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Chapter 1 Introduction

@ 1.1 Introduction

Control systems are an integral part of modern society. Numerous applications are
all around us: The rockets fire, and the space shuttle lifts off to earth orbit; in
splashing cooling water, a metallic part is automatically machined; a self-guided
vehicle delivering material to workstations in an aerospace assembly plant glides
along the floor seeking its destination. These are just a few examples of the
automatically controlled systems that we can create.

We are not the only creators of automatically controlled systems; these systems
also exist in nature. Within our own bodies are numerous control systems, such as the
pancreas, which regulates our blood sugar. In time of “fight or flight,” our adrenaline
increases along with our heart rate, causing more oxygen to be delivered to our cells.
Our eyes follow a moving object to keep it in view; our hands grasp the object and
place it precisely at a predetermined location.

Even the nonphysical world appears to be automatically regulated. Models
have been suggested showing automatic control of student performance. The input
to the model is the student’s available study time, and the output is the grade. The
model can be used to predict the time required for the grade to rise if a sudden
increase in study time is available. Using this model, you can determine whether
increased study is worth the effort during the last week of the term.

Control System Definition

A control system consists of subsystems and processes (or plants) assembled for the

purpose of obtaining a desired output with desired performance, given a specified
input. Figure 1.1 shows a control system in its simplest form, where the

Input; stimulus | Gonwrol | Output: response input represents a desirhed output. '
Desired response. | — system | Actual resnomse P— For example, consider an elevator. When the fourth-floor button is
o o pressed on the first floor, the elevator rises to the fourth floor with a
FIGURE 1.1 Simplified description of a speed and floor-leveling accuracy designed for passenger comfort. The

control system

FIGURE 1.2 Elevator response

push of the fourth-floor button is an input that represents our desired
output, shown as a step function in Figure 1.2. The performance of the elevator can be
seen from the elevator response curve in the figure.

] rIm e are ann nt: (1) the trancient recnnnce
Two major measures of nerformanc are. response

W AL ESULI TS SN QI8 & rENL) (L) 8 FRRSIEN
¥ 1 of o \*7

and (2) the steady-state error. In our example, passenger comfort and passenger
patience are dependent upon the transient response. If this response is too fast,
passenger comfort is sacrificed; if too slow, passenger patience is sacrificed. The
steady-state error is another important performance specification since passenger
safety and convenience would be sacrificed if the elevator did not properly level.
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compensator parameters required to yield a desired response can be made by
changes in software rather than hardware. The computer can also perform supervi-
sory functions, such as scheduling many required applications. For example, the
space shuttle main engine (SSME) controller, which contains two digital computers,
alone controls numerous engine functions. It monitors engine sensors that provide
pressures, temperatures, flow rates, turbopump speed, valve positions, and engine
servo valve actuator positions. The controller further provides closed-loop control of
thrust and propellant mixture ratio, sensor excitation, valve actuators, spark igniters,
as well as other functions (Rockwell International, 1984).

@ 1.4 Analysis and Design Objectives

In Section 1.1 we briefly alluded to some control system performance specifications,
such as transient response and steady-state error. We now expand upon the topic of
performance and place it in perspective as we define our analysis and design
objectives.

Analysis is the process by which a system’s performance is determined. For
example, we evaluate its transient response and steady-state error to determine if
they meet the desired specifications, Design is the process by which a system’s
performance is created or changed. For example, if a system’s transient response and
steady-state error are analyzed and found not to meet the specifications, then we
change parameters or add additional components to meet the specifications.

A control system is dynamic: It responds to an input by undergoing a transient
response before reaching a steady-state response that generally resembles the input.
We have already identified these two responses and cited a position control system (an
elevator) as an example. In this section, we discuss three major objectives of systems
analysis and design: producing the desired transient response, reducing steady-state
error, and achieving stability. We also address some other design concerns, such as cost
and the sensitivity of system performance to changes in parameters.

Transient Response

Transient response is important. In the case of an elevator, a slow transient response
makes passengers impatient, whereas an excessively rapid response makes them
uncomfortable. If the elevator oscillates about the arrival
= floor for more than a second, a disconcerting feeling can
. result. Transient response is also important for structural
, reasons: Too fast a transient response could cause perma-
nent physical damage. In a computer, transient response
contributes to the time required to read from or write to
the computer’s disk storage (see Figure 1.7). Since read-
ing and writing cannot take place until the head stops, the
speed of the read/write head’s movement from one track
on the disk to another influences the overall speed of the

computer.
In this book, we establish quantitative definitions
for transient response. We then analyze the system for its
existing transient response. Finally, we adjust parameters

FIGURE 1.7 Computer hard disk drive, showing disks and or design components to yield a desired transient

read/write head

response—our first analysis and design objective.
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Steady-State Response

Another analysis and design goal focuses on the steady-state response. As we have
seen, this response resembles the input and is usually what remains after the transients
have decayed to zero. For example, this response may be an elevator stopped near the
fourth floor or the head of a disk drive finally stopped at the correct track. We are
concerned about the accuracy of the steady-state response. An elevator must be level
enough with the floor for the passengers to exit, and a read/write head not positioned
over the commanded track results in computer errors. An antenna tracking a satellite
must keep the satellite well within its beamwidth in order not to lose track. In this text
we define steady-state errors quantitatively, analyze a system’s steady-state error, and
then design corrective action to reduce the steady-state error—our second analysis
and design objective.

Stability

Discussion of transient response and steady-state error is moot if the system does not
have stability. In order to explain stability, we start from the fact that the total response
of a system is the sum of the natural response and the forced response. When you
studied linear differential equations, you probably referred to these responses as the
homogeneous and the particular solutions, respectively. Natural response describes the
way the system dissipates or acquires energy. The form or nature of this response is
dependent only on the system, not the input. On the other hand, the form or nature of
the forced response is dependent on the input. Thus, for a linear system, we can write

Total response = Natural response + Forced response (1.1)

For a control system to be useful, the natural response must (1) eventually
approach zero, thus leaving only the forced response, or (2) oscillate. In some systems,
however, the natural response grows without bound rather than diminish to zero or
oscillate. Eventually, the natural response is so much greater than the forced response
that the system is no longer controlled. This condition, called instability, could lead to
self-destruction of the physical device if limit stops are not part of the design. For
example, the elevator would crash through the floor or exit through the ceiling; an
aircraft would go into an uncontrollable roll; or an antenna commanded to point to a
target would rotate, line up with the target, but then begin to oscillate about the target
with growing oscillations and increasing velocity until the motor or amplifiers reached
their output limits or until the antenna was damaged structurally. A time plot of an
unstable system would show a transient response that grows without bound and without
any evidence of a steady-state response.

Control systems must be designed to be stable. That is, their natural response
must decay to zero as time approaches infinity, or oscillate. In many systems the
transient response you see on a time response plot can be directly related to the
natural response. Thus, if the natural response decays to zero as time approaches
infinity, the transient response will also die out, leaving only the forced response. If
the system is stable, the proper transient response and steady-state error character-
istics can be designed. Stability is our third analysis and design objective.

2You may be confused by the words transient vs. natural, and steady-state vs. forced. If you look at Figure
1.2, you can see the transient and steady-state portions of the total response as indicated. The transient
response is the sum of the natural and forced responses, while the natural response is large. If we plotted
the natural response by itself, we would get a curve that is different from the transient portion of Figure 1.2.
The steady-state response of Figure 1.2 is also the sum of the natural and forced responses, but the natural
response is small, Thus, the transient and steady-state responses are what you actually see on the plot; the
natural and forced responses are the underlying mathematical components of those responses.

1
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Other Considerations
The three main objectives of control system analysis and design have already been
enumerated. However, other important considerations must be taken into account. For
example, factors affecting hardware selection, such as motor sizing to fulfill power
requirements and choice of sensors for accuracy, must be considered early in the design.
Finances are another consideration. Control system designers cannot create
designs without considering their economic impact. Such considerations as budget
allocations and competitive pricing must guide the engineer. For example, if your
product is one of a kind, you may be able to create a design that uses more expensive
components without appreciably increasing total cost. However, if your design will be
used for many copies, slight increases in cost per copy can translate into many more
dollars for your company to propose during contract bidding and to outlay before sales.
Another consideration is robust design. System parameters considered con-
stant during the design for transient response, steady-state errors, and stability
change over time when the actual system is built. Thus, the performance of the
system also changes over time and will not be consistent with your design. Un-
fortunately, the relationship between parameter changes and their effect on per-
formance is not linear. In some cases, even in the same system, changes in parameter
values can lead to small or large changes in performance, depending on the system'’s
nominal operating point and the type of design used. Thus, the engineer wants to
create a robust design so that the system will not be sensitive to parameter changes.
We discuss the concept of system sensitivity to parameter changes in Chapters 7 and
8. This concept, then, can be used to test a design for robustness.
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FIGURE 1.8 The search for
extraterrestrial life is being
carried out with radio antennas
like the one pictured here. A
radio antenna is an example of
a system with position

controls,

Introduction to a Case Study

Now that our objectives are stated, how do we meet them? In this section we will
look at an example of a feedback control system. The system introduced here will
be used in subsequent chapters as a running case study to demonstrate the
objectives of those chapters. A colored background like this will identify the
case study section at the end of each chapter. Section 1.5, which follows this first
case study, explores the design process that will help us build our system.

Antenna Azimuth: An Introduction to Position Control Systems
A position control system converts a position input command to a position output
response. Position control systems find widespread applications in antennas, robot
arms, and computer disk drives. The radio telescope antenna in Figure 1.8 is one
example of a system that uses position control systems. In this section, we will look in
detail at an antenna azimuth position control system that could be used to position a
radio telescope antenna. We will see how the system works and how we can effect
changes in its performance. The discussion here will be on a qualitative level, with the
objective of getting an intuitive feeling for the systems with which we will be dealing.
An antenna azimuth position control system is shown in Figure 1.9(a), with a
more detailed layout and schematic in Figures 1.9(b) and 1.9(c), respectively.
Tigure 1.9(d) shows a functional block diagram of the systcm. The functions are
shown above the blocks, and the required hardware is indicated inside the blocks.
Parts of Figure 1.9 are repeated on the front endpapers for future reference.
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FIGURE 1.12 Equivalent block
diagram for the antenna azimuth
position control system

Chapter 1 Introduction

function can be used only for linear systems, it yields more intuitive information than the
differential equation. We will be able to change system parameters and rapidly sense the
effect of these changes on the system response. The transfer function is also useful in
modeling the interconnection of subsystems by forming a block diagram similar to Figure
1.9(d) but with a mathematical function inside each block.

Still another model is the state-space representation. One advantage of state-
space methods is that they can also be used for systems that cannot be described by
linear differential equations. Further, state-space methods are used to model systems
for simulation on the digital computer. Basically, this representation turns an nth-
order differential equation into » simultaneous first-order differential equations. Let
this description suffice for now; we describe this approach in more detail in Chapter 3.

Finally, we should mention that to produce the mathematical model for a system,
we require knowledge of the parameter values, such as equivalent resistance, induc-
tance, mass, and damping, which is often not easy to obtain. Analysis, measurements,
or specifications from vendors are sources that the control systems engineer may use
to obtain the parameters.

Step 5: Reduce the Block Diagram

Subsystem models are interconnected to form block diagrams of larger systems, as in
Figure 1.9(d), where each block has a mathematical description. Notice that many
signals, such as proportional voltages and error, are internal to the system. There are
also two signals—angular input and angular output— that are external to the system.
In order to evaluate system response in this example, we need to reduce this large
system’s block diagram to a single block with a mathematical description that
represents the system from its input to its output, as shown in Figure 1.12. Once the
block diagram is reduced, we are ready to analyze and design the system.

Step 6: Analyze and Design
The next phase of the process, following block diagram reduction, is analysis and
design. If you are interested only in the performance of an individual subsystem, you
can skip the block diagram reduction and move immediately into analysis and
design. In this phase, the engineer analyzes the system to see if the response
specifications and performance requirements can be met by simple adjustments
of system parameters. If specifications cannot be met, the designer then designs
additional hardware in order to effect a desired performance.

Test input signals are used, both analytically and during testing, to verify the design.
It is neither necessarily practical nor illuminating to choose complicated input signals to
analyze a system’s performance. Thus, the engineer usually selects standard test inputs.
These inputs are impulses, steps, ramps, parabolas, and sinusoids, as shown in Table 1.1.

An impulse is infinite at t = 0 and zero elsewhere. The area under the unit impulse
is 1. An approximation of this type of waveform is used to place initial energy into a
system so that the response due to that initial energy is only the transient response of a
system. From this response the designer can derive a mathematical model of the system.

A step input represents a constant command, such as position, velocity, or
acceleration. Typically, the step input command is of the same form as the output. For
example, if the system’s output is position, as it is for the antenna azimuth position
control system, the step input represents a desired position, and the output represents
the actual position. If the system’s output is velocity, as is the spindle speed for a video
disc player, the step input represents a constant desired speed, and the output
represents the actual speed. The designer uses step inputs because both the transient
response and the steady-state response are clearly visible and can be evaluated.
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TABLE 1.1 Test waveforms used in control systems

Input Function Description Sketch Use
Impulse  &(¢) 8(t) = cofor0— <t <0+ Ao Transient response
= Q elsewhere Madeling
0+
/ s(nydt=1 8
0~
—_ !
Step u(t) u(t) =1fort >0 A Transient response
— Ofort <0 A Steady-state error
—_—s !
Ramp tu(t) tu(t) =tfort >0 §it3) Steady-state error
= O elsewhere
Parabola 1 u(t) ltzu (1) = 1 2fort> 0 §.0)] Steady-state error
2 2 2
= O elsewhere
!
Sinusoid  sinwt ) Transient response

Modeling
Steady-state error
t

The ramp input represents a linearly increasing command. For example, if the
system’s output is position, the input ramp represents a linearly increasing position,
such as that found when tracking a satellite moving across the sky at constant speed.
If the system’s output is velocity, the input ramp represents a linearly increasing
velocity. The response to an input ramp test signal yields additional information
about the steady-state error. The previous discussion can be extended to parabolic
inputs, which are also used to evaluate a system’s steady-state error.

Sinusoidal inputs can also be used to test a physical system to arrive at a
mathematical model. We discuss the use of this waveform in detail in Chapters 10
and 11.

We conclude that one of the basic analysis and design requirements is to
evaluate the time response of a system for a given input. Throughout the book you
will learn numerous methods for accomplishing this goal.

The control systems engineer must take into consideration other characteristics
about feedback control systems. For example, control system behavior is altered by
fluctuations in component values or system parameters. These variations can be
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Chapter 6 Stability

@ 6.1 Introduction

In Chapter 1, we saw that three requirements enter into the design of a control
system: transient response, stability, and steady-state errors. Thus far we have
covered transient response, which we will revisit in Chapter 8. We are now ready
to discuss the next requirement, stability.

Stability is the most important system specification. If a system is unstable,
transient response and steady-state errors are moot points. An unstable system
cannot be designed for a specific transient response or steady-state error require-
ment. What, then, is stability? There are many definitions for stability, depending
upon the kind of system or the point of view. In this section, we limit ourselves to
linear, time-invariant systems.

In Section 1.5, we discussed that we can control the output of a system if the
steady-state response consists of only the forced response. But the total response of a
system is the sum of the forced and natural responses, or

c(t) = Crorced () + Cuatucar(1) (6.1)

Using these concepts, we present the following definitions of stability, instability, and
marginal stability:

A linear, time-invariant system is stable if the natural response approaches zero as
time approaches infinity.

A linear, time-invariant system is unstable if the natural response grows without
bound as time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response neither
decays nor grows but remains constant or oscillates as time approaches infinity.

Thus, the definition of stability implies that only the forced response remains as the
natural response approaches zero.

These definitions rely on a description of the natural response. When one is
looking at the total response, it may be difficult to separate the natural response from
the forced response. However, we realize that if the input is bounded and the total
response is not approaching infinity as time approaches infinity, then the natural
response is obviously not approaching infinity. If the input is unbounded, we see an
unbounded total response, and we cannot arrive at any conclusion about the stability
of the system; we cannot tell whether the total response is unbounded because the
forced response is unbounded or because the natural response is unbounded. Thus,
our alternate definition of stability, one that regards the total response and implies
the first definition based upon the natural response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of
stability.

Let us now produce an alternate definition for instability based on the total
response rather than the natural response. We realize that if the input is bounded but
the total response is unbounded, the system is unstable, since we can conclude that
the natural response approaches infinity as time approaches infinity. If the input is
unbounded, we will see an unbounded total response, and we cannot draw any
conclusion about the stability of the system; we cannot tell whether the total
response is unbounded because the forced response is unbounded or because the
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natural response is unbounded. Thus, our alternate definition of instability, one that
regards the total response, is this:

A system is unstable if any bounded input yields an unbounded output.

These definitions help clarify our previous definition of marginal stability,
which really means that the system is stable for some bounded inputs and unstable
for others. For example, we will show that if the natural response is undamped, a
bounded sinusoidal input of the same frequency yields a natural response of growing
oscillations. Hence, the system appears stable for all bounded inputs except this one
sinusoid. Thus, marginally stable systems by the natural response definitions are
included as unstable systems under the BIBO definitions.

Let us summarize our definitions of stability for linear, time-invariant systems.
Using the natural response:

1. A system is stable if the natural response approaches zero as time approaches
infinity.

2. A system is unstable if the natural response approaches infinity as time
approaches infinity.

3. A system is marginally stable if the natural response neither decays nor grows but
remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.
2. A system is unstable if any bounded input yields an unbounded output.

Physically, an unstable system whose natural response grows without bound
can cause damage to the system, to adjacent property, or to human life. Many times
systems are designed with limited stops to prevent total runaway. From the
perspective of the time response plot of a physical system, instability is displayed
by transients that grow without bound and, consequently, a total response that does
not approach a steady-state value or other forced response.’

How do we determine if a system is stable? Let us focus on the natural response
definitions of stability. Recall from our study of system poles that poles in the left
half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural
responses. These natural responses decay to zero as time approaches infinity. Thus, if
the closed-loop system poles are in the left half of the plane and hence have a
negative real part, the system is stable. That is, stable systems have closed-loop
transfer functions with poles only in the left half-plane.

Poles in the right half-plane (rhp) yield either pure exponentially increasing or
exponentially increasing sinusoidal natural responses. These natural responses
approach infinity as time approaches infinity. Thus, if the closed-loop system poles
are in the right half of the s-plane and hence have a positive real part, the system is
unstable. Also, poles of multiplicity greater than 1 on the imaginary axis lead to
the sum of responses of the form At" cos (wt + ¢), where n=1,2,..., which also
approaches infinity as time approaches infinity. Thus, unstable systems have closed-
loop transfer functions with at least one pole in the right half-plane and/or poles of
multiplicity greater than 1 on the imaginary axis.

! Care must be taken here to distinguish between natural responses growing without bound and a forced
response, such as a ramp or exponential increase, that also grows without bound. A system whose forced
response approaches infinity is stable as long as the natural response approaches zero.
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Transient and Steady-State
Response Analyses

5-1 INTRODUCTION

It was stated in Chapter 3 that the first step in analyzing a control system was to derive
a mathematical model of the system. Once such a model is obtained, various methods
are available for the analysis of system performance.

In practice, the input signal to a control system is not known ahead of time but is
random in nature, and the instantaneous input cannot be expressed analytically. Only in
some special cases is the input signal known in advance and expressible analytically or
by curves, such as in the case of the automatic control of cutting tools.

In analyzing and designing control systems, we must have a basis of comparison of
performance of various control systems. This basis may be set up by specifying particu-
lar test input signals and by comparing the responses of various systems to these input
signals.

Many design criteria are based on the response to such signals or on the response of
systems to changes in initial conditions (without any test signals). The use of test signals
can be justified because of a correlation existing between the response characteristics
of a system to a typical test input signal and the capability of the system to cope with
actual input signals.

Typical Test Signals. The commonly used test input signals are those of step
functions, ramp functions, acceleration functions, impulse functions, sinusoidal functions,
and the like. With these test signals, mathematical and experimental analyses of control
systems can be carried out easily since the signals are very simple functions of time.
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Which of these typical input signals to use for analyzing system characteristics may
be determined by the form of the input that the system will be subjected to most
frequently under normal operation.'If the inputs to a control system are gradually
changing functions of time, then a ramp function of time may be a good test signal. Sim-
ilarly, if a system is subjected to sudden disturbances, a step function of time may be a
good test signal; and for a system subjected to shock inputs, an impulse function may be
best. Once a control system is designed on the basis of test signals, the performance of
the system in response to actual inputs is generally satisfactory. The use of such test
signals enables one to compare the performance of all systems on the same basis.

Transient Response and Steady-State Response. The time response of a
control system consists of two parts: the transient response and the steady-state response.
By transient response, we mean that which goes from the initial state to the final state.
By steady-state response, we mean the manner in which the system output behaves as
t approaches infinity. Thus the system response ¢(¢) may be written as

c(r) = cult) + c(r)
where the first term on the right-hand side of the equation is the transient response and
the second term is the steady-state response.

Absolute Stability, Relative Stability, and Steady-State Error. In designing a
control system, we must be able to predict the dynamic behavior of the system from a
knowledge of the components. The most important characteristic of the dynamic
behavior of a control system is absolute stability, that is, whether the system is stable or
unstable. A control system is in equilibrium if, in the absence of any disturbance or input,
the output stays in the same state. A linear time-invariant control system is stable if the
output eventually comes back to its equilibrium state when the system is subjected to
an initial condition. A linear time-invariant control system is critically stable if oscilla-
tions of the output continue forever. It is unstable if the output diverges without bound
from its equilibrium state when the system is subjected to an initial condition. Actually,
the output of a physical system may increase to a certain extent but may be limited by
mechanical “stops,” or the system may break down or become nonlinear after the out-
put exceeds a certain magnitude so that the linear differential equations no longer apply.

Important system behavior (other than absolute stability) to which we must give
careful consideration includes relative stability and steady-state error. Since a physical
control system involves energy storage, the output of the system, when subjected to an
input, cannot follow the input immediately but exhibits a transient response before a
steady state can be reached. The transient response of a practical control system often
exhibits damped oscillations before reaching a steady state. If the output of a system at
steady state does not exactly agree with the input, the system is said to have steady-
state error. This error is indicative of the accuracy of the system. In analyzing a control
system, we must examine transient-response behavior and steady-state behavior.

Outline of the Chapter. This chapter is concerned with system responses to
aperiodic signals (such as step, ramp, acceleration, and impulse functions of time). The
outline of the chapter is as follows: Section 5-1 has presented introductory material for
the chapter. Section 5-2 treats the response of first-order systems to aperiodic inputs.
Section 5-3 deals with the transient response of the second-order systems. Detailed
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analyses of the step response, ramp response, and impulse response of the second-order
systems are presented. Section 54 discusses the transient response analysis of higher-
order systems. Section 5-5 gives an introduction to the MATLAB approach to the solution
of transient response problems. Section 5-6 gives an example of a transient-response -
problem solved with MATLAB. Section 5-7 presents Routh’s stability critetion. Section
5-8 discusses effects of integral and derivative control actions on system performance.
Finally, Section 5-9 treats steady-state errors in unity-feedback control systems.

5-2 FIRST-ORDER SYSTEMS

Figure 5-1
(a) Block diagram of
a first-order system;
(b) simplified block
diagram.

Consider the first-order system shown in Figure 5-1(a). Phyéically, this system may
represent an RC circuit, thermal system, or the like. A simplified block diagram is shown
in Figure 5-1(b). The input-output relationship is given by
Cs) 1
R(s) Ts+1
In the following, we shall analyze the system responses to such inputs as the unit-step,
unit-ramp, and unit-impulse functions. The initial conditions are assumed to be zero.
Note that all systems having the same transfer function will exhibit the same output

in response to the same input. For any given physical system, the mathematical response
can be given a physical interpretation.

(-1

Unit-Step Response of First-Order Systems. Since the Laplace transform of
the unit-step function is 1/s, substituting R(s) = 1/s into Equation {5-1), we obtain
_ 11

Ts+1s

C(s)
Expanding C(s) into partial fractions gives

=" yiTs T sram (-2)

Taking the inverse Laplace transform of Equation (5-2), we obtain
c(ty=1-¢"", fort=0 (5-3)

Equation (5-3) states that initially the output c(¢) is zero and finally it becomes unity.
One important characteristic of such an exponential response curve c(¢) isthatatt = T
the value of ¢(t) is 0.632, or the response ¢(¢) has reached 63.2% of its total change. This
may be easily seen by substituting r = T in ¢(¢). That is,

oT)=1-¢'=0632

R®) 56) [3 ) 0 i )
Ty - | Ts+1
(a) ()
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Figure 5-2
Exponential
response curve.
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Note that the smaller the time constant T, the faster the system response. Another
important characteristic of the exponential response curve is that the slope of the tangent
line atz = Ois 1/T, since

£l£ = l =t/T = _1_

di | "7 | T G
The output would reach the final value at ¢ = T if it maintained its initial speed of
response. From Equation (5-4) we see that the slope of the response curve c¢(¢) decreases
monotonically from 1/7" att = 0 to zero att = co.

The exponential response curve c(t) given by Equation (5-3) is sl. wn in Figure 5-2.

In one time constant, the exponential response curve has gone from 0 to 63.2% of the final
value. In two time constants, the response reaches 86.5% of the final value. At ¢ = 37,47,
and 5T, the response reaches 95%, 98.2%, and 99.3%, respectively, of the final value. Thus,
for t = 4T, the response remains within 2% of the final value. As seen from Equation
(5-3), the steady state is reached mathematically only after an infinite time. In practice,
however, a reasonable estimate of the response time is the length of time the response
curve needs to reach and stay within the 2% line of the final value, or four time constants.

Unit-Ramp Response of First-Order Systems. Since the Laplace transform of
the unit-ramp function is 1/s%, we obtain the output of the system of Figure 5-1(a) as

_ 1 1
Ts + 1 52

Expanding C(s) into partial fractions gives

C(s)

T 7?
s Ts +1

C(s) = ;15 - (5-5)

Taking the inverse Laplace transform of Equation (5-5), we obtain
c(ty=t—T + Te™"'?, fort =0 (5-6)

The error signal e(¢) is then

r(t) = c(1)
T(l — e“/T)

(1)

i
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Figure 5-3
Unit-ramp resporse
of the system shown
in Figure 5-1{a).

" Figure 5-4
Unit-impulse
response of the
system shown in
Figure 5-1(a).
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As t approaches infinity, e'/T approaches zero, and thus the error signal e(¢) approaches
T or
e(co) =T

The unit-ramp input and the system output are shown in Figure 5-3. The error in
following the unit-ramp input is equal to T for sufficiently large ¢. The smaller the time
constant T, the smaller the steady-state error in following the ramp input.

{Unit-Impulse Response of First-Order Systems. For the unit-impulse input,
R(s) = 1 and the output of the system of Figure 5-1(a) can be obtained as

1
C) =757 (5-7)
The inverse Laplace transform of Equation (5-7) gives
1
c(t) = —e/7T, fort =0 (5-8)

T

The response curve given by Equation {5-8) is shown in Figure 5-4.
e |

1
T

Section 5-2 / First-Order Systems 223



An Important Property of Linear Time-Invariant Systems. In the analysis
above, it has been shown that for the unit-ramp input the output c(¢) is

c(ty=t—T +Te'", forr=0 [SeeEquation (5-6).]
For the unit-step input, which is the derivative of unit-ramp input, the output ¢(z) is
c(t) =1= e, fort =0 [See Equation (5-3).]

Finally, for the unit-impulse input, which is the derivative of unit-step input, the output
c(t)is

1
e(t) = ?e—f/T, fort =90 [See Equation (5-8).]

Comparing the system responses to these three inputs clearly indicates that the response
to the derivative of an input signal can be obtained by differentiating the response of the
system to the original signal. It can also be seen that the response to the integral of the
original signal can be obtained by integrating the response of the system to the original
signal and by determining the integration constant from the zero output initial condi-
tion. This is a property of linear time-invariant systems. Linear time-varying systems and
nonlinear systems do not possess this property.

5-3 SECOND-ORDER SYSTEMS
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In this section, we shall obtain the response of a typical second-order control system to
a step input, ramp input, and impulse input. Here we consider a servo system as an
example of a second-order system.

Servo System. The servo system shown in Figure 5-5(a) consists of a proportional
controller and load elements (inertia and viscous friction elements). Suppose that we
wish to control the output position ¢ in accordance with the input position 7.

The equation for the load elements is

Jc+ B =T
where T is the torque produced by the proportional controller whose gain is K. By
taking Laplace transforms of both sides of this last equation, assuming the zero initial

conditions, we obtain
Js*C(s) + BsC(s) = T(s)

So the transfer function between C(s) and 7T'(s) is
C(s) 1

T(s) s(Js+ B)

By using this transfer function. Figure 5-5(a) can be redrawn as in Figure 5-5(b), which
can be modified to that shown in Figure 5-5(c). The closed-loop transfer function is then
obtained as

C(s) K K/J

R(s) Js s+ Bs+ K s+ (B/J)s + (KJJ)

Such a system where the closed-loop transfer function possesses two poles is called a
second-order system. (Some second-order systems may involve one or two zeros.)
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Figure 5-§

(2) Servo system;
(b) block diagram;
(c) simplified block
diagram.

Y a

&
(@
R(s) : T(s) ) c'(f)
X ™ U5+ B) —
(b)
R(s) K C(s)
>\ (s + B)

(©)

Step Response of Second-Order System. The closed-loop transfer function of
the system shown in Figure 5-5(c) is

C(s) K
R(s) Js’+ Bs+ K

(5-9)

which can be rewritten as
K
C(s)

A NN e

The closed-loop poles are complex conjugates if B2 — 4JK < 0 and they are real if
B? ~ 4JK = 0.In the transient-response analysis, it is convenient to write

7=0J%1, 7=2§wn=20'
where o is called the attenuation; w,, the undamped natural frequency; and ¢, the damp-
ing ratio of the system. The damping ratio { is the ratio of the actual damping B to the
critical damping B, = 2VJK or
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Figure 5-6
Second-order system.
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Wy

R(s) £(s) 2 Ci(s)
s(s + 2Zw,) -

In terms of { and w,,, the system shown in Figure 5-5(c) can be modified to that shown
in Figure 5-6, and the closed-loop transfer function C(s)/R(s) given by Equation (5-9)
can be written

C(s) _ v,
R(s) s+ 2lw,s + o>

(5-10)

This form is called the standard form of the second-order system.

The dynamic behavior of the second-order system can then be described in terms of
two parameters { and w,. If 0 < ¢ < 1, the closed-loop poles are complex conjugates
and lie in the left-half s plane. The system is then called underdamped, and the tran-
sient response is oscillatory. If { = 0, the transient response does not die out. If { = 1,
the system is called critically damped. Overdamped systems correspond to £ > 1.

We shall now solve for the response of the system shown in Figure 5-6 to a unit-step
input. We shall consider three different cases: the underdamped (0 < ¢ < 1), critically-
damped (¢ = 1), and overdamped ({ > 1) cases.

(1) Underdamped case (0 < { < 1): In this case, C(s)/R(s) can be written
CGs) _ o]

R(S) (S + gwn + jwd)(s + gwn - ]wd)

where w; = 0, V1 — (2. The frequency w, is called the damped natural frequency. For
a unit-step input, C(s) can be written

@}

(s* + 2{w,s + w?)s

C(s) = (5-11)

The inverse Laplace transform of Equation (5-11) can be obtained easily if C(s) is writ-
ten in the following form:

1 s+ 2w,
Cls) = 5 57+ 2w,s + o
1 stiw, o,
s (s + g’a)n)z -+ w%, (s -+ §w,,)2 + wﬁ

In Chapter 2 it was shown that
gg-l[ s+ {w,

s+ {wn)z +

} = e ¢ coswyt

wy

3! |
(s + Lw,) + @b

= e 4“' sin wyl
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Hence the inverse Laplace transform of Equation (5-11) is obtained as
£HC(s)] = c(r)

=1- e‘g“’"’<cos wyt +

{ , )
————sinw,t
A /1 — 52,
e"‘gmn“

/1 _ 72

=1- ——“sin(wdt + tan™ —1———§—), fort =0 (5-12)
V1 -2 {

This result can be obtained directly by using a table of Laplace transforms. From

Equation (5-12),it can be seen that the frequency of transient oscillation is the damped

natural frequency w, and thus varies with the damping ratio {. The error sxgnal for this

system is the difference between the input and output and is

e(t) = r(t) — c(1)

= e“g"’“‘(coswdt + fort =0

)
————sinwy! |,
1-2 ¢
This error signal exhibits a damped sinusoidal oscillation. At steady state, or at ¢ = co
no error exists between the input and output.

If the damping ratio { is equal to zero, the response becomes undamped and
oscillations continue indefinitely. The response c(¢) for the zero damping case may be
obtained by substituting { = 0 in Equation (5-12), yielding

c(t) = 1 — cosw,t, fort =0 (5-13)

Thus, from Equation (5-13), we see that , represents the undamped natural frequen-
cy of the system. That is, w,, is that frequency at which the system output would oscillate
if the damping were decreased to zero. If the linear system has any amount of damping,
the undamped natural frequency cannot be observed experimentally. The frequency
that may be observed is the damped natural frequency w,, which is equal to w, V1 — ¢Z.
This frequency is always lower than the undamped natural frequency. An increase in
would reduce the damped natural frequency w,. If { is increased beyond unity, the
response becomes overdamped and will not oscillate.

(2) Critically damped case ({ = 1): If the two poles of C(s)/R(s) are equal, the system
is said to be a critically damped one.
For a unit-step input, R(s) = 1/s and C(s) can be written
2

Cls) = "= (5-14)
i (S -+ w,,) M
The inverse Laplace transform of Equation (5-14) may be found as
c(t) =1 - (1 + wy), fort=0 (5-15)

This result can also be obtained by letting { approach unity in Equation (5-12) and by
using the following limit:

sin wyt i sinw, V1 — %t ;
= lim = w,

SVi-g S Vi-g
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(3) Overdamped case ({ > 1): In this case, the two poles of C(s)/R(s) are negative
real and unequal. For a unit-step input, R(s) = 1/s and C(s) can be written

w2

= 5-16
(s+§wn+wn\/§2— 1)(s + fw, — 0,V - l)s ( )

The inverse Laplace transform of Equation (5-16) is

1

C(s) =

C(f) =1+ e_(;+ “4‘2"1)‘%[
VP -1+ VI -1)
1 e_(g_ v 2‘_1)“’;1[

Mz\/gz-—l(g—— £-1)

) w, (e Syt e szt>
+ - - = ~

5 T —\ s 5 ) fort =0 (5-17)
where s, = ({ + V% — 1o, and s, = ({ — V{* — 1)w,. Thus, the response c(¢)
includes two decaying exponential terms.

When { is appreciably greater than unity, one of the two decaying exponentials
decreases much faster than the other, so the faster decaying exponential term (which
corresponds to a smaller time constant) may be neglected. That is, if —s, is located very
much closer to the jow axis than —s, (which means |s2‘ < |s1 ), then for an approximate
solution we may neglect —s;. This is permissible because the effect of —s; on the response
is much smaller than that of —s,, since the term involving s; in Equation (5-17) decays
much faster than the term involving s,. Once the faster decaying exponential term has
disappeared, the response is similar to that of a first-order system, and C(s)/R(s) may
be approximated by

C(S> - {w, — w,V gz -1 _ 5
R(s) s+ ilw, —w,VZ-1 S$T5

This approximate form is a direct consequence of the fact that the initial values and
final values of both the original C(s)/R(s) and the approximate one agree with each
other.

With the approximate transfer function C(s)/R(s), the unit-step response can be
obtained as

The time response c(¢) is then

c(t) =1 — &Vt forg =0
This gives an approximate unit-step response when one of the poles of C(s)/R(s) can
be neglected.

A family of unit-step response curves ¢(¢) with various values of { is shown in Fig-
ure 5-7, where the abscissa is the dimensionless variable w,z. The curves are functions

Chapter 5 / Transient and Steady-State Response Analyses



Figure 5-7
Unit-step response
curves of the system
shown in Figure 5-6.
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only of . These curves are obtained from Equations (5-12), (5-15), and (5-17). The
system described by these equations was initially at rest.

Note that two second-order systems having the same £ but different w, will exhibit
the same overshoot and the same oscillatory pattern. Such systems are said to have the
same relative stability.

It is important to note that, for second-order systems whose closed-loop transfer
functions are different from that given by Equation (5-10), the step-response curves
may lock quite different from those shown in Figure 5-7.

From Figure 5-7, we see that an underdamped system with { between 0.5 and 0.8 gets
close to the final value more rapidly than a critically damped or overdamped system.
Among the systems responding without oscillation, a critically damped system exhibits
the fastest response. An overdamped system is always sluggish in responding to any
inputs.

Definitions of Transient-Response Specifications. In many practical cases,
the desired performance characteristics of control systems are specified in terms of
time-domain quantities. Systems with energy storage cannot respond instantaneously
and will exhibit transient responses whenever they are subjected to inputs or
disturbances.

Frequently, the performance characteristics of a control system are specified in terms
of the transient response to a unit-step input since it is easy to generate and is suffi-
ciently drastic. (If the response to a step input is known, it is mathematically possible to
compute the response to any input.)

The transient response of a system to a unit-step input depends on the initial condi-
tions. For convenience in comparing transient responses of various systems, it is a com-
mon practice to use the standard initial condition that the system is at rest initially with
the output and all time derivatives thereof zero. Then the response characteristics of
many systems can be easily compared.
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Figure 5-8
Unit-step response
curve showing ¢, ¢,,
ty, M,,and 1.
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The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifying the transient-response characteristics of-
a control system to a unit-step input, it is common to specify the following:

1. Delay time, ¢,

2. Rise time, ¢,

3. Peak time, ¢,

4, Maximum overshoot, M,

5. Settling time, £,

These specifications are defined in what follows and are shown graphically in Figure 5-8.

1. Delay time, ¢,: The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, ¢,: The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped second-
order systems, the 0% to 100% rise time is normally used. For overdamped systems,
the 10% to 90% rise time is commonly used.

3. Peak time, ¢ ,: The peak time is the time required for the response to reach the first
peak of the overshoot. .

4. Maximum (percent) overshoot, M,: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value. of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined by

c(t,) = ¢(o0)

c(o0)
The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

5. Settling time, #,: The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the
largest time constant of the control system. Which percentage error criterion to use
may be determined from the objectives of the system design in question.

Maximum percent overshoot = X 100%

et '
@4 Allowable tolerance

! Mp_lf_‘_7\ NP ny 005

e 2

0.5 [~==-

Is -
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Figure 5-9
Definition of the
angle 3.

The time-domain specifications just given are quite important since most control
systems are time-domain systems; that is, they must exhibit acceptable time responses.
(This means that, the control system must be modified until the transient response is
satisfactory.)

Note that not all these spemﬁcatlons necessarily apply to any given case. For exam-
ple, for an overdamped system, the terms peak time and maximum overshoot do not
apply. (For systems that yield steady-state errors for step inputs, this error must be kept
within a specified percentage level. Detailed discussions of steady-state errors are post-
poned until Section 5-9.)

A Few Comments on Transient-Response Specifications. Except for certain
applications where oscillations cannot be tolerated, it is desirable that the transient re-
sponse be sufficiently fast and be sufficiently damped. Thus, for a desirable transient re-
sponse of a second-order system, the damping ratio must be between 0.4 and 0.8. Small
values of {({ < 04) yield excessive overshoot in the transient response, and a system
with a large value of {({ > 0.8).responds sluggishly.

‘We shall see later that the maximum overshoot and the rise time conflict with each other.
In other words, both the maximum overshoot and the rise time cannot be made smaller
simultaneously. If one of them is made smaller, the other necessarily becomes larger.

Second-Order Systems and Transient-Response Specnﬁcatlons In the fol-
lowing, we shall obtain the rise time, peak time, maximum overshoot, and settling time
of the second-order system given by Equation (5~10). These values will be obtained in
terms of ¢ and w,,. The system is assumed to be underdamped.

Rise timet,: Referring to Equation (5-12), we obtain the rise time ¢, by letting c(t,} = 1.

c(t,) =1=1- e'g‘”"’f(cos wyt, + %sin wdt,)- (5-18)
1-¢
Since e¥“ # (), we obtain from Equation (5-18) the following equation:
{ .
Cos wyt, + ————=sinwyt, = 0
V1= ¢
or
V1 - 7 @
tan wyt, = M- =
I4 a
Thus, the rise time ¢, is
1 w, T —
f, =~ tan”" ( [ ) = P (5-19)
Wy o Wy
where B is defined in Figure 5-9. Clearly, for a small value of ¢,, w, must be large.
Jo
—*—Q“‘" Joy
w, 1—42 i
ﬂ? .
0 o
el
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Peak time t,: Referring to Equation (5-12), we may obtain the peak time by differen-
tiating c(¢) with respect to time and letting this derivative equal zero. Since
dc

El‘— = gwne_g“’”[(coswdt +

{ . )
—————sin wyt
Vi1 - ¢

gwd )

——————COS Wyl
V1 -2
and the cosine terms in this last equation cancel each other, dc/dt, evaluated at t = ty
can be simplified to '

+ e_g‘”"'(wd Sinwdt -

dc

. w —
o = (sinwyt,) ——===e = 0

t=t, V1 - 2

This last equation yields the following equation:

sinwyt, = 0
or
wyt, = 0,7, 27, 3m, ...
Since the peak time corresponds to the first peak overshoot, w,t, = 7. Hence

t, = — (5-20)

14 Wy
The peak time ¢, corresponds to one-half cycle of the frequency of damped oscillation.
Maximum overshoot M,: The maximum overshoot occurs at the peak time or at

t =t, = 7/w,. Assuming that the final value of the output is unity, M , is obtained from
Equation (5-12) as

M, =clt,) -1

— —e~(w“('"-/w”)(COS7T + #Sinﬂ'
A /1 _ gZ

eo/odr = ANV (5-21)

The maximum percent overshoot is e 7/« x 100%.
If the final value c(co) of the output is not unity, then we need to use the following

equation:
C([p) = ¢(o0)
M, =—""—-
’ ¢(c0)

Settling rime t,;: TFor an underdamped second-order system, the transient response is

obtained from Equation (5-12) as
V1~ gz)
{

e_gwu[
V1-¢?
The curves 1 + (e““’ﬂ‘ /V1~— 52) are the envelope curves of the transient response to

a unit-step input. The response curve ¢(¢) always remains within a pair of the envelope
curves, as shown in Figure 5-10. The time constant of these envelope curves is 1/{w,.

c(t) =1- sin(wdt + tan™ , fort=0

Chapter 5 / Transient and Steady-State Response Analyses



Figure 5-10

Pair of envelope
curves for the unit-
step response curve
of the system shown
in Figure 5~6.

The speed of decay of the transient response depends on the value of the time
constant 1/{w,. For a given w,, the settling time ¢, is'a function of the damping ratio {.
From Figure 5-7, we see that for the same w, and for a range of { between 0 and 1 the
settling time ¢, for a very lightly damped system is larger than that for a properly damped
system. For an overdamped system, the settling time ¢, becomes large because of the
sluggish response.

The settling time corresponding to a +2% or £5% tolerance band may be measured
in terms of the time constant T = 1/{w, from the curves of Figure 5-7 for different
values of {. The results are shown in Figure 5-11. For 0 < { < 0.9, if the 2% criterion is
used, ¢, is approximately four times the time constant of the system. If the 5% criterion
is used, then ¢, is approximately three times the time constant. Note that the settling
time reaches a minimum value around { = 0.76 (for the 2% criterion) or { = 0.68 (for
the 5% criterion) and then increases almost linearly for large values of .
The discontinuities in the curves of Figure 5-11 arise because an infinitesimal change
in the value of { can cause a finite change in the settling time.

For convenience in comparing the responses of systems, we commonly define the
settling time ¢, to be

4 4

ty =47 = = o, (2% criterion) (5-22)
or
3 3 .
t,=3T=—=—— (5% criterion) (5-23)
o o,

Note that the settling time is'inversely proportional to the product of the damping
ratio and the undamped natural frequency of the system. Since the value of { is usually
determined from the requirement of permissible maximum overshoot, the settling time
is determined primarily by the undamped natural frequency w,. This means that the
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Figure 5-11
Settling time ¢,
versus ¢ curves.

Figure 5-12
M, versus { curve.
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duration of the transient period may be varied, without changing the maximum over-
shoot, by adjusting the undamped natural frequency w,.

From the preceding analysis, it is evident that for rapid response w, must be large.
'To limit the maximum overshoot M, and to make the settling time small, the damping
ratio { should not be too small. The relationship between the maximum percent over-
shoot M, and the damping ratio { is presented in Figure 5-12. Note that if the damping
ratio is between 0.4 and 0.7 then the maximum percent overshoot for step response is
between 25% and 4%.

o
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20 R(s) ~ 52+ 20w, + wi
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EXAMPLE 5-1

It is important to note that the equations for obtaining the rise time, peak time, max-
imum overshoot, and settling time are valid only for the standard second-order system
defined by Equation (5-10). If the second-order system involves a zero or two zeros,
the shape of the unit-step response curve will be quite different from those shown in
Figure 5-7. : ' ‘

Consider the system shown in Figure 5-6, where { = 0.6 and w, = 5 rad/sec. Let us obtain the rise
time ¢,, peak time 7,, maximum overshoot M,,, and settling time ¢, when the system is subjected -
to a unit-step input.

From the given values of { and w,, we obtain w;, = @,V 1 — {* = dand o = {w, = 3.

Rise timet,: The rise time is
m—p 314-p8

[ =

r W, 4
where B is given by
ot P = a2
B = tan p tan 3 0.93 rad
The rise time ¢, is thus
t, = 314 093 = (.55 sec
4
Peak timet,: The peak time is
7 314
t, = ;; =7 = 0.785 sec

Maximum overshoot M » The maximum overshoot is

Mp — e‘*(fT/wd)” = e"(3/4)><3'14 = 0095

The maximum percent overshoot is thus 9.5%.
Sertiing time t,;:  For the 2% criterion, the settling time is

t3=i=i=1.33560
o 3

For the 5% criterion,

§=1sec

Servo System with Velocity Feedback. The derivative of the output signal can
be used to improve system performance. In obtaining the derivative of the output
position signal, it is desirable to use a tachometer instead of physically differentiating the
output signal. (Note that the differentiation amplifies noise effects. In fact, if
discontinuous noises are present, differentiation amplifies the discontinuous noises more
than the useful signal. For example, the output of a potentiometer is a discontinuous
voltage signal because, as the potentiometer brush is moving on the windings, voltages
are induced in the switchover turns and thus generate transients. The output of the po-
tentiometer therefore should not be followed by a differentiating element.)
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Figure 5-13

(a) Block diagram of
a servo system,;

(b) simplified block
diagram.

EXAMPLE 5-2
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C(s)

Kh e

(a)

R(s) K C(s)
s{(Js + B + KK}) o

)

The tachometer, a special dc generator, is frequently used to measure velocity with-
out differentiation process. The output of a tachometer is proportional to the angular
velocity of the motor. _

Consider the servo system shown in Figure 5-13(a). In this device, the velocity signal,
together with the positional signal, is fed back to the input to produce the actuating
error signal. In any servo system, such a velocity signal can be easily generated by a
tachometer. The block diagram shown in Figure 5-13(a) can be simplified, as shown in
Figure 5-13(b), giving

C(s) K
R(s) Js*+ (B+ KK,)s + K
Comparing Equation (5-24) with Equation (5-9), notice that the velocity feedback has
the effect of increasing damping. The damping ratio / becomes
[ = B + KK,
2VKJ

The undamped natural frequency w, = VK/J is not affected by velocity feedback. Not-
ing that the maximum overshoot for a unit-step input can be controlled by controlling
the value of the damping ratio {, we can reduce the maximum overshoot by adjusting
the velocity feedback constant K, so that { is between 0.4 and 0.7.

Remember that velocity feedback has the effect of increasing the damping ratio
without affecting the undamped natural frequency of the system.

(5-24)

(5-25)

For the system shown in Figure 5-13(a), determine the values of gain K and velocity feedback
constant K, so that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec.
With these values of K and K, obtain the rise time and settling time. Assume that/ = 1 kg-m? and
B = 1 N-m/rad/sec.

Determination of the values of K and K,: The maximum overshoot M, is given by Equation
(5-21) as
M, = oGV

Chapter 5 / Transient and Steady-State Response Analyses




This value must be 0.2. Thus,
e NV1-8r = 0

or
i
—\/1::_:? = 1.61
which yields
¢ = 0456

The peak time ¢, is specified as 1 sec; therefore, from Equation (5-20),

or

Since ¢ 18 0.456, w,, is

Wy
w, = —m——
V1-— /2

Since the natural frequency w, is equal to VK/J,

=353

K = Jo? = o} = 125 N-m
Then, K, is, from Equation (5-25),

___2\/KJ§—B=2\/1?§—1

f X % = (0.178 sec

Rise time t,: From Equation (5-19), the rise time ¢, is

m— B

Wy

r

where
g= tan—l% = tan"'1.95 = 1.10

Thus, ¢, is
t, = 0.65 sec

Sertling time 1,:  For the 2% criterion,

¥

4
t, = — = 2.48 sec
o

For the 5% criterion,

|

= 1.86 sec

t, =
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Figure 5-14
Unit-impulse
response curves of
the system shown in
Figure 5-6.
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Impulse Response of Second-Order Systems. For a unit-impulse input #(¢), the
corresponding Laplace transform is unity, or R(s) = 1.The unit-impulse response C(s)
of the second-order system shown in Figure 5-6 is

w,

s* + 2fw,s + w?

C(s) =

The inverse Laplace transform of this equation yields the time solution for the response
¢(t) as follows:

For0 = ¢ < 1,
w
c(t) =~ ot sing /1 — %1, fort =0 (5-26)
VI-¢
For{ =1,
c(t) = w%l[e_‘”"l, fort =0 (5-27)
For £ > 1,
(1) = — VTt O VT forp =0 (5-28)

2VEE -1 2V -1

Note that without taking the inverse Laplace transform of C(s) we can also obtain
the time response ¢(t) by differentiating the corresponding unit-step response since
the unit-impulse function is the time derivative of the unit-step function. A family of
unit-impulse response curves given by Equations (5-26) and (5-27) with various val-
ues of ¢ is shown in Figure 5-14. The curves c¢(f) /w, are plotted against the dimen-
sionless variable w,¢, and thus they are functions only of {. For the critically damped
and overdamped cases, the unit-impulse response is always positive or zero; that is,
c(t) = 0.This can be seen from Equations (5-27) and (5-28). For the underdamped
case, the unit-impulse response ¢(t) oscillates about zero and takes both positive and
negative values.

1.0 ;
08 AN g: 0.1
0.6 N\ (=03
- [=0.5
04 /ZQ = (=07 =
02 i\{?’ et /
C_(Q 0 \§\§\ B2 s S \
Wy e
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Figure 5-15
Unit-impulse
response curve of the
system shown int
Figure 5-6.

(B )

Unit-impulse response

L+ M,

N

'p

From the foregoing analysis, we may conclude that if the impulse response c(¢) does
not change sign, the system is either critically damped or overdamped, in which case
the corresponding step response does not overshoot but increases or decreases monot-
onically and approaches a constant value.

The maximum overshoot for the unit-impulse response of the underdamped system

occurs at

f= % where0<{ <1 (5-29)
W, V 1- Zz

[Equation (5-29) can be obtained by equating dc/dr to zero and solving for t.] The max-
imum overshoot is

/1 _ 2
4 tan™" 1-¢ ), where 0 < ¢ <1 (5-30)

c([),max = w,,exp(— \/1—__—52' ’

[Equation (5-30) can be obtained by substituting Equation (5-29) into Equation (5-26).]

Since the unit-impulse response function is the time derivative of the unit-step
response function, the maximum overshoot M, for the unit-step response can be
found from the corresponding unit-impulse response. That is, the area under the unit-
impulse response curve from ¢ = 0 to the time of the first zero, as shown in Figure
5-15,is 1 + M, where M, is the maximum overshoot (for the unit-step response)
given by Equation (5-21). The peak time ¢, (for the unit-step response) given by
Equation (5-20) corresponds to the time that the unit-impulse response first crosses
the time axis.

5-4 HIGHER-ORDER SYSTEMS

In this section we shall present a transient response analysis of higher-order systems in
general terms. It will be seen that the response of higher-order systems is the sum of the
responses of first-order and second-order systems.
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