicated along the branch. The signal flow graph de-
picts the flow of signals from one point of a system to another and gives the relation-
ships among the signals.

As mentioned earlier, a signal flow graph contains essentially the same information
as a block diagram. If a signal flow graph is used to represent a control system, then a
gain formula, called Mason’s gain formula, may be used to obtain the relationships
among system variables without carrying out reduction of the graph.

Definitions. Before we discuss signal flow graphs, we must define certain terms.

Node. A node is a point representing a variable or signal.

Transmittance. The transmittance is a real gain or complex gain between two nodes.
Such gains can be expressed in terms of the transfer function between two nodes.

Branch. A branch is a directed line segment joining two nodes. The gain of a branch
is a transmittance. _

Input node or source. An input node or source is a node that has only outgoing
branches. This corresponds to an independent variable.

Qutput node or sink. An output node or sink is a node that has only incoming
branches. This corresponds to a dependent variable.

Mixed node. A mixed node is a node that has both incoming and outgoing branches.

Path. A path is a traversal of connected branches in the direction of the branch
arrows. If no node is crossed more than once, the path is open. If the path ends at the
same node from which it began and does not cross any other node more than once, it is
closed. If a path crosses some node more than once but ends at a different node from
which it began, it is neither open nor closed.

Loop. A loopis a closed path.

Loop gain. The loop gain is the product of the branch transmittances of a loop.

Nontouching loops. Loops are nontouching if they do not possess any common
nodes.

Forward path. A forward path is a path from an input node (source) to an output
node (sink) that does not cross any nodes more than once.

Chapter 3 / Mathematical Modeling of Dynamic Systems



Figure 3-35
Signal flow graph.

x4 Input node
Mixed node (Source)

\

X2 b X3
O > e s O
X X3
Input node QOutput node
(Source) - (Sink)

Forward path gain. A forward path gain is the product of the branch transmittances
of a forward path.

Figure 3-35 shows nodes and branches, together with transmittances.

Properties of Signal Flow Graphs. A few important properties of signal flow
graphs are as follows:

1. A branch indicates the functional dependence of one signal on another. A signal
passes through only in the direction specified by the arrow of the branch.

2. A node adds the signals of all incoming branches and transmits this sum to all out-
going branches.

3. A mixed node, which has both incoming and outgoing branches, may be treated as
an output node (sink) by adding an outgoing branch of unity transmittance. (See
Figure 3-35. Notice that a branch with unity transmittance is directed from x; to
another node, also denoted by x3.) Note, however, that we cannot change a mixed
node to a source by this method.

4. For a given system, a signal flow graph is not unique. Many different signal flow
graphs can be drawn for a given system by writing the system equations differently.

Signal Flow Graph Algebra. A signal flow graph of a linear system can be drawn
using the foregoing definitions. In doing so, we usually bring the input nodes (sources) to
the left and the output nodes (sinks) to the right. The independent and dependent vari-
ables of the equations become the input nodes (sources) and output nodes (sinks), re-
spectively. The branch transmittances can be obtained from the coefficients of the equations.

To determine the input-output relationship, we may use Mason’s formula, which will
be given later, or we may reduce the signal flow graph to a graph containing only input
and output nodes. To accomplish this, we use the following rules:

1. The value of a node with one incoming branch, as shown in Figure 3-36(a), is
Xy = axy.
2. The total transmittance of cascaded branches is equal to the product of all the

branch transmittances. Cascaded branches can thus be combined into a single
branch by multiplying the transmittances, as shown in Figure 3-36(b).

3. Parallel branches may be combined by adding the transmittances, as shown in
Figure 3-36(c).

4. A mixed node may be eliminated, as shown in Figure 3-36(d).

5. A loop may be eliminated, as shown in Figure 3-36(e). Note that

. X3 = b.xZ, Xo = aXy + CX3

Section 3-9 / Signal Flow Graphs 105



Figure 3-36
Signal flow graphs
and simplifications.
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a
@) e ——)

Xy X2
a b ab
(@) o, B Poee) = o ——
X1 X7 X3 X1 X3
a
a+b
(c) X1 X2 = [0 S —
X X2
*1 a ac
c X1
(@ =
X3 X4 X4
X b bc
X2
ab
a x2 b ab X3 1- be
O] o—»—@ =0 P O = 0 > ®)
X1 X3 X X1 X3
C
be
Hence
X3 = abx, + bcx; (3-77)
or
ab
X5 = X 3-78
= (3-78)

Equation (3-77) corresponds to a diagram having a self-loop of transmittance bc. Elim-
ination of the self-loop yields Equation (3-78), which clearly shows that the overall
transmittance is ab /(1 — bc).

Signal Flow Graph Representation of Linear Systems. Signal flow graphs are
widely applied to linear-system analysis. Here the graph can be drawn from the system
equations or, with practice, can be drawn by inspection of the physical system. Routine
reduction by use of the foregoing rules gives the relation between an input and output
variable.
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Figure 3-37

Signal flow graphs
representing

(a) Equation (3-79),
(b) Equation (3-80),
and

(¢) Equation (3-81);
(d) complete signal
flow graph for the
system described by
Equations
(3-79)-(3-81).
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Consider a system defined by the following set of equations:
Xy = dpXq + IPES) + a3 X3 + b1M1 (3—‘79)
Xy = Ay Xy + ayp Xy + a3 X3 + b2M2 . (3—80)
X3 = adn X + a3 X9 + d33 X3 (3—-81)

where u; and u, are input variables and x,, x,, and x; are output variables. A signal flow
graph for this system, a graphical representation of these three simultaneous equations,
indicating the interdependence of the variables, can be obtained as follows: First locate
the nodes x;, x,, and x; as shown in Figure 3-37(a). Note that a;; is the transmittance be-
tween x; and x;. Equation (3-79) states that x; is equal to the sum of the four signals
a;1Xq, AppX,, A13%;, and byuy. The signal flow graph representing Equation (3-79) is
shown in Figure 3-37(a). Equation (3-80) states that x, is equal to the sum of 2, x,,
Ay Xy, Ay3X3, and b,u,. The corresponding signal flow graph is shown in Figure 3-37(b).
The signal flow graph representing Equation (3-81) is shown in Figure 3-37(c).

The signal flow graph representing Equations (3~79), (3-80), and (3-81) is then ob-
tained by combining Figures 3-37(a), (b), and (c). Finally, the complete signal flow graph
for the given simultaneous equations is shown in Figure 3-37(d).

In dealing with a signal flow graph, the input nodes (sources) may be considered
one at a time. The output signal is then equal to the sum of the individual cotitributions
of each input.

The overall gain from an input to an output may be obtained directly from the sig-
nal flow graph by inspection, by use of Mason’s formula, or by a reduction of the graph
to a simpler form.
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Signal Flow Graphs of Control Systems. Some signal flow graphs of simple
control systems are shown in Figure 3-38. For such simple graphs, the closed-loop trans-
fer function C(s)/R(s) [or C(s)/N(s)] can be obtained easily by inspection. For more
complicated signal flow graphs, Mason’s gain formula is quite useful.
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EXAMPLE 3-13

Figure 3-39
Muitipie-loop
system.

Mason’s Gain Formula for Signal Flow Graphs. In many practical cases, we
wish to determine the relationship between an input variable and an output variable of
the signal flow graph. The transmittance between an input node and an output node is
the overall gain, or overall transmittance, between these two nodes.

Mason’s gain formula, which is applicable to the overall gain, is given by

1
P:—AH ;P/CA/(

where
P, = path gain or transmittance of kth forward path
A = determinant of graph
= 1 — (sum of all individual loop gains) + (sum of gain products of all
possible combinations of two nontouching loops) — (sum of gain
products of all possible combinations of three nontouching
loops) + -+
=1- XL, + >LL, EL‘,LLf
a b, ¢ doe f
> L, = sum of all individual loop gains
E L,L. = sum of gain products of all possible combinations of two nontouching
be

[oops
EL[,L Ly =sum of gain products of all possible combinations of three

nontouching loops

A, = cofactor of the kth forward path determinant of the graph with the
loops touching the kth forward path removed, that is, the cofactor A,
is obtained from A by removing the loops that touch path P,

(Note that the summations are taken over all possible paths from input to output.)
In the following, we shall illustrate the use of Mason’s gain formula by means of two
examples.

Consider the system shown in Figure 3-39. A signal flow graph for this system is shown in Figure
3-40. Let us obtain the closed-loop transfer function C(s)/R(s) by use of Mason'’s gain formula.

In this system there is only one forward path between the input R(s) and the output C(s). The
forward path gain is

Pl = GleG3

R & C
| @-» G W@—» Gy G3 o

Section 3-9 / Signal Flow Graphs 109

A |




Figure 3-40
Signal flow graph
for the system in
Figure 3-39.

EXAMPLE 3-14
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From Figure 3-40, we see that there are three individual loops. The gains of these loops are

L, = G,G,H,
L, = -G,G:H;
L3 = ‘_G1G263

Note that since all three loops have a common branch, there are no nontouching loops. Hence, the
determinant A is given by

A=1-(L +L+ Ly
=1 - GleHl + GzG3H2 + GleGj,

The cofactor A; of the determinant along the forward path connecting the input node and out-
put node is obtained from A by removing the loops that touch this path. Since path P, touches all
three loops, we obtain

A1 =1
Therefore, the overall gain between the input R(s) and the output C(s), or the closed-loop trans-
fer function, is given by
C(s) _hA

R& =74

_ G,G,G;
" 1 - G,G,H, + G,G;H, + G,G,G,

which is the same as the closed-loop transfer function obtained by block diagram reduction.
Mason’s gain formula thus gives the overall gain C(s)/R(s) without a reduction of the graph.

Consider the system shown in Figure 3-41. Obtain the closed-loop transfer function C(s)/R(s) by
use of Mason’s gain formula.

In this system, there are three forward paths between the input R(s) and the output C(s).
The forward path gains are

P = G,G,G5G4Gs
P2 = G1G6G4G5

Py = GGG,
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Figure 341
Signal flow graph for
a system.

C(s)

There are four individual loops, The gains of these loops are
L, =~G,H,
L, = =G,G;H,
Ly = ~G¢G,GsH,

L4 = —G2G3G4G5H2
Loop L; does not touch loop L,. Hence, the determinant A is given by

A=1-(Li+ L+ Ly + L)+ LiL, (3-82)

The cofactor A, is obtained from A by removing the loops that touch path P,. Therefore, by
removing L,, L,, L3, L4, and L, L, from Equation (3-82), we obtain

A'l =1
Similarly, the cofactor A, is
Az =1

The cofactor A, is obtained by removing L,, Ls, Ly, and L, L, from Equation (3-82), giving

A} =1 - L1
The closed-loop transfer function C(s)/R(s) is then
C(s) 1
R(s) P=—=(PA + PA, + PAs)

G,G,G,G.Gs + G1GsG,Gs + G,G,G,{1 + G, Hy)

Comments. The usual application of signal flow graphs is in system diagramming.
The set of equations describing a linear system is represented by a signal flow graph by es-
tablishing nodes that represent the system variables and by interconnecting the nodes
with weighted, directed, transmittances, which represent the relationships among the vari-
ables. Mason’s gain formula may be used to establish the relationship between an input
and an output. (Alternatively, the variables in the system may be eliminated one by one -
with reduction techniques.) Mason’s gain formula is especially useful in reducing large
and complex system diagrams in one step, without requiring step-by-step reductions.
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Finally, it is noted that in applying the Mason’s gain formula to a given system, one
must be careful not to make mistakes in calculating the cofactors of the forward paths,
Ay, since any errors. if they exist, may not easily be detected.

3-10 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

112

-

Nonlinear Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals. There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. Incontrol engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the expan-
sion of nonlinear function into a Taylor series about the operating point and the retention
of only the linear term. Because we neglect higher-order terms of Taylor series expan-
sion, these neglected terms must be small enough; that is, the variables deVIate only
slightly from the operating condition.

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(r) and out-
putis y(¢). The relationship between y(¢) and x(¢) is given by

= f(x) (3-83)

If the normal operating condition corresponds to x, J, then Equation (3-83) may be
expanded into a Taylor series about this point as follows:
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