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Stability of Control Systems -
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7.1 _Background

As we have seen earlier that every system, for small amount of time has to pass
through a transient period. Now whether system will reach to its intended steady
state after passing through transients or not ? The answer to this question means to
define whether system is stable or unstable. This is stability analysis.

For example, a meter is connected in a system to measure a particular parameter.
Before showing the final reading, the pointer of meter will pass through the transients.
The final reading is the steady state of the pointer. But during transients, it is possible
that the pointer may become stationary due to certain problems in the moving system
of that meter. So to achieve steady state, the system must pass through the transient
period successfully. The analysis of, whether the given system can reach steady state;
passing through the transients successfully is called Stability Analysis of the system.

7.2 ConcaEt of Stability

Consider a system i.e. a deep container with an object placed inside it as shown in
the Fig. 7.1.

Fig. 7.1

(7-1)
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Now if we apply a force to take out the object, as the depth of the container is
more, it will oscillate and will settle down again at its original position.

If we assume that the force
required to take out the object tends to
infinity i.e. always object will oscillate \
when force is applied and will settle }\ [
down but will not come out, such a
system is called absolutely stable
system. No change in parameters,
disturbances, changes the output. As
against this, consider a container which
is pointed one, on which we try to
keep a circular objects shown in the
Fig. 7.2.

In this case object will fall down without any external application of force. So if
we try to keep the circular object, we will always fail to do so. Such system is called
unstable system.

o —

(a) (b)

Fig. 7.2

While in certain cases the container is shallow then there exists a critical value of
force for which object will come out of container.
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Fig. 7.3
As long as F < F_ical, Object regains its original position but if F > F a1, Object
will come out. Stability depends on certain conditions of the system hence system is
called conditionally stable system.

There are few systems e.g. : pendulum where system keeps on oscillating when
certain force is applied. Such systems are neither stable nor unstable and hence called
critically stable or marginally stable systems.

Now let us see on which factors exactly the stability depends in a control system.
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7.3 Stability of Control Systems

The stability of a linear closed-loop system can be determined from' the locations
of closed loop poles in the s-plane.

e.g. : If system has closed loop T.F.
| - Cls) _ 10
R(s) (s+2)(s+4)

Let us find out, output response for unit step input.

R(s) = 1/s
e s N ..
s(s+2)(s+4) s s+2 s+4
C(s) = 10 1/8- 4 + Y3 ... Finding the partial fractions
s s+2 s+4
o) = 125_25 125
S s§+2 s+4
o) = 125 - 25e 2 +125e™# =C +¢, ()

Steady state Transient

As closed loop poles are located in left half of s-plane, in output response there
are exponential terms with negative indices i.e. e ™'

Now as t — « both exponential terms will approach to zero and output will be
steady state output.
ie. as t— o, c(t) =0
Transient output = 0
Such systems are called absolutely stable systems.

Now transient terms are exponential terms with negative index because closed
loop poles are located in left half of s-plane. For the above system under
consideration, the closed loop poles are s = -2 and s = — 4 and the negative indices of
exponential terms are also -2 and 4.

Key Point: Thus if closed loop poles are located in left half, exponential indices in output
are negative. And if indices are negative, exponential transient terms will vanish when
t— 0.

Now let us have a system with one closed loop pole located in right half of s-plane.
c® _ 10
R(s) (s—2)(s+4)

Find out unit step response of above system.

s(s—2)(s+4) s s—-2 s5+4
Cls) = _l.25+ 0.833 . 0.416

S s—2 s+4
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c(t) = -125+ 0833 " +0416e™"

Now due to pole located in right half, there is one exponential term with positive
index in transient output.

while Ces(t) = =125

cft)
0
+ 4.91
+ 4423
+ 2481.88

[+ &

B BN < O

As it is clear from the table that instead of approaching to steady state value as
t -, due to exgunential term with positive index, transients go on increasing in
amplitude. So such system is said to be unstable.

Key Point: So it is clear that if any of the closed loop poles lie in right half of s-plane,
then it gives the exponential term of positive index and due to that, transient response of
increasing amplitude., making system unstable.

In such systems output is uncontrollable and unbounded one. Output response of
such systems is as shown in the Fig. 7.4.

c(t) %
)

c(t) o0
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Steady state output

— > t 1

(a) Increasing exponentially (b) Increasing amplitude oscillations

Fig. 7.4 Uncontrollable response

For such unstable systems, if input is removed output may not return to zero. And
as soon as input power is turned on, output tends to «. If no saturation takes place in
system and no mechanical stop is provided then system may get damaged and failed.

Remember that the stability depends on locations of closed loop poles. And the
closed loop poles are the roots of the characteristic equation of the system.

So, Closed loop poles = Roots of the characteristic equation

If all the closed loop poles or roots of characteristic equation lies in left half of
s-plane then in the output response there will be exponential terms with negative
indices along with steady state terms. Such transient terms approach to zero as time
advances. Eventually output reaches to equilibrium and attains steady state value. So
transient terms in such systems may give oscillations but the amplitudes of such
oscillations will be decreasing w.r.t. time and finally will vanish. So output response of
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such system can be shown as in the Fig. 7.5 (a) and (b).

c(t) Damped oscillations
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Fig. 7.5 Stable response
Definition of BIBO Stability : This is Bounded Input Bounded Output stability (BIBO).

A linear time invariant system is said to be stable if following conditions are satisfied :

i) When the system is excited by a bounded input, output is also bounded and
controllable.

i) In the absence of the input, output must tend to zero irrespective of the initial
conditions.

Unstable System : A linear time invariant system is said to be unstable if,
i) For a bounded input it produces unbounded output.

ii) In absence of the input, output may not return to zero. It shows certain output
without input.

Besides these two cases, if one or more pairs of simple nonrepeated roots of
characteristic equation are located on the imaginary axis of the s-plane, but there are
no roots in the right half of s-plane, the output response will be undamped sinusoidal
oscillations of constant frequency and amplitude. Such systeins are said to be critically
or marginally stable systems.

Critically or Marginally Stable System : A linear time invariant system is said to be
critically or marginally stable if for a bounded input its output oscillates with constant
frequency and amplitude. Such oscillations of output are called undamped oscillations or
sustained oscillations.

For such systems, one or more pairs of nonrepeated roots are located on
imaginary axis as shown in the Fig. 7.6 (b).

Output response of such systems is as shown in the Fig. 7.6 (a).

Key Point: The stability or instability is a property of the system itself i.e. closed loop
poles of the system and does not depend on input or driving function. The poles of input
do not affect stability of system, they affect only steady state output.
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Fig. 7.6 Critically or marginally stable

Special Case :
system is said to be unstable.

If there are repeated roots located purely on imaginary axis,

Repeated poles
’/ on jo axis
Joq xx
>
—jwq %%
s-plane

(a) Location of poles

c(t)
4

Steady state
output

(b) Unstable system

Conditionally Stable System :
A linear time invariant system is
said to be conditionally stable if for
a certain condition of a particular
parameter of the system, its output
is bounded one. Otherwise if that
condition is violated output
becomes unbounded and system
becomes unstable i.e. stability of
system depends on condition of
parameter of the system. Such
system is called conditionally
stable system.

So s-plane can be divided into
three distinct zones from stability
point of view as shown in the
Fig. 7.8.

Fig. 7.7
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Fig. 7.8 Division of s-plane from stability point
of view
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Sr. | Nature of closed Locations of closed Step response Stability
No. loop poles loop poles in s-plane condition
1. Real, negative i.e. in 4jw t

L.H.S. of s-plane c(t)
— > Absolutely stable
Pure exponential
2. Complex conjugate with 4 jo c(t)
negative real part i.e. in T——v joo,
L.H.S. of s-plane < | .o Absolutely stable
—dy L .
e —Jl‘.ﬂz >t
Damped oscillations
3 Real, positive i.e. in
R.H.S. of s-plane (Any pjo c(t) & ‘-’;
one closed loop pole in Unstable
right half irrespective of )\ 5
number of poles in left +a, <
half of s-plane) Exponential but :
increasing towards o«
4, Complex conjugate with 4jo fc(t)
positive real part i.e. in Jaog preee
R.H.S. of s-plane 4 ' i Unstable
oo [ Oscillations with =3
increasing amplitude
5. Nonrepeated pair on
imaginary axis without any jo
pole in R.H.S. of s-plane {jﬂh c(t) 4 -
o .5 Marginally or
. critically stable
: L0 » |
or Frequency of oscillations
= W1
jo©
iimg c(t) Marginally or
]lt?1 S critically stable.
""il'ﬂ-l
—Jo, >t
Two nonrepeated pairs on| Sustained oscillations
imaginary axis. with two frequency
components w4 and w,
6. Repeated pair on :
imaginary axis without any "u’:'m o
pole in R.H.S. of s-plane Jo4
> O Unstable
+ —jo, Oscillations of
increasing amplitude

Table 7.1 Closed loop poles and stability
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7.4 Zero Input and Asymptotic Stability

Some systems in practice may get driven by the initial conditions, without any
input applied to it. For example a series RC circuit with capacitor initially charged to
some -voltage. This, initial voltage is enough to start the operation of the system. This
initial voltage, without any external input, drives the current till capacitor gets fully
discharged. The stability related to such a system which is under zero input condition
but operated under initial condition is called zero input stability of the system. The
current through RC circuit reduces to zero as capacitor gets fully discharged. The
current in such a case is called zero input response of the system, which is only due
to the initial conditions. From this, zero input stability can be defined as :

If the zero input response of the system subjected to the finite initial conditions,
reaches to zero as time t approaches infinity, the system is said to be zero input
stable otherwise it is called zero input unstable.

Mathematically if c(t) is the zero input response of the system then for zero input
stability there exists a positive number M, which depends on set of finite initial
conditions such that,
le(t)] < M<wforallt2>t

and Lim |c(t)] = 0

I — m

As magnitude of zero input response reaches zero as Lim t — =, the zero input
stability is also called the asymptotic stability.

7.4.1 Remarks about Asymptotic Stability

Following are the important remarks about zero input or asymptotic stability,

1. The zero input or asymptotic stability depends on the roots of the characteristic
equation i.e. closed loop poles of the systems.

2. All the requirements about the locations of roots of the characteristic equation
related to BIBO stability are applicable to zero input or asymptotic stability. For zero
input or asymptotic stability also, all the roots of the characteristic equation must be
located in left half of s-plane.

3. If a system is BIBO stable, then it must be zero input or asymptotically stable.

Thus hereafter the system is said to be just stable, unstable or marginally stable,
for all practical purposes.

Note that for nonrepeated pair of roots of the characteristic equation on jo axis,
system is marginally stable. But an integrator having transfer function 1/s i.e. root
located at origin is treated to be stable for all practical purposes as an exception.
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7.5 Relative Stability

The system is said to be relatively more stable or unstable on the basis of settling
time. System is said to be relatively more stable if settling time for that system is less
than that of the other system.

The settling time of the root or pair of complex conjugate roots is inversely
proportional to the real part of the roots.

So for the roots located near the jo axis, settling time will be large. As roots or
pair of complex conjugate roots moves away from jo - axis i.e. towards left half of
s-plane, settling time becomes lesser or smaller and system becomes more and more
stable.

So relative stability of the system improves, as the closed loop poles move away
from the imaginary axis in left half of s-plane.

c(t)

&ﬁ? gf T ’{
. |

P2 Py k Relatively more “2 =
stable for P, &
|
(a) (b) (c)
jo - axis
&
c(t) stable
' fﬂl’ U.1
' Relative
stability «
improves
More stable wiilsa
for o, P
| e
(d) (e)

Fig. 7.9 Relative stability
7.6 Routh-Hurwitz Criterion

This represents a method of determining the location of poles of a characteristic
equation with the respect to the left half and right half of the s-plane without actually
solving the equation. |

The T.F. of any linear closed loop system can be represented as,
Cs) bps™+bys™l+. .+by, _ B(s)

R(s) ags"+a;s" ! +...+a, F(s)
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where "a’ and b’ are constants.

To find closed loop poles we equate F(s) = 0. This equation is called characteristic
equation of the system.

1 2

i.e. F(s) = ags"+a18" +a,8" “+.....+a,=0

Thus the roots of the characteristic equation are the closed loop poles of the
system which decide the stability of the system.

7.6.1 Necessary Conditions

In order that the above characteristic equation has no root in right of s-plane, it is
necessary but not sufficient that,

1) All the coefficients of the polynomial have the same sign.

2) None of the coefficient vanishes i.e. all powers of ‘s’ must be present in
descending order from "n’ to zero.

These conditions are not sufficient.
7.6.2 Hurwitz’s Criterion

The sufficient condition for having all the roots of characteristic equation in left
half of s-plane is given by Hurwitz. It is referred as Hurwitz Criterion. It states that :

The necessary and sufficient condition to have all roots of characteristic equation

in left half of s-plane is that the sub-determinants Dy , K =1, 2, ....n obtained from
Hurwitz’s determinant "H’ must all be positive.

Method of forming Hurwitz determinant :

A1 A3 a5 sesense d9n-1
dp A2 Ay e Ad9p-2
0 aq 33 i a2n_3
' g Ay e agn-
H = 0 a2 2n-4
ﬂ 0 ﬂl Elzn_5
0 & ¢ wwme  BAg
The order is n x n where n = order of characteristic equation. In Hurwitz

determinant all coefficients with suffices greater than 'n’ or negative suffices must all
be replaced by zeros. From Hurwitz determinant subdeterminants Dg, K= 1, 2, ... n
must be formed as follows :

@) a3 a5

a; aj

D, = |ag] D, = Diy=lag a; ay Dx= |H]

a a
0 2 U a] 513

For the system to be stable, all the above determinants must be positive.
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Ex. 7.1 Determine the stability of the given characteristic equation by Hurwitz’s method.

F(s) = s° +_52 +s' +4 = 0 is characteristic equation.

Sol.: ap =1, a; =1, a, =1, a3 =4, n=3

a; a3 as 1 4 0
'-=E.U 32 34=110
0 d1 4dj3 0 1 4
_|1|=]_
_ |t 4
— 11 —
1 4 0
=111 0|=
01 4

4-16=-12

As D, and D3 are negative, given system is unstable.

7.6.3 Disadvantages of Hurwitz’s Method

i)  For highér order systems, to solve the determinants of higher order is very
complicated and time consuming.

ii) Number of roots located in right half of s-plane for unstable system cannot be
judged by this method.

iii) Difficult to predict marginal stability of the system.

Due to these limitations, a new method is suggested by the scientist Routh called

Routh's method. It is also called Routh-Hurwitz method.

7.7_Routh’s Stability Criterion

It is also called Routh’s array method or Routh-Hurwitz’s Method |
Routh suggested a method of tabulating the coefficients of characteristic equation
in a particular way. Tabulation of coefficients gives an array called Routh’s array.

Consider the general characteristic equation as,

= apgs"+a;s

n-1

Method of forming an array :

5‘I'I

: 5nﬂl
sn-z

sn+3

ap as a4
a, % as
b b, bs

C4 €z C3

ap

+as Sn_

wtan =0
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Coefficients for first two rows are written directly from characteristic equation.

From these two rows next rows can be obtained as follows.
aja—-agas b a) 34 —apas b ajag —apay
3

r

aj - a ) aj

— ¥

I

by

th .
From Z"d and 3rd row, 4 row can be obtained as
P b]ﬂ3—ﬂlb2 _ bl ﬂﬁ-ﬂlb:.],
; el F cz - E

b, by

0

This process is to be continued till the coefficient for s” is obtained which will

be a,, . From this array stability of system can be predicted.

7.7.1 Routh’s Criterion

The necessary and sufficient condition for system to be stable is “All the terms
in the first column of Routh's array must have same- sign. There should not be any
sign change in the first column of Routh’s array.”

If there are any sign changes existing then,
a) System is unstable.

b) The number of sign changes equals the number of roots lying in the right half of
the s-plane.

Examine the stability of given equations using Routh's method :

Ex. 7.2 s +6s% +11s+6=0

Sol.: ay=1 a;=6 a;=11, az3=6, n=3

s 1 11
g% 6 6
1 11x6-6 0
S = 10

6
s? 6

As there is no sign change in first column, system is stable.
Ex. 7.3 s° +4s* +5+16=0
Sol. : ﬂ{]=1, a]=4, ﬂz=1, ﬂ3=16

5% 1 1
2 +4 16

5
1 4 -16 \ 0

D

5“ + 16

As there are two sign changes, system is unstable.
Number of roots located in the right half of s-plane = number of sign changes = 2.
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