THE ROOT LOCUS
TECHNIQUE

We have observed in the previous chapter that there are two related points with respect to study
of stability of a control system. First, all the poles of the closed-loop system must lie on the
left-hand side of the imaginary axis in the s-plane. Second, the examination has to be made to
see how close the poles are with the jw-axis of the s-plane. The second aspect provides us with
information regarding the relative stability of the control system.

We have also seen that the poles are the roots of the characteristic equation. The characteristic
equation is obtained by substituting the denominator of the closed-loop transfer function to zero.
The characteristic equation is useful in the study of performance of a control system.

From the design viewpoint, by writing the differential equation of the system and solving
the differential equation with respect to a controlled variable, the time response can be found
out. Thus, we will know the accurate solution of the equation and hence the performance of the
system. But this approach of solution may be difficult for even a slightly complex system. Efforts
involved in determining the roots of the characteristic equation have been avoided by applying
Routh-Hurwitz criterion as described in the previous chapter. But this criterion only tells the
designer as to whether a system is stable or unstable. The designer of a control system cannot
remain satisfied with this information because he is unable to indicate the degree of stability of
the system. The degree of stability will tell about the amount of overshoot, settling time, etc. for
an input, say a step or a ramp input.

Root locus technique is a powerful graphical method used for the analysis and design of a
control system. This method of analysis not only indicates whether a system is stable or unstable
but also shows the degree of stability of a stable system.

Root locus is a plot of the roots of the characteristic equation of the closed loop as a
function of gain. The effect of adjusting the closed-loop gain of the system on its stability can be
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studied by root locus method of stability analysis. In root locus method, gain is assumed to be a
parameter which is varied from 0 to o« and the movement of the poles in the s-plane is sketched.

Consider a second-order unity feedback control system shown in Figure 8.1.

1

R(s) K g

» C(s)

Fig. 8.1 Block diagram of a second-order system.

The open-loop transfer function of the system is given as
K

G(s) =
) s(s +a)

The characteristic equation is s(s + a) = 0.
It has two poles at s = 0 and s = —a.
The closed-loop transfer function of the system is

C(s) _ G(s) _ K

R(s) 1+G()H(s) s’ +as+K
The characteristic equation of the system is

s2+as+K=0 (8.1)
The second-order system as above will be stable for positive values of @ and K. Its dynamic
behaviour will be controlled by the roots of the characteristic equation.

Roots of the characteristic equation are

—atVa® -4K
2

2
N o

If we vary K from zero to infinity, the two roots (s,, s,) will describe a loci in the s-plane.
The root locations for different values of K will change.

By examining the values of roots, that is s, and s,, we observe that
(1) When 0 < K < a*/4, the roots are real and distinct.

S1s 8y =
or

When K = 0 the roots are s, = 0 and s, =—a, which are the open-loop poles.
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(2)
(3)

When K = a*/4, the roots are real and equal, that is, s, = 5, = —a/2.

When a’/4 < K < o, the roots are complex conjugate with constant real part equal to
-al2.

The root loci plotted for changing values of K shown in Figure 8.2 indicates the following

system behaviour.

(1)

(2)

(3)

or

(a)

A Jjo

(K >ai4) —»

K>0  Bu=a24
T > R < o
4
I:SE="E,K=0] \

(K > &l4) —>

BeX

Fig. 8.2 Root loci of a second-order closed-loop system with characteristic equation,

s? + as + K = 0 and changing values of gain K.

The root locus plot has two branches starting at the two open-loop poles (s,=0ands,=-a)
when the value of gain K is 0.

As K is increased from 0 to /4, the roots move along the real axis towards the point, R
(—a/2, 0) from opposite directions. The system will behave as an over-damped system. At
K = a*/4, the roots are —a/2, —a/2. At this value of K, the system will behave as critically
damped system.

At K > a*/4, the roots become complex with real part equal to —a/2, that is, the roots
break away from the real axis, become complex conjugate and move towards oo along the
vertical line at o = —a/2. Since the loci move away from the real axis, the system becomes
under-damped. For this case, settling time is nearly constant as the real part is constant.

We have drawn the root locus by direct solution of the characteristic equation. For higher
order systems, this procedure will become complicated and time consuming.

Evans in 1948 developed a simplified graphical technique for root locus plot which is
described in the following. The characteristic equation of the closed-loop system shown in
Figure 8.1 1s 1 + G(s)H(s) =0

G(s)H(s) = -1 = =1 + j0 (8.2)

Magnitude criterion

From Equation (8.2), we see that the magnitude of the open-loop transfer function is equal
to unity for all the roots of the characteristic equation, G(s)H(s) = 1. Magnitude criterion
can determine the value of X for a point to be on the root locus.
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(b) Angle criterion
The angle of the open-loop transfer function is an odd integral multiple of =.
ZLG(s)H(s) = %180° (2 + 1);

where,g=0,1,2 ...
The gain factor K does not affect the angle criterion.

For any point to be on the root locus in the s-plane, it has to satisfy both angle criterion
and magnitude criterion. The magnitude criterion is checked after confirming the existence of
the point on the root locus by applying the angle criterion. To understand this, let us consider an
example where

COHS) = 5 DG+ 2)

Let us examine whether s = —0.5 lies on the root locus or not.
First we apply angle criterion as

ZG(s)H(s) ats=-0.5= £180°(2g +1) whereg=0,1, 2, ...

Here,
ZG(s)H(s) = a = 5
(<0.5)(-0.5+1)(-0.5+2) (-0.5+ j0)(0.5+ jO)(1.5+ jO)
K £0°
= = —180°
180°0°0°

Since angle criterion is satisfied, the pqint s =—0.5 lies on the root locus. Now, we also will
check by applying the magnitude criterion to find the value of K for which the point s =—0.5 lies
on the root locus.

Using magnitude condition,

IG(s)H(s)| = 1ats=-0.5
Here,
K =1
-0.5[]0.5][1.5] ~
or
K=0375

For this value of K, point s = —0.5 lies on the root locus.

 ROOT LOCUS CONSTRUCTION PROCEDURE

As we have seen, root locus is the graphical plot of the poles of a closed-loop system with respect
to change in the gain parameter K of the system as s changes from 0 to co. The knowledge of
open-loop poles and zeros are important here as the root locus always starts from open-loop poles
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and terminate on an open-loop zero or infinity. We will take up an example of plotting the root
locus and along with that write the general rules or guidelines.

Example 8.1 Sketch the root locus of a control system whose transfer function is G(s) =
K/s (s + 1) with unity feedback.

Solution  We have

G(s) = and H(s) =1

s(s +1

G(s)H(s) =

s(s+1)
By examining the denominator of G(s), we find that the number of open-loop poles n = 2.
They are s = 0 and s = —1. As evident from the numerator, the number of open-loop zeros m = 0.

The closed-loop transfer function of the system is

C(s) G(s) _ Kis(s+1) K

R(s) 1+G(s)H(s) 1+Kis(s+1) s> +s+K
The characteristic equation is

s2+s+K=0

~12V1? -4K

2

==0.5xv0.25-K

For K > 0.25, the roots are complex conjugates.

The root loci start at 0 and —1, that is, at the open-loop poles.

The number of branches or root loci = Number of open-loop poles

Number of asymptotes = Number of open-loop poles — Number of open-loop zeros
In this case, asymptotes =2 — 0 = 2,

Determination of breakaway points:

Characteristic equation is

1+ G(s)H (s) =0
K

-S], 52 =

Substituting, ==]
s(s+1)
or, K=-s(s+1)
or, K=-s*—5
dK
We put — =0
ds
dK
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or, § ==-—=-0.5

The two root loci, starting at 0 and —1 respectively approach each other and breakaway
asymptotically at —-0.5.

The value of X at the breakaway point on the real axis is calculated as
K=-s(s+1)

=0.25
For a value of K = 0.25, the two root loci meet at the real axis at s = —0.5 and breakaway at
¢, = 90° and 270° asymptotically as K increases beyond 0.25 towards infinity, where
angles of asymptotes is
(2g +1)180°

n-=m

b,

where n = number of open-loop poles and m = number of open-loop zeros.
~ (2x0+1)x180°

2-0
= 90°
q=0,1,2,...,(n—m)-1
Ajo
Breakaway
point

nimn
olo
Q

K=0.25

Fig. 8.3 Rootlociofs?+ s+ K=0.

and

_(2x1+1)180°

= 270°
. 2-1
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The root locus has been drawn as in Figure 8.3. It may be observed that the root locus is

symmetrical about the real axis, that is o axis. There is no existence of the root locus to the left
pole at s = —1 on the real axis.

‘8.4 ROOT LOCUS CONSTRUCTION RULES

A mentioned earlier, root locus is the path of the roots of the characteristic equation, 1 + G(s)
H(s) = 0 traced out in s-plane as the system parameter (gain K) is changed.

The root locus diagram or plot can be completed using the following procedure. The

procedure is presented in the form of certain rules.

(1)

(2)

(3)

(4)

Starting and termination of root locus—From the open-loop transfer function, locate
the poles and zeros. Each branch of the root locus originates from an open-loop pole with
K = 0 and termirates either on an open-loop zero or at infinity as the value of K increases
from 0 to <. In most cases, we will have more poles than zeros. If we have n poles and m
zeros, and n > m, then n — m branches of the root locus will reach infinity. Because the root
loct originate at the poles, the number of root loci 1s equal to number of poles.

Root locus on the real axis—The root locus on the real axis always lies in a section of the
real axis to the left of an odd number of poles and zeros.

Let the open-loop transfer function of a control system be G(s) = K(s + 1)/s + 2. The
pole is at s = -2 and the zero is at s =—1 as shown in Figure 8.4 (a). The root locus will start
s = -2 and terminate at zero at s = —1. There is existence of root locus to the left of Z and
no existence to the left of P on the real axis (root locus on real axis exists to the left of odd
number of poles and zeros).

4Im
Pole  Zero
2
P\g'v > ’/: » Re
§=-2 s§s=- 0

(a)
Fig. 8.4 (a) Location of poles and zeros and the root locus on the real axis.

Symmetry of the root locus—The root loci must be symmetrical about the real axis
because the complex roots appear in pairs.

The member of asymptotes and their angles with the real axis—The (n — m) branches
of root loci move towards infinity. They do so along straight line asymptotes. The angle of
asymptotes with respect to the real axis is given by

2q + 1
¢A . (q—)lsoﬂt qg= 01112;...
nH—-—m

where n is the number of poles and m is the number of zeros.
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Centroid of the asymptotes—The linear asymptotes are centred at a point on the real axis.
This is called the centroid which is given by the relation

- 2 real parts of poles — Z real parts of zeros
4 =

n—m
Breakaway points—The root locus breakaway from the real axis where a number of roots
are available, normally, where two roots exist. The method of determining the breakaway
point is to rearrange the characteristic equation in terms of K. We then evaluate dK/ds =0 in
order to find the breakaway point. Since the characteristic equation can have real as well as
complex multiple roots, its root locus can have real as well as complex breakaway points.
However, because of conjugate symmetry of root loci, the breakaway point must either be
on the real axis or must occur in complex conjugate pairs.

Intersection of the root locus with the imaginary axis—The point at which the locus
crosses the imaginary axis, in case it does, 1s determined by applying Routh—Hurwitz
criterion. The value of K for which the locus crosses the imaginary axis is calculated by
equating the terms in the first column of the Routh array of s' and s to zero.

Angle of departure of the root locus—The angle of departure of the locus from a complex
pole is calculated as =

¢, = 180° — sum of angles made by vectors drawn from the other poles to this pole
+ sum of angles made by vectors drawn from the zeros to this pole.

Let us consider an example. Let
K

s(s + 2)(::'2 + 65 + 231

The poles are at s, =0, s, =-2,5, =-3 + j4, 5, = -3 —j4. There are no zeros. The positions

G(s)H(s) =

of poles are shown in Figure 8.4 (b). The angle of departure of the root locus from the complex
pole at P, is calculated as

¢, =180°—(127°+104° +90°) + 0 = 180° - 321° = -141°

>R,

(b)

Fig. 8.4 (b) Calculation of angle of departure of the root locus from a complex pole.
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8.5 ROOT LOCUS CONSTRUCTION RULES-ILLUSTRATED THROUGH
EXAMPLES

The root locus construction rules have been explained in the previous section. However, for the
sake of better understanding the rules are once again illustrated through examples.
The following rules are applicable in sketching the root locus plot.

Rule 1: Symmetry of root locus—Any root locus must be symmetrical about the real axis,
that is, the upper half of the root locus diagram is exactly the same as the lower half about the real
axis. This can be seen from any root locus diagram.

~ Rules 2 and 3: Starting and termination of root loci—Root locus will start from an open-
loop pole with gain K = 0 and terminate either on an open-loop zero or to infinity with K = oo,

Let us illustrate these rules with an example. Let open-loop transfer functions of control
systems are

K(s +1)
1 H(s) =

(1)  G(s)H(s) G+2)

(2) G(s)H(s) = G+ D

For (1), the root locus will start at the pole at s = -2 and terminate at zero at s =—1 as shown
in Figure 8.5 (a).

For (2) the poles are at s = 0 and s = —1. As there is no zero, the locus will originate at s =0
and s = —1 and approach towards each other and then break away to infinity as the value of gain
K is increased continuously as shown in Figure 8.5 (b).

Al Al
K -« A
slarie Breakaway
Pole Zero _~~ point sk
K=0 K=0
L. IO " gl
§==2 s=-1 §=-1
KoxY

(a) (b)

Fig. 8.5 (a) Starting and termination of root locus where number of poles are equal to number
of zeroes i.e. n = m; (b) Starting and termination of root locus when n > m.

For
K(s+1)
+ 2

Rule 4: Number of root loci—If P is the number or poles and Z is the number of zeros in
the transfer function G(s)H(s), the number of root loci N will be as follows:

N=P ifP>2Z
N=P=Z fP=2

G(s)H(s) =
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For example, in the root locus shown under Rules 2 and 3, in Figure 8.5 (a) P = 1,
Z=1.Therefore, the number of root loci, N=P=Z=1. And in Figure 8.5 (b), P=2, Z=0. Therefore,
N = 2. The two root loci originating from origin and —1 respectively are approaching to o in two
directions.

Rule 5: Root loci on the real axis—The root locus on the real axis will lie in a section of
the real axis to the left of an odd number of poles and zeros.

This rule is illustrated through the following examples:
K(s+2)(s+3)

s(s +1)

Its root locus is shown below.

(1)  G(s)H(s) =

There is no root locus on the real axis between P, and Z, because the number of poles and
zeros to its right is even, that is 2. See Figure 8.6.

Re

Fig. 8.6 Location of root locus on the real axis.

Similarly, beyond, z, to the left on the real axis there cannot be any root locus as the number
of poles and zeros is even, that is 4 in this case.

Rule 6: The number of asymptotes and their angles with the real axis—As the value of
K is increased to oo, some branches of root locus from the real axis approach infinity along some
asymptotic lines. These asymptotic lines are straight lines originating from the real axis make
certain angles with the real axis. The total number of asymptotic lines and the angles they would
make are calculated as follows:

Number of asymptotic lines asymptotes
=P-Z

where P is the number of poles and Z is the number of zeros of the open-loop transfer function,
G(s)H(s).

The angle of asymptotes with the real axis is
_(2g+1)180°
A P-Z

whereg=0,1,2, ...

Let us consider,

G()Hls) = s(s +2)

Here, the number of poles P = 2: they are at s = 0 and s = -2 and number of zeros 7 = (.
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Number of asymptotes =P-Z=2-0=2
Let the angle of two asymptotes be ¢, and ¢/, respectively. Then,

_(2x0+1)180°

=90° forg=0

¢’.-1 2.0 Ul
2x1+41)180°

i ""2 ; =270° forg =1

The root locus with the asymptotes are shown in Figure 8.7. One asymptote, LM is making 90°
with the real axis and another asymptote LN is making an angle of 270° with the real axis. There are
two root loci originating at the poles at s =0 and s = -2. They approach each other and break away
at L and approach towards infinity along the asymptotic lines as the value of K increases from 0
to oo,

Fig. 8.7 The root locus with the asymptotes.

Rule 7: Centroid of the asymptotes—The point of intersection of the asymptotes with the
real axis is called the centroid o, which is calculated as

2 Real parts of poles — £ Real parts of zeros
P-z
Let us consider the example of Rule 6 where G(s) = K/s(s + 2)
_[0-2]-[0] 2

i e ]
? 2-0 2
Therefore, the points L where the two asymptotes start is at a distance of —1 from the origin.

Let us consider another example,

_G-A —

GE) = v )

The poles are at s = 0, s = —4 and s = -5, which are shown below. There will be no part of
tire root locus to the left of B up to point A as there are even number of poles to the right of B.
There will be part of root locus to the left of point 4 as there are odd number of poles to the right
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of A. There will be three root loci originating at the poles. They will terminate at zeros. If there is
not zero present in G(s)H(s), they will approach towards infinity as the value of X is increased.

- Asymptote
Centroid

Fig. 8.8 Centroid i.e. the point of intersection of the asymptotes.

The root loci from B and C will approach each other along the real axis and break away
towards infinity at a point on the real axis in between points B and C which is the centroid. The
centroid of the asymptotes is calculated as

Sum of real parts of poles — Sum of real parts of zeros
P-Z

-5-44+0-0 -9
_Uﬂ = =

3-0 3

Rule 8: Breakaway points—The root locus between two adjacent poles approaching each

other break away on the real axis at a point on the real axis and move towards infinity as the

value of K increases. For determining the breakaway point, we write the characteristic equation

in terms of K and evaluate dK/ds = 0. The breakaway points will be either on the real axis or must
occur as complex conjugate pairs. This is illustrated through examples as follows:

= -3

G(s)H(s) =

s(s +1)(s + 2)

The characteristic equations is 1 + G(s)H(s) = 0,

or
s+ 11z +2)+-K =10
or
K=-5-3s2-2s
dK .
E =-35°-6s-2=0
that is,
38 +6s+2=0
The roots are
—6+6> —4x3x2
$1, 8, =

2x3
=-0.43, -1.57
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The root locus sketch is shown in the following:

»
fm‘/+ﬁ

K=6

No part of root locus

[ Asymptotic  ¢.piane
in this part P

line

K— w 2

Breakaway
point

K=6 _
Asymptotic line

Fig. 8.9 Determination of breakaway point of the root locus on the real axis.

P,, P, and P, are the positions of the poles at s = 0, s =1 and s = -2, respectively. There is
no zero in the numerator of the transfer function. The presence of root locus on the real axis will
be to the left of odd number of poles and zeros. So there will be no part of the root locus between
point —1 and —2 as has been shown in Figure 8.9. So, the breakaway point of root locus will be at
—0.43 and not at —1.57.

The intersection of the root locus on the imaginary axis also has to be found out since the
characteristic equation can have real as well as complex multiple roots.

The intersection of the root locus on the imaginary axis is calculated using the characteristic
equation and forming the Routh’s array as

S(s+1)(s+2)+K=0
or
$+352+25+K =0
The Routh array is represented as

53 1 2

52 3 K

sl .f'___K. 0
3

s? K 0
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The value of K for which the root locus crosses the imaginary axis is calculated by equating
the terms of the first column of Routh array of s' and s° to zero.

So we write,
6-K
— =0 andK=0
3
Thus, K=6
The auxiliary equation is
3s2+K=0

The roots of the auxiliary equation are dominant roots which are close to the imaginary axis
or on the imaginary axis.

Thus,
3s?=-K=-6
or
s2=-2 ors=j\2
Number of asymptotes = Number of open-loop poles

= 3.
The angles are

_ (2q +1)180°

=0,1,2
A P-z ‘
180
=—=60° forg=0
3
2+ 1)180°
=( ) =180° forg=1

_(2x2+1)180°

=300° forg=22

Centroid
Z Real parts of poles — £ Real parts of zeros
a = P=z
(-1-2)-0
T 3-0 &

Thus, the complete root locus is as shown in Figure 8.10.

Rule 9: Angle of departure of the root locus from a complex pole and the angle of
arrival at a zero—Angle of departure of the root locus from a complex pole is given as

s = 180° — sum of angles of vectors drawn from other poles to this pole
+ sum of angles of vectors drawn to this pole from other zeros.

Let us illustrate this with an example.
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Fdﬁ'
+
Asymptote
180°
\ §==-2
Asymptote
Asymptote
'f‘\:
@

Fig. 8.10 Determination of angle of departure of the root locus from a complex pole.

Let
K

s(s + 2)(s* + 65 + 25)
The poles are ats, =0, s,=-2,5,=-3 +j4and s, =-3 — j4.

G(s)H(s) =

The positions of poles are shown in Figure 8.11. The angle of departure ¢, is calculated as,
b, =180°—-(127°+104° +90°)
= 180°=1321° = =141°

8.1.1 Additional Techniques

(1) Determination of K on root loci

For determining the value of K at any point on the root locus, we can use the following:
Product of all vector lengths drawn from
K = the poles of G(s)H(s) to that point '
Product of all vector lengths drawn from
the zeroes of G(s)H(s) to that point
(2) Ascertainment of any point to be on root locus

For any point to be on the root locus in the s-plane, it has to satisfy the angle criterion and
magnitude criterion. First, we apply the angle criterion to check that any point in s-plane
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which satisfied the angle condition has to be on the root locus. Magnitude condition is used
only after confirming the existence of point on the root locus by angle condition.

Fig. 8.11 Method of determination of any point to be on the root locus.

Let us consider, for example, where
K

s(s +1)(s + 2)

Let us examine whether s = —0.5 lies on the root locus or not.

G(s)H(s) =

First we apply angle criterion as

ZG(s)H(s) ats=—0.5 = £180°(2¢ + 1) where =0, 1,2, ... (i)
ZG(s)H(s) = d = 2
(DH) = 05+ 70005+ 1(<05+2)  (=0.5+ jO)0.5+ j0)1.5+ /0)
K 20°
e L 180°
180°0°0°

Thus, the angle condition as in (i) above is satisfied and the point s = -0.5 lies on the root
locus. Now we will use magnitude condition as

|G(s)H(s)| =1 ats=-05
K
=1
|-0.5] 0.5] 1.5

or
K=0.375
for this value of K, point s = —0.5 lies on the root locus.
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Example8.2 Ablock diagram representation of a unity feedback control system is as follows.

K

R(s) M S+ (5+2) s

»C(s)

Fig. 8.12 Block diagram of a feedback control system.

For this system, sketch the root locus. Also determine the value of K so that the damping
ratio, &, of a pair of complex conjugate closed-loop poles is 0.5.

Solution

) = DG+ 2)

For determining the open-loop poles, we equate the denominator of G(s) to 0.
ss+ 1 s+2)=0
(1) There are three open-loop poles ats =0, s =-1 andls =-2.

(2) We know that the number of root locus asymptotes will be equal to number of open-loop
poles minus the number of open-loop zeros. Here there is no open-loop zero.

There will be three branches of the root locus originating respectively ats =0, s =—1 and
§==2. ‘

(3) The three branches of the root locus will move towards infinity, as K increases, along the
asymptotic lines whose angles with the real axis are

2g + 1)180°
¢A=(q+) ) q=01112
n-—-m

= (29 + 1)180° = 60°, 180°, 300°
(4) The root locus exist on the real axis between s =0 and s =—1; and s = -2 moving toward co.
(5) The centroid —o, is calculated as

X Real parts of poles — X Real parts of zeros
Number of poles — Number of zeros

(-1-2)-0
T 4=

= -]
(6) The breakaway points on the real axis is found by substituting dK/ds = 0.
The characteristic equation is

ss+1)(s+2)+K=0
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or
K=-53-352-2¢
% 3s2—-65s-2=0
ds Vo
that is,
352+ 6s5s+2=0
—6iJ62—4x3x2
$), 8, =
2x3
=-0.43, -1.57

(7) Intersection of the root locus on the imaginary axis is determined as follows.
The characteristic equation of the system is
s(s+1)(s+2)+K=0
or
P+3+u+K=0
The Routh array is

53 1 2

52 3 K

5l 6‘"_!{ 0
3

50 K 0

We know that the occurrence of a zero row in the Routh array indicates the presence of
symmetrically located roots in the s-plane. '

For this,
6-K _,
3
or
K=6
The auxiliary equation is
32+ K=0
or
3s2=-K=-6
or

s =+jy2
The position of poles, the asymptotes and the root locus plot have been shown in
Figure 8.13.
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a4

/ Asymptote 1

Kox

j2

Fig. 8.13

av

j 2

Ko wxm

* Asymptote 3

Root locus plot for 83 + 3s? + 25 + K = 0.

Note that for breakaway point at s = —1.57, the angle criterion is not satisfied and hence

cannot be considered.

Example 8.3 The block diagram of a unity feedback control system is shown in Figure 8.14.

R(s)

K(s+2)

3
HEET) > C(s)

Fig. 8.14 Block diagram of a feedback control system.

Draw the root locus diagram for the above represented control system.

Solution  The open-loop transfer function is
K(s+2)(s+3
G(s)H(s) = (s +2)(s +3)
s(s+1)

The number of open-loop polesis 2 at s =0 and s = 1.

The number of open-loop zeros is 2 ats = -2 and s = -3.

Therefore, the number of root locus asymptotes =2 — 2 = ().



THE ROOT LOCUS TECHNIQUE 261

The number of root locus branches will be 2 originating at s = 0 and s = —1.
The root loci will terminate at the zeros at s = -2 and s = -3.
Now let us calculate the breakaway points. The characteristic equation is
1 + G (s)H(s) =0
Substituting the actual values, we get

K(s+2)(s+3)
s(s+1) -
B s(s+1) B —(52 + 5)
(s+2)(s+3) s2+55+6
dK
We have to make — =0
ds
Thus,
dK | (" +55+6)2s+ D)+ (s* +5)2s+5) | _
ds (s> + 55 + 6)°
or
252+ 65 +3=0
or

Sps 85 = -0.63, -2.36

The root loci branches originate at s = 0 and s = —1 and get terminated at zeros at s = -2
and s = —3. Thus, root locus exists between 0 and -1 and between -2 and 3. Thus, both the
breakaway points s = -0.63 and s = -2.36 are valid (breakaway and break-in points).

The values of K at s = —0.634 and s = -2.366 are calculated as

(0.634)(0.366)
(1.366)(2.366)

and

(-2.366)(-1.366)| =
(-0.366)(0.634) |

2

The root locus plot has been shown is Figure 8.15. The two root loci originate at s = () and
at s = —1 on the real axis. As the value of X is increased, they approach each other and break
away at s = —0.634 with value of K = 0.07. As the value of X increases, the two root loci makes
semicircles and break in at s = -2.366 with value of K = 13.93. They get terminated at the two
zeros at s = -3 and s = -2 as shown.

The root locus is a circle with its centre at —1.5 {i.e. = 2.366 ; 0.634 + 0_634]
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>
‘ 3 5=0 18]
s= 27366 B Pole at s= -1

K(s + 2)(s + 3) ‘
s(s+1)

Fig. 8.158 Root locus of G(s) H(s) =

Example 84 The transfer function of a system with unity feedback has been shown in
Figure 8.16.

R(s) > ::{3 +2) —» C(5)
ST +28 +3

Fig. 8.16 A unity feedback control system.

Draw the root locus diagram for the above system.

Solution The open-loop poles are calculated from the equation s> + 2s + 3 = 0.

2+y22 —4x1x3
S5 8y = >

=-1%j\2
So, there are two open-loop poles. The open-loop zero is at s = 2.
The number of branches of the root locus is equal to the number of open-loop poles, that is 2.
Number of asymptotes = Number of poles — Number of zeros
=2-1
=]

Angle of the asymptote
_ (2 +1)180°

b4
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Now, let us determine the break-in point. For this, we take the characteristic equation of the
closed-loop system as

1 + G(s)H(s) = 0

or
G(s)H(s) = —1
Substituting the values,
KGs+2) _
st +25+3
or
B P +25+3
- s+ 2
Now let us calculate dK/ds and equate it to zero.
dK [ (s+2)(2s+2)—(s* + 25 +3) 5
ds | (s +2)° -
(25 +65+4-5° -25-3
= — 5 — 0
| (s +2)
or

s2+4s+1=0
$;,8, = =213 = -3.732, - 0.268
The value of K at s =-3.732 is

s +25+3
s+2

~(3.732)* +2x3.732+ 3
) 3.732+2

K =

=546

The break-in point at s = —-3.732 lies between the position of zero at s = -2 and the infinity.
At s = -2, the value of K = .

Thus, the two root locus branches originate respectively from —1 + j\E and -1 - j\E
and break in at the real axis at s = —3.732 as K increases to a value of 5.46 as shown in
Figure 8.17.

The radius of the circle is /3 , that is 1.732. The angle of take-off can be calculated as 145°
as shown in Figure 8.17. Thus, the two branches starting from the open-loop zeros follow a circular
path with the increase of gain factor K. As the value of K becomes 5.46, they meet at the real axis at
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or
| K=—s(s +2)(s +3)]
=—[s3 + 552 + 65]
Substituting dK/ds = 0,
dK

— =—[3s+10s + 6] =0
ds

3s2+10s+6=0
~10+V10> —4x3x6

§ =

2x3
10 53
§ =——+—=-(.8 —2.54
6 6

The angle of asymptotes, ¢, , is calculated as
(2g + 1)180°
¢,4 =
p—2
_(2x0+1)180°

qg=012

=60° forg=0

forg=1and2, ¢, = 180° and 300°

The point of intersection of the asymptotes with the real axis, that is, the centroid 0, is
calculated as

_ L Poles-X Zeros (0-2-3)-0
- P-Z O 3-0

O4

5
=-Z=-167
3

The value of K for which the system is stable is calculated by applying Routh—Hurwitz
criterion using the characteristic equation.

Consider the characteristic equation,
s(s+2)(s+3)+K=0
or
$+552+6s+K=0

The Routh array is
5 1 6
52 5 K
30-K
5! 0
5

sV K 0
For stability, all the terms of the first column must be positive.
Hence, K> 0
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and
30-K
5
Therefore, the system is stable if 0 < K < 30.
At K = 30, the system is oscillatory. For K < 30 all the roots will lie on the left-hand side
of s-plane. If K exceeds 30, the roots will lie on the right-hand side of the s-plane. At K = 30, the

locus will intersect the imaginary axis. The value of s at which the locus cuts the imaginary axis
is calculated from the Routh array’s second row as

> (), that 1s, K < 30.

52+ K=0

or
552+30=0

or
=6

or

s = +j\6 = +j2.45 = +jo_
The frequency of oscillation is equal to the distance from origin the point of intersection of
the root locus with the jo axis.

The frequency of oscillation, ® = 2.45 rad/sec.
The root locus plot has been shown in Figure 8.22.

k O

S§==h §==4 §==3 s==2
K=30 K=8 K=0 K=0

I

At R, the value of
s=-0.6+ j0.8

-j2.45, K=30

|\ K- o

K

Fig. 8.22 Root locus of unity feedback control system with G(s) H(s) = .
s(s+2)(s+3)
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