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Preface

This book evolved from my occasional teaching of graduate Classical Me-
chanics at Boston University.

In the late 1960’s I recommended the well-known texts by H. Goldstein,
L.D. Landau and E.M. Lifshitz (?), and A. Sommerfeld. In the late 1980°s
I learned some modern differential geometry while catching up with gauge
field theory. Thus I became able to appreciate the elegance of V.I. Arnold’s
Mathematical Methods of Classical Mechanics.

I took the educational risk of presenting Hamiltonian mechanics ex-
pressed in Cartan’s notation as a kind of appendix following the traditional
treatment. Instructors in other universities also seem to have recognized
that the graduate teaching of classical mechanics in physics departments
should be updated. In this book I have tried to satisfy both tradition-
alists and modernists by approaching each subject at successive levels of
abstraction.

My work is designed for a first-year physics graduate student at Boston
University, who has taken “Intermediate Mechanics”. Knowledge of curvi-
linear coordinates, vector analysis, advanced calculus etc. is assumed. The
wealth of detail offered should not lull the reader into thinking that the
material can be learned by leafing through the book. As much time as
possible should be devoted to going through the calculations and solving
problems.

Chapter 1 is an introduction meant to establish a rapport between the
reader and my way of presenting the material. Chapter 2 builds up a stock
of formulae to be drawn from in later chapters. Chapter 3 is mostly devoted
to oscillations. It ends with a sketchy account of chaos for discrete maps
to introduce the reader to a field founded a century ago by Poincaré and
cultivated intensively in recent years.

Chapters 4 and 5 cover coordinate systems, inertial forces, and rigid
bodies.

Analytical mechanics begins with chapter 6, Lagrangians. Problems al-
ready worked out in previous chapters are again solved by using Lagrangian
methods. The reader is invited to compare the amount of labor involved in
the two versions.

Chapter 7 presents Hamiltonian mechanics. Sections 7.1 to 7.4 give a
simple account of the traditional treatment. Section 7.5 introduces Cartan’s
notation, which is used throughout the following sections as well as in
chapter 8, action-angle variables and adiabatic invariants.

Chapter 9 is on classical perturbation theory with emphasis on the sim-
ilarity with the perturbation theory of quantum mechanics and field theory.
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Relativistic dynamics is discussed in chapter 10, with attention to the
“spinor connection”, the spin, and the Thomas precession.

Chapter 11 illustrates Lagrangian and Hamiltonian methods for contin-
uous systems by discussing two case studies, the vibrating string and the
ideal incompressible non-viscous fluid. The Lagrangian description of the
latter is not widely known. I worked unsuccessfully trying to formulate it,
until I was lucky enough to find D.E. Soper’s Classical Field Theory and
reference to the original 1911 paper by G. Herglotz.
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Chapter 1

INTRODUCTION

This chapter covers informally material that will be treated extensively in
the book. Some of it may have already been learned in undergraduate
mechanics. Introduction or review as they may be, the following pages are
meant to lead into the substance of analytical mechanics.

1.1 Motion in phase space

It is known from General Physics that the dynamics of particles and rigid
bodies is governed by second order differential equations. For computa-
tional purposes, it is convenient to replace these by systems of first order
equations. Thus Newton’s second law in the form

mé = f(z,%,t) (1.1)
is replaced by the system

ﬁzf(Q)p’t) ? q‘=p ] (1'2)

where we have renamed the coordinate (g = x), denoted by p the momen-
tum, and taken the mass equal to unity.

This technical artifice is epitomized by Hamilton’s equations for the
generalized coordinates qi,...gn and their conjugate momenta pi, .. .pn,

I"k = _aH(pa d, t)/an ) (13)

ék = aH(P; g t)/apk 3 (14)
where H is the “Hamiltonian” (see chapter 7).

1
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(b
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7

Figure 1.1: Arbitrariness of p

The above process is not unique. For example, for a free particle (§ = 0)
rather than

p=0, 4=p , (1.5)

according to which p is constant and g = pt + ¢qo (figure 1.1(a)), we might
equivalently have written (figure 1.1(b))

p=1, ¢g=p—-t , p=t+a , g=at+p . (1.6)

As we shall see in Chapter 6, this arbitrariness is connected with one
for the Lagrangian.

Once the second order equations have been replaced by systems of first
order ones, it is natural to describe the evolution of a system as the motion
of a point in a 2n-dimensional “phase space” for the coordinates q1,...¢n
and the momenta py,...Pn.

1.2 Motion of a particle in one dimension

It is instructive to study the motion of a particle in one dimension subject
to the elastic force —kg and the repulsive force +kgq (k > 0), respectively.

In the former case, the equations p = —kq , ¢ = p/m have the general
solution (w = \/k/m)
g =oacos{wt+a) , p=-—-rmwasin(wt+a) , (1.7)

so that the representative point in the phase plane (p, ¢) moves on an ellipse
of semi-axes a = /2E/k and mwa = v2mE (figure 1.2), where E is the

energy. The point ¢ = 0, p = 0 describes a state of stable equilibrium
(a=0, E=0).
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U: ﬂf/ 2

Figure 1.2: Motion under the force —kgq

In the case of the repulsive force +kgq, the trajectories in the phase plane
are hyperbolae. The solutions

q = tacosh(wt) , p=tmwesinh(wt) |, (1.8)

correspond to a particle with initial velocity towards the center of repulsion
coming from q = oo respectively, and stopping at +a before rebounding
(figure 1.3). In these two cases the energy E = (p?/2m)—(kq?/2) is negative
(E = —~ka?/2).

The solutions

g = tasinh(wt) , p= tmwaecosh(wt) |, (1.9)

correspond to the positive energy E = 4ka?/2. For t = 0 one has
q =0, p= tmwa, i.e. a particle right on the center of repulsion with a
finite velocity (figure 1.3).

The asymptotes p = £muwq separate the regions of positive and negative
energies. They intersect at the point of unstable equilibrium p =0, ¢ = 0.

f E)O

E<° E<0
o

Figure 1.3: Motion under the force +kq



4 CHAPTER 1. INTRODUCTION

N

Figure 1.4; Motion near potential energy extrema,

Congsider now the one-dimensional motion of a particle subject to a
conservative force f(q) = —dU(q)/dq. In the vicinity of a potential energy
minimum g = ¢g, one has f(q) = —k(g — go) with &k = (dzU/qu)qxqo > 0.

If the energy E differs little from U(gg), the particle moves on an ellipse
of center ¢ = gp , p =0 in the (p, q) plane with the period T = 2#+/m/k.

In the vicinity of a potential energy maximum the motion resembles
that of a particle subject to the repulsive force f(q) = +k(g — go) with
k= —(d*U/dq?) g=go > 0. Passing through the point (¢ = go , p = 0) there
will be a critical curve with tangents p = £vmk (g — qo), corresponding to
the asymptotes of figure 1.3. Such a curve separates regions with E > U(ge)
and E < U(qge)-

Returning to the elastic force f(g) = —kg, we notice that the area
enclosed by an elliptical trajectory in the (p, q) plane is

A = ma(mwa) = 2rE/m/k ,
while the period is T' = 2ny/m/k. Clearly T = dA/dE.
This relation is easily generalized to any closed trajectory in the phase

plane: T = §dt = f(dt/dq}dq = §(m/p)dq = §m dg//2m(E - U(g)),

d d dA
T= 3“5}(\/2771(53'4](?))‘1‘1— EE%PCM— £ @)

where A is the area enclosed.
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1.3 Flow in phase space

Consider a region in the (p,q) plane and assume that each point in the
region represents a possible position and momentum of the particle at the
time t = 0. If each point moves according to the dynamics of the particle,
those points will in general cover a different region at a later time t > 0.
We can visualize this as the flow of a “fluid” in two dimensions.

If the forces are conservative, the fluid is incompressible. (See problem
1.5 for a dissipative case.)
For example, for the vertical motion of particles under gravity one has
g = (gt?/2) + (pot/m) + qo , p = mgt + pp. The points of the rectangular
region0 < ¢g< Q,0<p< Pattimet =0, at a later time ¢t > 0 will cover
the parallelogram with vertices @ = (gt2/2,mgt), b = (gt?/2 + Q, mgt),
c = (gt?/2+ Pt/m+Q, P+ mgt), d = (gt2 /2 + Pt/m, P + mgt) (see figure
1.5). It can be seen by inspection that the area of this parallelogram is
equal to the area PQ of the rectangle at time t = 0.

d ¢
/ t>0/
o

Q 1

Figure 1.5; Vertical motion under gravity

P

As a prelude to the general case, we can also express the area at time
t > 0 in the form

Ar= [ dpydq = /
D: Dy

But the Jacobian determinant

(e, ;) — Ope/Ops  Ope/Oqo
8(po, qo) Og:/Opo  O0qt/Bq0

O(ps, q)

dpg dgo - 1.11

__Ilo

t/m 1‘=1

and so
A =/ dpo dao = Ao . (1.12)
Dy
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-~

-

Figure 1.6: Elastic collision against a wall

The same property applies to particles undergoing elastic collision against
a “wall” (see figure 1.6).
For the harmonic oscillator g; = go cos(wt) + po sin{wt)/mw,

py = —muwgg sin{wt) + pg cos(wt) one has similarly
Oprq) _| cos(wt) —mwsin(wt) | _
d(po,q0) | sin(wt})/mw cos(wt) ’

and so the area conservation applies also in this case.
Can this property be generalized to any conservative force?
Since pyiqe = p¢ — (AU/dg), dt, giae = ¢ + (p1/m) dt, one has

N Petdts G+de) :l 1 —(d?U/dg?),dt
B(pe, ge) dt/m 1

! = 14 0({dt)%)

Hence dA
t
el 0 . (1.13)
This is a special case of Liouville’s theorem, which will be proved in
Chapter 7.
For a one-dimensional system with conservative forces, by Stokes’ the-
orem area conservation in the (p,q) plane is equivalent to conservation of

a line integral along the curve enclosing the area,

% pdq=f pdq , (1.14)
Cy Ca

where Cy and C; are the boundaries of Dg and Dy, respectively.
Direct proof: If p = p(A,t), ¢ = ¢g(),t) are the parametric equations of
C}, where the domain of A does not depend on ¢, one has

¢ pdg=§ d\p(,1) 8g0\ /0N
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N
I

Figure 1.7: Example of equation (1.14)
d _ Op Oq 8%q f ( Opdq 0Opdq )
aif, Pda ‘J{(at e ) D= P \Gean “aver) P

_3U§£_ p2 ___fd ﬁ _
f[ 5q 9\ aA( )]d" d,\( +U) =0

As an example, let Cj be the circle of equations
g(A) =7 cosA, p(A) =po —r sinA
and C; the curve
p(\, t) = mwq()) sinh(wt) + p(\) cosh(wt) ,
g(At) = g(A) cosh(wt) + (p(A)/mw) sinh(wt) ,
which is the ma,ppmg of Cy under the flow induced by the repulsive force
f(g) = kq (k = mw?). One has (see figure 1.7)

2
f pdg= [mwr cos X sinh(w?) + (pg — r sin A) cosh (wt)]
Ct 0
[~r sinX cosh(wt) —r cos X sinh(wt)/mw] dA

= —r2x[sinh®(wt) — cosh®(wt)] = +mr? = f p dg
Cy
If Cq is a (p, g)-orbit of a periodic motion, then C; = Cy at all times.
In the phase flow, the points of Cy pursue one another along Cj itself. In
this case,
J=¢ pdg (1.15)
Co
is called a “cyclic action variable”.
For the harmonic oscillator
g(\t) = a cos(wt + A), p(A\,t) = —mwa sin(wt + A),

2n
J= fmwzag sin®(wt + A) dt = mwazj sin?@ dg = 211'-1-5- . (1.16)
0
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The energy can be expressed in terms of J,

wd
B=o- . (1.17)

Since J = A, this agrees with the relation A = 27 F\/m/k = 2rE/w on
page 4.
In the “old quantum mechanics”, Sommerfeld’s quantization condition

J=nh (n=0,1..) (1.18)
yielded the energy levels for the harmonic oscillator
E = nhw (1.19)

instead of the correct £ = (n + 1/2)hw

For a multiply periodic system with n degrees of freedom, the energy can
be expressed as a function of n cyclic action variables, £ = E(Jy, Ja ... Jp).
An example will be presented in the next chapter (Keplerian motion) and
the general case will be discussed in chapter 8.

1.4 The action integral

The cyclic action variable J originates from Hamilton’s “characteristic func-
tion”

qa
3(02,q1,E)=—f pdg . (1.20)
%1

This is a very useful function. We notice first that the momenta at ¢
and ¢o are given by p; = 8S/0¢y and p1 = —85/9¢q,.
The time between two positions ¢; and ¢ is given by

ta —ty = 85(q2, q1, F)/OF (1.21)

; ; /Qﬁ dt d ./‘?2 dq mfﬂﬁ dq
— = q = — T iR
’ l a1 dg s P a 2m(E — U(Q))

d
6E

In fact

]
\/ZmE U(q)) dg = 5 e 0, E)

The formula T = dJ/dE for the period of a closed orbit is a special case
for g2 = q1-
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For the harmonic oscillator one has

2 g2
S(qz, q, E = ka®/2) = V2m(E - kq?/2) dqzmw/ N
q1

q1

= (mw/2) [qﬂ/az — ¢ + a’sin™'(g2/a) — same for ql] , (1.22)
while (1.21) gives
ty —t = [sin"!(g2/a) — sin™ (q1 /a)]/w . (1.23)
Taking ¢; = a, t} = tp, ¢2 = q, t2 = t, we have
t —to = [sin~(g/a) — 7/2]/w, ¢ = acos(w(t —t)) . (1.24)

The action S(g,qo, E) obeys the Hamilton-Jacobi equation

2
-2—17-5 (%) +UQ=E , (1.25)

as can be seen by substituting p = 85/0q in the expression for the energy,
E =p*/2m + U(yg).

As an example, verify that the action for a particle of positive energy
E subject to the force f(q) = +kq, U = —kq?/2, is

@ B) = | 2Zm(E-U(@)) d¢
qo

_mw 5 _ \/2__ 2E 7++vVq>+2E/k
5 [q\/q +2E/k — qor/q3 + 2E/k + p In (_—QO " \/m ,
(1.26)
and that it satisfles the Hamilton-Jacobi equation for U(g) = —kq?/2.

All this may seem somewhat futile. However, the usefulness of action
integrals becomes evident as soon as we extend their definition to more
than one dimension, say three dimensions.

Let

L'S'(r,ro,E,oz)m/rp-drmfIr V2m(E-U({r)) ds , (1.27)

where the line integral is along a trajectory characterized by the energy E
and some integrals of motion summarily referred to by the symbol a.

(In one dimension, the only integral of motion was E, hence no a.)

Note that along a trajectory p - dr = |p| ds, ds = |dr|.
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For the two-dimensional case of projectile motion, with the z-axis hor-
izontal and the y-axis vertically upwards, and rp = 0, in the ascending
branch of the trajectory one finds

z ¥
S(r,0,E,a=p;) “*‘“-"'/ p. dz’ +[ \/2m(E-— B, —mgy') dy’
0 o

= pez + [2m(E ~ B)} — @m(E - B, - mgy))/3m?y ,  (1.28)

where E, = p?/2m.

Consider the normal to the curve S =0 at r = 0. Since
85/8z = p, = muo, and (85/8y),_, = /2m(E — E;) = mug,, it is clear
that the trajectory is normal to the curve § = 0 at the r = 0 intersection.

This is not surprising. In the three-dimensional case, the normal to the
surface S(r,ro, E,a) = 0 at rg is parallel to the gradient (VS), , and this
in turn is equal to the momentum p at ry.

A method for finding trajectories suggests itself. The action integral
satisfies the Hamilton-Jacobi equation

vS)/@em)+U=E . (1.29)

If S(r) is a solution of this equation, consider the family of surfaces
S(r) = const. The trajectories form a family of curves orthogonal to these
surfaces. The problem of finding trajectories is similar to that of finding
lines of force in electrostatics once the equipotential surfaces are known,

Let us re-examine the problem of projectile motion from this viewpoint.
The Hamilton-Jacobi equation

1 {7858\% [85\°
v [(-5;) + (Fy-) ] +mgy=F (1.30)

can be solved by separation of variables, S(z,y) = S;(z) + S, (¥),
(dS./dz)?/(2m) = E., (4S,/dy)*/(2m) + mgy = E,, with E, + E, = E.
The function

S(,y) = /2mE; z - [(2m(E — E, — may))? — @2m(E — E,))})/3m%g
(1.31)
is a solution of equation (1.30), corresponding to a curve passing through
the origin.
To find the trajectory through the origin corresponding to the energies
E, and E,, we write

dy/dz = (05/0y)/(05/6%) = \/E ~ B, — mgy/\/E. |
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%

Figure 1.8: All trajectories in this figure correspond to the same values of
p, and py.

where we have chosen the positive sign for dy/dz (ascending branch of the

trajectory). This expresses the fact that a displacement (dz,dy) along the

trajectory is parallel to the normal to the curve represented by S(z,y).
Separating variables, we have

dy/\/E — E; —mgy = do/VE;
—(2/mg) \/E‘ E: —mgy = :1:/\/_ (2/mg)VE - E; .

Putting £, = mv},/2 and E - E, = mvgy /2, and assuming that v,
and vg, are both positive, this reduces to the familiar formula

2
Yoy 9z
= — — . 1.32
y 'Uﬂz 2”(2}3 ( )

This, of course, can be derived by equating the two expressions for ¢, x/vo.

and (voy — 1/v3, — 29y )/9g.
The Hamilton-Jacobi equation for a free particle of energy E in two
dimensions with momentum component p, has the solution

S=pxtV2m(E-E;)y . (1.33)

The curves S = const (solid) and the trajectories (broken) are shown in
figure 1.8 for p, > 0 and the plus sign. Of course, the roles of z and y can
be interchanged.

However, the Hamilton-Jacobi equation for a free particle of energy E
in two dimensions has also the solution

S = +V2mE |r ~ro| . (1.34)

The curves S=const are circles, the trajectories are straight lines through
ro (see figure 1.9). The angular momentum about rg, I = 0, plays the role
of the constant of motion a other than the energy (see equation (1.27)).
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Figure 1.9: Equation (1.34)

1.5 The Maupertuis principle
We have seen that

B B
S(B) — S(4) = (-[A pvdr) = (./A |p|ds) , (1.35)

where p = VS, |p| = (VS| = /2m(E — U(r) and “t” is the actual
trajectory from A to B.

Now if “¢” is a curve from A to B adjacent to the trajectory, we see
that

B B
S(B) - S(A) = (pr-dr) < ([A V2m(E — U(r)) ds) . (1.36)

c

since p and dr are not parallel on “c”.

Hence the Maupertuis principle or principle of “least action”: The ac-
tion integral from a point A to apoint B, [~ /2m(E — U(x) ds, is minimal
along a trajectory. Less restrictively, Euler’s formulation of the principle

states that B
6[ VE-U{)ds=0 |, (1.37)
A

where ¢ indicates variation of the integral when the coordinates
r = (x,y, z) of each point of a trajectory from A to B are changed to
r+0r = (x + dz,y + dy, 2z + 6z), with ér vanishing at A and B.

It must be possible to derive the equations of trajectories from this
variational principle. Let us do so in two dimensions and assuming that
U =U(y). With ¢’ = dy/dz, we have

aLBmds =i VETTw 144t
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B 2
Bl 1+y’ dU [E-U ,asy| ., _
"'/A { SR FEr d}dx

Partial integration using dy4 = dym = 0 yields the trajectory equation

d (,[E-U 1 1+y*2dU
dx(y I+'y"2)+ -Udy =0

Multiplying by y'\/ (E-U)/(1 +y'*) we obtain

d y'?
E(l+y’z(E-U)+U) =0 ,

so that the quantity in parentheses is a constant, which we denote by C.

Hence
2 _ C-=U

T E~-C
The value of the constant can be determined from that of 3’ at a point
of the trajectory. For a projectile (U = mgy), we have E = mu}/2,
(¥)aay=0 = voy/v0z, and so C' = muj /2, ' = (/3 — 29¥)/v0. So-
lution by separation of variables yields equation (1.32) if the value of the
integration constant is chosen so that the trajectory may pass through the
origin.

1.6 The time

What about the time? Equation (1.21) expressed the time interval during
which a particle moves from a position to another as the derivative of the
action integral with respect to the energy. That formula is easily generalized
to three dimensions. In fact

d a [ 0

aES(rg,n,E o) = 3E : p-dr = 3 s \/Qm(E U(r)) ds
Ty ra

=[ m ds/v/2m(E - U(r)) m/ ds/v=te—t, , (1.38)
L1 r

where v denotes the velocity.
It is interesting to compare this time interval with the time it would take
a particle of the same mass, total energy E, and potential energy U(r), to
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Figure 1.10: Real and varied motion under gravity

go from r; to ry along a path other than the trajectory. This latter motion
requires a frictionless constraint.
Consider as an example the motion of a projectile. Since

S(‘w’ya 0, E’pw = m'U(}z) = D&

HQE - mu2)t — QF — mug, - 2mgy))/3vmg |
the time t from (0,0) to (x,y) is

t=08S/0E = [\/2E —mud, — \/ZE' —mui, - 2mgy] /gvm
= (vay — vy — 2931) /g

a formula known to high-school students. The time taken to reach the
highest point of the trajectory, y = h = v}, /29, * = x5 = vozv0y/g, is, of
course, t = vgy /g.

Note that instead of choosing p, as a constant of motion « other than
the total energy F, we might have chosen the energy of the y-motion,
E, = mv} /2 + mgy. Then we would have had

t = 8S,/0E = 8(,/2m(E — E,) 2)/0E = 2,/m/2(E — E,) = z/vo..

Suppose now that the body, with the same total energy
E = m(vj, + v},)/2, travels from (0,0) to (zx,h) along the straight line of
equation y = hx/zp (see figure 1.10) under the influence of gravity and a
frictionless constraint.

The time ¢’ taken will be shorter than ¢ = vqy/g,

/mds/\/2mE mgy) /dy\/l + (zp/h) /\/’UO 29y
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= (1/9)/1 + 403, /93, (\/vd + 8, — o) <voy/o =t

Does a shortest-time curve from (0,0) to (zn, k) exist for that energy
E? Yes, it is Bernoulli’s “brachistochrone”.
Its equation is obtained by requiring that
B ds
df —=0 (1.39)
A U
for variations dr restricted to vanish at A and B.
A calculation similar to that presented in section 1.5 yields the differ-
ential equation

d y'? 1 aU,
Z\E-0)1+s%)) (E-UY 0y’

For U = mgy one obtains by a first integration

T C-(H-y)
y H—y b

where C is an integration constant and H = E/mg. Note that y' is infinite
(tangent is vertical) for y = H, indicating that v, = 0 for y = H. Thus H
is indeed the maximum height reached by a body of energy F.

A second integration putting H —y = C(1 + cos8)/2, and a suitable
choice of integration constants, yield

z=H(@+sin8)/2 , y=H(l-cosb)/2 . (1.40)

These are the parametric equations of a cycloid. Thus the brachistochrone
is also “tautochrone” (see problem 1.8).

Note that t =y =0for 8 =0, and (x = 7H/2,y = H) for 8§ = x. The
time taken by the projectile of energy E = mgH to go from (0,0) to the
point characterized by the value 6 of the parameter is

. \/E [
v 29J0 Vy(H ~y)
/ sin @ dé _ H p
v/ (1 + cos8)(1 — cosé) 29

where we have used ds = \/1 + (dz/dy)’dy = VH Jy dy, v = /2g(H —y),

and the parametric equations.
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We now want to find a brachistochrone through the points (0,0) and
(zn, h) of the projectile trajectory. It is easy to show that a brachistochrone
for E = mu}/2 = m(v}, + v},)/2 and H = v}/2g > vgy/Zg = h will
intersect the projectile trajectory at (x5, k) for the value 8 = 2ugzvp, [v3 of
the parameter. The time from (0,0) to (xp, k) will be

1
\/l-l—(vgy/vm) g g

It is also easy to show that t" < ¢/, see problem 1.9,

t" =t

1.7 Fermat’s principle

We must briefly mention the remarkable similarity between geometrical
optics and mechanics of a point-mass. In the former, Fermat’s principle

B
6/ ) g4 = (1.41)
A C

expresses the fact that the time taken by light to travel from A to B along
a light ray (“optical path length”) is less than the time it would take along
any adjacent path from A to B.

In mechanics, Maupertuis’ principle is the analogue of Fermat’s princi-
ple. The action (not the time) is the analogue of the optical path length.

Fermat’s principle is the consequence of the existence of families of
“iconal surfaces” to which the families of light rays are orthogonal, in the
same way as trajectories are orthogonal to S =const surfaces.

An “iconal equation” is obtained as first approximation of the wave
equation for a given frequency v,

. 472

V2 + -;T =0 (1.42)
where A = Xg/n = ¢/nv, Ay is the vacuum wavelength, and n(r) is the
refractive index.

One begins by expressing ¢ in the form
¥ = exp(27iS(r)/ X0} (1.43)

where S = Sy + (Xo/2m)S) + (Ao/2m)2 Sy + ...
Substituting in the wave equation, one finds in first approximation the
iconal equation
(VSo)? =n? . (1.44)
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This is the analogue of the Hamilton-Jacobi equation.
Wave mechanics (de Broglie) is to classical mechanics what wave optics
is to geometrical optics. In fact, comparing the Schrédinger equation

Vi + i—T(E -Uy=0 (1.45)

with equation (1.42) one sees that +/2m(E — U) plays the role of a refractive
index, while the wave-mechanical wavelength is

A=h//2m(E - U) = h/p(r).
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1.8 Chapter 1 problems

1.1 The damped oscillator equation § = —q — ¢ is equivalent to the system
g = p, p= —q — vp. Show that these equations cannot be expressed in the
Hamiltonian form (1.3-4).

1.2 The damped oscillator equation of the preceding problem is also equiv-
alent to ¢ = pexp(—~t), p = —q exp(yt). Verify that these equations are
Hamilton equations, with H = [p?exp(—~t) + ¢>exp(vt)}/2.

1.3 The equation § = —(gq — go) for a harmonic oscillator with equilibrium
point ¢ = gp, can be converted into the system of equations ¢ = p—pg, p =
—q + qo, where pg is an arbitrary constant. These are Hamilton equations,
since 3(p — po)/8q = 0 and 8(—gq + qo)/8p = 0. (i) Find the Hamiltonian.
(ii) What is the (p, q) trajectory for energy E?

1.4 Show that the 4-dimensional phase space volume is conserved in the
elastic collision of two particles in one dimension.

1.5 Non-conservative forces invalidate Liouville’s theorem. Show that, if
p=—v¢ (v > 0), ¢ = p/m, areas in the (p, g)-plane decrease exponentially
with time.

1.8 According to Liouville’s theorem, conservative forces cannot change
the small-scale phase space density of a system of particles. Yet they can
change the large-scale density producing accumulation.

Give a simple one-dimensional example (two-dimesnional phase space).
Look up also S. van der Meer, “Stochastic cooling and the accumulation of
antiprotons”, Revs. Mod. Phys.,57(1985)689.

1.7 For the two-dimensional oscillator with T = m(&? + §%)/2,
U = mw?*(z? + y2)/2, and energy E = E, + E, with E, = mw?a?/2,
E, = mw?b?/2, the action integral is given by S = S; + S, with S,
obtained from equation (1.22) with the replacement ¢; — =, g1 = xp and
Sy with the replacements a = b, ¢2 = ¥, @1 = wo.

Show that

t —to = [sin~!(z/a) — sin™ (w0 /a)]/w = [sin™" (y/b) — sin ™' (yo/b)}/w

Equating these two expressions for ¢ — ¢y, show that the trajectory equation
is

b°z? + a’y? — 2abcos(a — B)zy = a’b’sin’(a — B) (an ellipse)
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Figure 1.11: Illustration of Maupertuis principle

where a = cos™!(zo/a) and 8 = cos™! (yo/b).

1.8 A particle, initially at rest, slides down without friction along the
brachistochrone (1.40). Show that the time required to reach the bottom
is mo/H/2g , independent of the initial position. Thus the brachistochrone
is also tautochrone.

1.9 With the notation of section 1.6, show that ¢ < t'.

1.10 In figure 1.11, the circle represents an earth meridian, A and B are the
initial and final positions of an object released from rest at A and travelling
to B along a smooth straight tunnel.

Assuming ¢ infinitesimal, show that

D= (/ V2m(E - U(P)) ds') - (/ V2m(E - U(P)) ds) >0

AOUB

ACH

as expected from the Maupertuis principle.
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Solutions to ch. 1 problems

S1.1 p= —-8H/d8q, § = 8H /8p would give —q —yp = ~3H [8q, p = 3H [0p.
Differentiating the first with respect to p we have 8” H/8pdq = -, while differen-
tiating the second with respect to ¢ we have &° H/8qdp = 0.

S1.3 (i) H = [(p — po)* +(q - 9)*]/2 (ii) ¢ = go+V2F cost, p = po—2FE sint,
circle of radius +2F and center (po, qo)-

S1.4 Mp, = (m1 — m2)pio + 2mapze, Mp2 = 2mzpio + (m2 — m1)pao,
M=mi +m:
fdzhdql dpadqa = | dmodt;hof |8{p1, p2)/3{p1r0, p2c)|dprodpzo = fdpmdmodpzodq:o,

since
3(pr,p2) - ‘ M~ (my — ma) QM 'my

- - = -1
8(p10, p20) 2M " lma M~ (my - 1)

S1.6

]

A(Piat, Gead) | 1—m™lydt 0 | _ .
= -1 =1~ - dt
3(pt, qt) m”~ dt 1 m

and so dA,/dt = —m~'yA, As = Ao exp(—m ™ 'yt).

S1.6 In figure 1.2, think of two small phase space regions around (g = ¢,p = 0)
and (g = —a,p = 0) filled with particles. If the p-axis of the ellipse is much smaller
than the g-axis (k very small), after a quarter of a period the two regions will have
moved to (¢ = 0,p = nwa) with resulting accumulation around (¢ = 0,p = 0).

In an antiproton accumulator the empty (phase) spaces between the particles
are squeezed outwards, while each antiproton is pushed towards the center of the
distribution.

S1.7 Regarding E, (and, therefore, b) as constant of motion other than E, since
a=w"'\/2(E — E,)/m , the first of the two expressions for ¢ — ¢; is given by
t—to = 08, /0F = (85:/8a)8a/BE). Alsot~to = 8S,/3E = (0S,/3b)(8b/OFE).

The trajectory equation is obtained by equating the two expressions for { - 5.
This gives sin~(z/a) — sin™* (y/b) = sin~ ! (zo/a) — sin~"(yo/b), which yields the
desired result by using the identity

sin~ e — sin~ g = gin~! (ETI + \/(1 —e2)(1 ~ 7}2))-

S1.8 It is convenient to use the parametric equations of the cycloid in terms of
the arc length s from the lowest point, z = ..., % = 3*/4H. Then

m§ = —mg dy/ds = —mgs/2H, § +w?s = 0 with w = /g/2H,
harmonic motion of the cycloidal pendulum.
The time sought is T'/4 = w/2%w = 7 /H/2g.
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S1.9 With £ = vy /vpz > 0, t"7t' is equivalent to

1 v\/1+-4- \/Hi-l
iza | T z

By simple algebra this yields 07z® + 82° + 20z* + 122, Thus “?" is “<”.

S1.10
P(z,0), P'(z,dy) with 3y = en(z +nR)/R, n = —z/|z|,

U{P) = mg(z® — 3R?) /2R, U(P') = mg(z* + (8y)* - 3R?)/2R,
= —mgR, \/E ~ U(P‘)d - 1 /(;a - Ug(li’:z/?zl-{?;g(éy)z /(4R\/E - U(P)),
s —ds~e ’

R
D=~ / [V/2m(E = U(P')) — \/2m(E — U(P)) + ~— 5 Rz \/2m(E U(P)) ] dz
-R

- m3 mige (:c + nR)dz >0
- VeR® \/ﬁ(T

since z(x +7R) < 0 in the integratmn interval.






Chapter 2

EXAMPLES OF
PARTICLE MOTION

We collect a body of notiona to be used in the more formal parts of the
book.

2.1 Central forces

If a particle moves under the action of a central force f = f(r)r/r, its
angular momentumn 1 with respect to the center of force r = 0 is conserved.
This follows from the vanishing of the torque 7 due to f and r being along
the same line. The motion i8 confined to a plane normal to L. Expressing
Newton’s second law in polar coordinates, we have

mar,=Ff(r) and mag=0 |, (2.1}

where
ar=F~rf? and ay=rf+276= %-'%(rﬂé) . (2.2)

These second-order equations can be replaced by the following first-
arder system:

. P} N . .
bh=fE)+t=5 , F=—, =0, b=_"% ., (23

where py = mr26 has the physical dimensions of an angular momentum.
In fact, pg = I = || jz the magnitude of the conserved angular momenturn.

23
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If the force is conservative, the energy E is a constant of motion. De-
noting by U(r) the potential energy (f(r) = —U’(r)), E can be expressed
in the form:

E=m( +1r20%)/2+U(r) = mi?/2 + Ue(r) , (2.4)

where )

2mer?

i3 an “effective potential energy” for the radial motion. A second-order
equation for r can be written in the form

Ue(r) = U(r) + (2.5)

mi = -U'(r) + — = -Ul(r) . (2.6)

Note the important formulae

" dr
t=ty + f —— 2.7
° ro A/ 2(E ~ Ue(r))/m ( )
and It d I 7/°d
6= 9{} + ¢ ) = 00 + - _’; ’
M i, (r(t)) ro T
4 dr
6=0p+1 / S 2.8
0 ro 724/ 2m(E — Ueg(r)) (2.8)

where the square roots must be taken with the signs of dr(¢)/dt and dr(6)/d8,
respectively.

The study of the r-motion is similar to that of the one-dimensional
motion of chapter 1 but for the presence of the “centrifugal term” in the
effective potential energy.

Thus if f(r) is attractive but lim,._or?|{U(r)} = 0, the centrifugal term
prevails at short distances, and there is a mimimum distance of approach
to the force center.

On the other hand, if lim,,or?|U(r)| = 0o (e.g. U = —a/r3, a > 0) the
particle falls into the center of force.
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2.2 Circular and quasi-circular orbits

Equilibrium points of one-dimensional motion correspond to circular orbits.
There will be a circular orbit of radius R if (dU,(r)/dr),_p = 0, namely
F(R)+1%/(mR?) = 0, which is nothing but the elementary mv?/R = — f(R)

(f(R) < 0). The period will be T = 2xy/mR/|f(R)|.
We now study small oscillations about a stable circular orbit. Denoting
by R the radius of a circular orbit, for r differing little from R we have

m d*(r — R)/dt® =m # = =U.(r)

—[Ue(R) + U/(R)(r - R)] = ~U/(R)(r - R) . (2.9)

The circular orbit is stable if U)(R) > 0. The angular frequency of
small oscillations about a stable circular orbit is

= VUY(R)/m = +/(U"(R) + 81*/mR*)/m (2.10)
or, using l"’/mR3 = —f(R) = U(R),
wose = v/ (U"(R) + 3U'(R)/R)/m , (2.11)
and the period is
Tosc = 21m/m/(U"(R) + 3U'(R)/R) (2.12)

while that of the circular orbit is

T = 2n/mR/U'(R) . (2.13)

For an almost circular orbit, the angle Af between two successive peri-
centers is approximately

U'(R)
R\/m(R?-U” ) + 3RU'(R)) \/RU”(R) +3U'(R)
(2.14)
For the Newton force (f(r) = —k/r) this gives A@ = 2w, and for the
isotropic oscillator (f(r) = —kr) A8 = =. In both cases the orbits are
closed.
Note that for U(r) = Cr* and U(r) = Cln(r/rg), A8 does not depend
on R.
For U(r) = —(k/r) — h/r? the orbits are not closed (rosettes). If A is

small
/ 2h h
AQ = 2w/ 1 + iR = 2% (1 + -E-R) . (2.15)

A8 = T, =
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i
|
]
m

Figure 2.1: Isotropic harmonuic oscillator

The average angular velocity of precession is

Al - 27 2rh _ 2whm

T  kRT OT
For h > 0 (attractive cubic force), the precession is in the direction of
motion,

(2.16)

wpr -

2.3 Isotropic harmonic oscillator

The force is central and elastic (f(r) = —kr), Ue(r) = (kr® +1*/mr?)/2 is
shown in figures 2.1 (left I = 0, right { > 0).

It is convenient to introduce the variable s = 1/r?. The turning points
r; and rg > r; are then given by ry = 1/,/57 and ry = 1//32, (81 > 82)

with
S mkE [2w?
( P ) = T'- (1 :l: 1-— E2 . (217)

The minimum of U, is for » = R, where R is the radius of the stable
circular orbit R = 1/l/mw. Since U.(R) = wl, for given [ must be E > wl.
Equation (2.8) gives

| B ds
=6y - — s 2.18
" 20 (o1 - 8)(5 — 52) (2.18)

1 28 — g1 — & 280 — 81 — 8
=6+ = {cos_1 (-—'L——il—ﬂ) —cos™! ( %o~ 5 Sz)] . (219)
2 81 — 8» 81 — 89
Taking 39 = (87 + 32)/2 and 4 = /4, so that

2 83 ~— &>
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we find the ellipse.

s = [s1 + 32 + (51 — 92) cos(26)}/2 , (2.21)
1 mE w22
;2- = —ﬁ- (1 + 1~ —E:—Q COS(QH)) . (222)

Note that r = ry for 8 = 0 and r = ¢ for # = 7/2, in accordance with
what was noted after (2.14). See also problems 2.3 and 2.5.

We end this section with the calculation of the cyclic action integral
J, = $p,dr, where p, = ms = (I/r*)dr/dé:

— w?l? 2m sin®(20)dé
Jp=111- 2 5 2
0 [1+4+/1—w?2/E?cos(26)]
Jy = —2ml + 2—112 . (2.23)

But 2l = ["1dg = [?"pedd, with py as defined in (2.3), and so
2rFjw = fp,.dr + %pgd@ =J.+Jy . (2.24)

Since §p-dr=m¢(& dz +y dy) =m §(* dr + r28 d8), we have
Jr + Jg = Jy + J,,. Therefore by Sommerfeld’s quantization the quantized
energy would be E = hw(n, +n,) or E = hw(n, + ng).

2.4 The Kepler problem

We discuss negative-energy orbits for
Ulr)= —=— - = (2.25)

with b < 12/2m.

Note that the —h/r? potential cannot be compensated by changing the
value of I. In fact, | appears not only under the square root, but also as a
factor multiplying the integral in equation (2.8). This gives

" dr
9 = e + l . 2,26
P L 2m[E + (k/r) + (2mh — 12)/2mr?] (2:26)
Introducing the variable s = 1/r, # can be expressed in the form
1 ]
RN . E— (2.27)

atey /(51— 8)(s —52)
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where

=/1-2mh/I2 (2.28)

51 ) _ mk \/ _2|Eji2e?
(32) =5 (u 1-=="] (2.29)

The integral is elementary. We find

— g — Qe — g7 —
6 =0y 1 [sin_l (--—-—--—---28 o 32) — sin~" ( L 82)] . (2.30)
81 8; — 89 81 — 82

Taking sg = 9; and #p = 0, we have

e = "]-““COS_“I (M) , (2_31)
o 81 — 8
8 = [s1 + 52 + (51 — 82) cos(aB)]/2 . (2.32)

We see at once that the orbit is not closed if a # 1 (h # 0). The angle
of precession per revolution is then 2mr(a~! — 1) ~ 2rmh/I? as anticipated
in equation (2.16), For o = 1 (h = 0) the orbit is an ellipse of equation

1 1+¢€cosd

P e (2.33)
Here

i)t o

E=—k/2a, ¢ =+/1-2|E|l2/mk?, a(l — ) =I*/mk . (2.35)

We now calculate the action integral J, = ¢ p,dr, where
pr = (I/r2)dr/df = lesin 6/a(1—€2), dr = ae(1—€2) sin8/(1 + € cos 8) ~2d6.
A partial integration yields

2n
Jy %p,.d?‘ = —2rl + i[ m . (236)

The evaluation of the integral is a well-known exercise in complex integration:
f“dﬁ/(1+ecos 8) = (2/ie) § dz/{#* +2¢ ' 2+1), where the path integral is along
a circle of unit radius and center at the origin. The pole z = (=1 + VT — €2)/e
falls inside this circle.

We find .
¥is m
Jy = —Jg + ~Jp +2mk, |2 2.37
T e TN 27E (237)
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Hence 02 12
T°m
|E| = — (2.38)
(Jr + Jﬂ)

and, by Sommerfeld’s quantization and k = €?,

me?

E=- 2.39
2h° (ny + '"'0)2 ( :

for the hydrogen energy levels.

Note that both here and in equation (2.24) for the isotropic harmonic
oscillator, we would expect to see Jn + Jg + Jy and ny + ng + ny instead of
J» + Jp and n, + ng. The absence of Jy is due to our having confined the
orbit to a meridian plane so that qb =0,

Schwinger (see G. Baym,Lectures on Quantum Mechanics (Addison-
Wesley,1969) problem 3, p. 179) noticed that the radial Schridinger equa-
tion for the hydrogen atom can be reduced to the equation for the two-
dimensional isotropic harmonic oscillator. In the present context, let us
compare the equation for the electron orbit

1 me? ‘/ 2| Bya 12
=T (1 +14/1 - et cos @ (2.40)

with that for the isotropic harmonic oscillator

1 mEy w22
— b 2 . 1
Pz 12 (1 +4f1 B2 cos(2¢p) : (2.41)

where we have renamed the polar angle and the distance from the origin.
With the correspondence r — p® and 6 — 2¢p, the hydrogen orbit becomes
that of an oscillator of energy Eosc = €2 and frequency w = /2| Epyq|/m.

Therefore, if in Eosc = hw(ny + ng) we replace Eqse — € and
w = /2| Bnyal /e, we find €2 = hy/2[ Enyal/m (ny + no),

4
me

= — 2.42
| Byl 2h% (n, + ng)2 (2.42)
The period is given by
3

=, (2.43)

2|E

yielding Kepler’s third law (k = GmM)

4 2.3

T?= 22 (2.44)

GM
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&
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Figure 2.2: Eccentric anomaly

In contrast to 8, the angle u (“eccentric anomaly”) shown in figure (2.2)
is simply related to the time t.

We see from the figure that a cosu = ae + rcos§. Substituting
rcosd = [a(l - €2) — r]/e (from equation (2.33)), we find r = a(1 — ecosu),
8 = 1/a(l — ecosu). Now

o g 1 1 _ (1 — cosu)
YT T a(l—¢)  a{l —ecosu) a(l - €)(1 — ecosu)
gy = 1 R (1 + cosu)
27 a(l—€cosu) a(l+e) a(l+e)(l—ecosu)
and so

t-—-f; + /r__._........‘ill'.___

° T S V2AE - Ur))m

_m / T dr _maVi-é&
o /(51— 5) (8 — 82) l

where we have taken t; = 0 for uy = 0. Hence

(u —esinu) , (2.45)

u —esinu = nt (2.46)

\/1'—? Y. — (2.47)

Comparing (2.47) with (2.43) we see that n = 27 /T is the average angular
velocity. Of course, we could have seen this by taking t = T and v = 27 in
(2.46).
This equation is useful for the calculation of time averages, since
dt/T = (1 - ecosu)du/2w
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For example, with £ = r cos@ equation (2.33) gives r + ez = a{l —€*). Denoting
by (r) and (z) the time averages of r and z, we have

T
elr) —a(l =€) = —(r) = —%/ a(l — ecosu)dt

2x
L[ a(1 - ecosw)?du = —a(1 +€2/2)
27 §,

Therefore ¢(x) = —3ae? /2. Since (y) =0, we find

(r) = —(3ae/2)é; = —(3a/2)A ,

where A is a vector of magnitude e pointing from the center of force to the
pericenter, the L-R-L vector discussed in the next section.

2.5 The L-R-L vector

For U = —k/r, the Laplace-Runge-Lenz (L-R-L) vector

r vxl
A=—-
r+ k

(2.48)

is a constant of motion (dA/dt = 0) as is easy to prove. ! At the point of
nearest approach, A = (=1 + I? /kmr)r/r for both closed and open orbits.
Using (2.33), the last of (2.35), and anticipating (2.54) and the last of (2.55),
it is easy to show that at the point of nearest approach A = ekr/|k|r for
both closed and open orbits. Thus |A| = ¢, and A points from the center of
force to the point of nearest approach for £ > 0 and E negative or positive,
and in the opposite direction for k < 0 and E, of course, positive.

Multiplying vectorially both sides of the equation kr/r = v x1-kA by
1 and squaring, one finds

(v—klx A/ = K2/ . (2.49)

Thus the tip of v is on a circle of center k1 X A/[? and radius k/I. Note
that |1 x A| = le. For closed orbits v describes the whole circle (2.49) and

one has
Umax __ 14€ _ Tmax

VUmin l1—c¢ Tmin

(2.50)

IThe “accidental degeneracy” of the energy levels of the hydrogen atom, i.e. their
independence of the angular momentum quantum number, is due to the inverse-square
form of the Coulomb force. This endows the Lagrangian with a special symmetry prop-
erty (see problem 6.24), which is responsible for the constancy of the L-R-L vector.
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Figure 2.3: Rutherford orbits

Therefore vmax”min = UminTmax a8 one knows from General Physics. For
open orbits (Kepler-Rutherford trajectories) see section 2.6.
If the force acting on the particle is £ = —krr—2 + 6f, one finds easily

dA 1 1
E't"—k——df 1+EVX(I‘X6f) ' (2.51)
If 6f is central {6f = 6f(r) r/r), this reduces to
dA 1
Mé-z—_-%df(r)rxl ) (2.52)

A derivation of equation (2.15) based on this formula is presented in prob-
lem 2.6.

The L-R-L vector is “Laplace’s second vector”, the first being the angular ve-
locity. It was used by W. Lenz who took it from a textbook by C. Runge. Neither
of these two authors claimed it as an original finding. This historical question
was discussed by H. Goldstein, Am. J. Phys.,43(1975)737 and 44(1976)1123.

2.6 Open Kepler-Rutherford orbits

For U = —k/r we consider the case E > 0, but allow £ to be positive
(attractive force) or negative (repulsive force)., We find

_ mlk| 2E2
-1:' = (Ikl 1+ W COSQ) y (2.53)
1 _ (k/]k}) +ecosé
r a(e2~1) (2.54)

with

e=V1+2E2/mk2 > 1, a(e® = 1) = 1*/mlk| . (2.55)
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\__/

®
A

Figure 2.4: L-R-L vector for Rutherford scattering

The orbits are hyperbolae (see figure 2.3) (z*/a?) — (/%) = 1,
a=12/mlk|(¢ - 1), b=ave? — 1 = |k|/2E.

A B F
T —a a —ae€
r|lale—1)la(e+1)] O
6 0 0
The positron travels from r = 00, 8t = —cos7(1/e) < 0 to r = oo,
gout = ms-l(l/e) > D t |eout| < ﬂ'/2'

The electron travels from r = 00, 0, = 87 — v < 0 to r = oo,
out = eout +7>0, lei;I = Ieo_utl > 77/2'

As one knows from analytical geometry, b is the “impact parameter”, shortest
distance of F from the asymptotes y/z = +b/a. For k > 0 (attractive force),
E = mvl /2, where v is the velocity of the incident particle at infinite distance
from F. A simple calculation gives | = bmup. In this case the tip of v does not
cover the whole of the circle (2.49). One finds Umax = k(1+¢€)/! as for closed orbits.
In order to find vmin = vo, one must substitute v,_- = —vpcosf}, = —w/e, v, =
vo sin @7, in (2.49). This gives vo = (k/I)VeX — I = b/Tmin, Vmax"min = Vminb.

Zero-energy orbits: These are possible only for £ > 0. They are
parabolas (¢ = 1)

1 ';'“—2"’(1 +cosf) . (2.56)

The L-R-L vector is a useful tool also in treating open orbits. In order
to clarify its meaning in this case, we define

kmA km rp
I=—-2—-= 1- 5 r—=———>p
p| lpl™r
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If the center of force is inactive, then
lim I=r—(r-p)p/lp|" =r1
k-0

Using the L-R-L vector, it is easy to show that the scattering angle ©
in Rutherford’s scattering is given by

tan(©/2) = qQ/2Eb (2.57)

where g is the charge of the scattered particle, @ that of the fixed scattering
center (q@ > 0), E is the energy and b the impact parameter.

In fact, A-p = —r-p/r, lim, A -p = —|pi.|, where py, is the momen-
tum of the incident particles, cosa = —lim,, A - p/|Allp] = 1/]A| = 1/,
© =7 — 20, sin(@/2) = 1/¢, tan(0/2) = 1/Ve? — 1 = k/2Eb, k = ¢Q.

2.7 Integrability

The isotropic harmonic oscillator and the Kepler motion share two distinct
properties. They are integrable and exactly solvable.

‘The former property, integrability, is apparent from equations (2.7) and
(2.8) giving t = t(r) and 6 = 6(r) in the form of definite integrals. Once
these formulae have been written, the remaining task is “to do” the in-
tegrals. This could be done exactly and equations (2.22) and (2.33) were
established.

The equations of motion of a particle in a conservative central field with
potential energy U(r) are integrable because equations (2.7) and (2.8) are
available. If, however, a search in a table of integrals proves unsuccessful,
and one must resort to numerical integration, the equations are obviously
not solvable exactly.

This definition of exact solvability is a little loose. For instance, an
integral may be expressed analytically as a slowly converging series whose
use is less convenient than calculating it numerically.

Integrability results from the existence of a sufficient number of integrals
of motion, and the existence of an integral of motion is connected with
the invariance of the equations under a transformation. This will be the
leitmotif of Chapters 6 and 7.

Let us consider a particle in three dimensions acted upon by a force
f = —VU(r) which does not depend explicitly on the time. The energy
E is an integral of motion connected with the invariance of f = ma under
time translations t' =t + &t (6t constant).

If U = U(p) (p = V=% +y?), the z-components of the momentum
and of the angular momentum, p, and {;, are integrals of motion. They
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result from the invariance of the equations under translations 2’ = 2 + 4z
(6z constant) and rotations ¢' = ¢ + d¢ (d¢ constant). The three integrals
of motion, E, p,, and [, make the equations integrable.

KU =U(r) (r=+/z*+y?+22), 1,1, and |, are integrals of motion
resulting from the invariance of the equations under rotations about each
of the coordinate axes. They amount to the magnitude of the angular
momentum, and a direction which we took as the z axis. Together with E,
{; = |1 = I made the equations integrable.

A non-trivial example of integrable two-dimensional problem is the mo-
tion with the Toda potential energy

U = Elz[ez(m—m/é) 1 e uVE) |y =iz _ .;. , (2.58)
Together with the energy F, the integral of motion

I = 85(3® — 322 + (+V32)e2CEvV3) 4 (5 —3i)e2e V3 _oge—1z (2.50)

found by Hénon makes the problem integrable.
Expanding Ur to the third order in  and y one has

1 1
Ur ~ _:?_(xz + yz) - -5:83 + :z:y2 =Ugn , (2.60)

the Hénon-Heiles potential energy. It seems that the equations of motion
with the potential energy Uyn have only one integral of motion, the energy.
Therefore, they are not integrable.
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2.8 Chapter 2 problems

2.1 For a constant attractive central force (I = Cr, C > 0), equation
(2.12) gives Tose = 2m\/mR/3C = T/+/3. Compare this result with the
following.

A puck of mass m on a frictionless horizontal table is pulled by an
inextensible string passing through a small hole in the table and attached
to a hanging mass M.

2.2 Study the stability of circular orbits for
(i) U = Cr®, and (ii) U = ClIn(r/ro), where C, « # 0, and ¢ are constants.

2.3 Substituting U = Cr® in equation {2.12), we find

Tose = 2mv/mR2—% Ja(a + 2)C

For the isotropic oscillator (C = k/2, a = 2) and for the Newton-Coulomb
force (C = —k < 0,a = —1), compare Ty With the period 7' of the circular
orbit, and draw illustrative graphs.

2.4 Study the negative- and zero-energy orbits of a particle acted upon by
the attractive force f, = —2h/r3 (h > 0). Consider only the case 2mh > I%.
For other cases, as well as for a combination of an inverse-square and an
inverse-cube force, see G.L. Kotkin and V.G. Serbo,Collection of Problems
in Classical Mechanics (Pergamon Press,1971).

2.5 With £ = r cos#é, y = r sinf, equation (2.21) gives
5272 + 8192 =1
This is the equation of an ellipse
(z/A)? + (y/B)® = 1 with A =1/,/53, B =1/,/5;.
How is this related to the equation
(22 /a?) + (y'?/b*) — (2cosd/ab)z'y’ = sin’6
found in problem 1.77

2.6 Use equation (2.52) to evaluate the angle of precession per revolution
when 6f(r) is small.

2.7 (i) Show that a particle with energy E < 1/6 and potential energy
Unu(z,y) given by (2.60) is trapped in the triangle of vertices
(z=1Ly=0),(z= _1/213’ = \/5/2), (z=-1/2,y= _‘/5/2)'

(ii) These vertices are saddle points. Show this for the (1,0) vertex.



28. CHAPTER 2 PROBLEMS 37

Figure 2.5: Quasi-circular orbits

Solutions to ch. 2 problems

S$2.1 The force (7, tension of the string) is constant if the motion of the puck is
circular with center at the hole (r = Mg), the period being T = 27 /mR/Mg.
However, if m executes small oscillations about the circular orbit, one has
mit = —7 + I*/mr®, M¥ =7 — Mg, (m + M) = ~Mg + */mr®,
d?(r — R)/dt? ~ —wl,; (r — R) with wl,; = 312/mR*(m + M),
80 that Toee = 274/ (m + M)R/3Mg = T/(m + M)/3m. The force acting on m

(the tension 7) is given by 7 = M (¥ + g), and is clearly not constant.

S2.2 (i) The force must be attractive, and so —ar®~'C < 0, aC > 0.

Stability requires U} = U” +3U'/R> 0, a{a — 1)C + 3aC > 0, Ca{a+2) > 0.
Since aC > 0, the condition for stability is a > —2 (a # 0).

(ii) For U = Cln(r/r) (C > 0), f(r) =-C/r,

Ul = —(C/R*)+(3C/R?) = 2C/R? > 0, indicating stability of all circular orbits.

S$2.8 For the isotropic oscillator one finds Toee = m\/m/k = T/2, where T =

2ry/m/k is the period of the circular orbit.

This can be understood analytically by considering the equations of motion
z = acos(wt), y = bsin(wt) with a = R+ ¢ and b = R — ¢, Since
r = /x? +y? ~ /R? + 2Recos(2wt), we see that wese = 2w. For a graphic
illustration, see figure 2.5(a).

For the Newton-Coulomb force we have Tosc = 2m/mR3/k = T, which is
evident from figure 2.5(b).

S2.4 Inserting U = —h/r? in (2.8) with the square root taken with a minus sign,
we find

f= 90 + -m_;;_-—:i;[cosh_l(rm.,x/r) - cosh'l (rm,,x/rn)] y
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_ 1 2mh Thax = Th . 2mh
= cosh ( 7 -1 (8 ~99))w — sinh (1} 7 -1 (8 ~6p)

For simplicity’s sake we take 6o =0, 7o = max- Then

lw—-—l-----cosh \/2mh__1 8
T Tmax 12

It is clear that » — 0 as § — oo, in which case

ln(rm.u;'r)/‘ / 2mh -1

The particle falls into the center of force after an infinite number of revolutions.
On the other hand, from equation (2.7) we have

= a2 (5o ) —om [ [ v

=10+ \/m/ZIEl(\/-r'?nu 1% = A/ rRax — 102 )

Taking o = 0 and 7o = rmax, we see that the fall into the center of force takes
only the finite time f7an = rm&x\/ m/2|E| = v2mh — I?/2{E|. The velocity tends
to infinity as r tends to zero because the potential energy tends to —oc so that
the kinetic energy tends to +oc.

Circular orbits are E = 0 orbits with the additional requirement h = {? /2m.
In fact mv?*/R = 2h/R® gives I> = 2hm and E=mv?/2 — R/R? =0.

3] -

$2.5 The equation for {(z,y) reduces to that for (z’,3’) by a rotation
z =o' cos(v/2) + ¢ sin(v/2) , y = —x'sin{v/2) + ¢’ cos(~/2)
if
[81 + 82 + (81 ~ 82) cosy]/2 = 1/(asin?5),
[s1 + 82 — {51 — 82) cos7]/2 = 1/(b%sin?4),
and
(31 — s2)8in~y = 2cosd/ab sin®§
By working on the previous three equatmns we find
a? + b = (81 + 82)/s182 = 2E/mw® and a?b?sin?s = 1/5183 = I*/m®w
This makes sense. From z = a cos{wt — &) and y = b cos{wt — ), we have
= [m(@® + ¥*) + (k(z® +¥*))/2 = mw?(a® + 6°)/2, | = m{zy — y&) = mwab sind.

$2.6 Define df,,./dt = (ix A)-(dA/dt), where 1 and A are unit vectors in the di-
rect:ons of 1 and A, respectively. Since dA/ dt = (dA/di)/A +term parallel to A,
= |A|, we have (l x A)-dA/dt =171 A"%(1 x A) - dA/dt. Therefore

dfpe  (Ix A)-(@xD)éf(r) 13f(r) _l‘)'_
dt kmirA? " kmrA? " km !
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Figure 2.6: Hénon-Heiles potential energy

Af ~ ” 1——-‘-2—- Jf(r)-d—t-dﬁ—-—-l— " I—L 8f(r) r* do
Pr T kme? 0 kmr dg  ke? 0 kmr !

where we have replaced A? by its value €2 for §f = 0.
For & f(r) = —2h/r?, using (2.33) we have

eh [ ( ¥ 1\, _ 2rmh
Mw-zszo (W'?)dB‘T

in agreement with (2.16).
S2.7 (i) Expressing Uun in the form

I 1 1
Unn = 53 (a:+ E) (a:+y\/§—-l) (m—y\/i— 1)
one sees at once that Uyn has the value 1/6 on the sides of the triangle shown in
the figure,

Unn(z = —1/2,9) = Unr(z = 1 - yv/3,9) = Unn(z = 1 + yv/3,9) = 1/6

On the other hand, Unn(0,0) = 0, and Unr < 1/6 inside the triangle (see figure
2.6).

(ii) Near the vertex (1,0), (z = 1 + dz,y = 6y), the force components

F, = —(z—z* +¢*), F, = —y(1 + 2z)

are given approximately by F, ~ éz, F, ~ —34y.
For 0y = 0, we have d?dz/dt? ~ +dz, so that (1,0) is a point of unstable
equilibrium for motion along the z-axis.
For dx = 0, we have d?8y/dt® ~ —34dy, so that (1,0) is a point of stable
equilibrium for motion perpendicular to the z-axis.






Chapter 3

FIXED POINTS,
OSCILLATIONS, CHAOS

The fixed points of a system of first-order differential equations of motion
are defined, and the behavior of solutions in their neighborhood is exam-
ined.

Oscillations about equilibrium configurations are considered, as well as
forced oscillations and parametric resonance.

The chapter ends with an outline of chaotic motion.

3.1 Fixed points

We shall be concerned with systems of differential equations of first order
in the time
£ = fi(z1,...2N) (¢=1,...N=2n) , (3.1)

where n of the z¢’s are coordinates and the other n generalized momenta.
Such equations replace n second-order differential equations, as outlined in
Chapter 1.

Suppose all the f;’s vanish for ; = xg; (: = 1,...N), where the x;’s
are constants. Then x; = xp; is a solution of the system. The point x, is a
“fixed point”.

Example: Defining z; = 8, z2 = 8, the damped pendulum equation
6+ fyé + (g/1)sin § = 0 can be replaced by the system of equations £; = z2,

3 = —(g/l) sin £ — yz2. There are two fixed points, (z; = 0,z = 0) and
{1 = m,z2 = 0), or, more precisely,
(z1 = 2nm, 22 = 0) and (z1 = (2n + 1)m, 22 = 0).

41
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The fixed-point solution is stable if any solution z;(¢) such that
|2:(0) — zos| < € (€ infinitesimal) differs infinitesimally from zo; at all times.
The following is a criterion for stability. Linearize equation (3.1} about
(:cm, . :L'QN). With zl}: = Z; — To; ONe has

&; = a;jz; where a;; = (8f;/0z;), (3.2)
or, more concisely,
X (t) = Ax'(t) (3.3)
where
T
x = : i (3.4)
Ty

and A is the N x N matrix with elements a;;.

Example: For the damped pendulum, about the fixed point (0, 0) one has
an =0, a1z =1, ann = —g/l, azz = —~, and about the fixed point (7,0} one has
a1 =0, a12 =1, az1 = +g/1, azs = —.

In order to study the stability of the fixed point solution x' = 0, we
consider solutions of the form

x'(t) = XeM | (3.5)

from which the general solution of equation (3.3) can be constructed.
Substituting in (3.3), we find

AX = XX

The problem is reduced to finding the eigenvalues A; and the eigenvec-
tors X; of A. If the eigenvalues A; are all different, then the general solution
can be expressed in the form

N
() =) cXieMt (3.6)
i=1
Let us consider the simple case N = 2,

A= ( o ) . (3.7)

Q21 Q22
The eigenvalues A; and A, are the solutions of the quadratic equation

M—SA+A=0 , (3.8)
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Figure 3.1: Spiral attractor

where S = trace(A) = a1y + @22 and A = a@y1a2 — 212091 They are

( i; ) - %(Si VST—4A) (3.9)

corresponding to the eigenvectors

x;:( a2 ) (i=1,2) . (3.10)

Ai — an

‘We confine ourselves to the case §% < 4A ()} and A3 complex numbers,
| exp(Ait)| = exp(S5t/2)).

¥ S < 0 the fixed point is a “spiral attractor”, if S > 0 a
“gpiral repellor”.

Example of spiral attractor (figure 3.1): Damped pendulum about lower equi-
librium
position, § = —v, A = g/l, while 5% < 4A means v < 2\/9_/1.
The eigenvalues are A1 = (—v +i4/4gl=1 —¥2)/2, A2 = A1. Note the solution

8(t) = Bo(Az exp(Mat) — M exp(Aat))/(Az — A1) for 8(0) = 8o, 8(0) = 0.
One finds
8(t) = © cos(wt + a) exp(—t/2)

w=32/Egi — 7, © = 00\/7F T &7 [2w, tanar = —y/2w.

Other cases will be studied as problems.

with
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Y b, 2..

Figure 3.2: Double pendulum

3.2 Small oscillations

Let the matrix A in (3.3) be of the form

A= ( MO_, ‘OK ) : (3.11)

where K and M are n x n real symmetric matrices with constant coefficients,
and x' in (3.4) be

(2 o(3) (a) - om

Equation (8.3) then gives
g=M""p , p=-Kq , (3.13)
corresponding to the second order equation
Mg =-Kq . (3.14)

Restrictions on K and M will be imposed as we go along.

As an example, we consider the small amplitude oscillations of a double pen-
dulum (figure 3.2) about the stable fixed point ¢; = ¢ = 0, ¢ = ¢o = 0. We
leave it to the reader to establish the equations

$1= (P —p)/ml® | 2= (=pr +2p2)/ml® |

p1=—2mgl$r , p2=—-mglg,
These can be written more concisely in the form (3.13) with

_ i3 _ [ 3 . ; 2 1
=(8) e=(i) e (D)
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a1 ({1 - B 2 0
M '?ﬁ"ﬁ(ml 2) ' K'mgl(o 1)

For a solution of the form

q(t) = q(0) exp(At) ,

substituting in equation (3.14) we find a system of homogeneous equations for
the components (q1(0), q2(0)). This has a non-trivial solution if A is a solution
of the equation A\* + (4g/1)A? + 292/1> = 0. The solutions are pure imaginary,
Ai = Fiw; (8 =1,2),

wi=g@+VD/l , wa=rlg2-VDNI .

These are the eigenfrequencies of the system.
The eigenvalues of M are

mo\ _mb
(p2 ) == 3xvB) >0 ,
while K ig already in diagonal form with elements x; = 2mgl and k2 = mgl, both
positive. Notice that the quadratic forms m;;£:¢; = mI®[£] + (&1 + £2)%] and
ki; €€ = mgl(26} + £3) are positive definite.

Returning to the general case, one finds at once that the “energy”

E = (4TMq + qTKg)/2 (3.15)
is an integral of motion. In fact
dE/dt = (§TMa +4"MG + §TKq + qTKq)/2

= {[gT(M§ +Ka)] +[.. ["}/2=0 ,
where we have used the symmetry of the matrices and equation (3.14).
Since
I"™Mg=p"M! Tp=pTMp
the energy can also be expressed in the form
E=(p"Mp +qTKq)/2 . (3.16)

We assume that the quadratic form m;;£'¢9 ((€%, €7) real) is positive
definite. This is natural since the first term in equation (3.15) is the kinetic
energy. We assume also that k;;£*¢7 is positive definite. This is also natural
if equations (3.14) are linearizations about a stable fixed point. Then if the
potential energy I/ has a minimum at the fixed point, (8U/8¢;), = 0,
kij = (8*U(q)/0gi0q;), (symmetric), and k;;£*¢/ > 0 (condition for mini-
mum).
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An immediate consequence of these assumptions is that the frequencies
are real. In fact, for a solution of the form

q(t) = Qelv? (3.17)
one finds
(K-—uw*M)Q=0 |, (3.18)
» _ QTKQ
2 _
w’ = Gtmg > ° (3.19)

since the numerator and the denominator are both positive.
Equations (3.18) have a nontrivial solution if

det(K — w*M) =0

(secular equation).
For the double pendulum

2g — 2w?  —l?
-lw? g — lw?

w = g2+ VDL, wa=fe@- VDL

as we have already found.
Our equations can be cast into a canonical form. Let u; be the eigen-
vectors of M,

=0, Pw*—4lg®+2¢*=0 |,

Mu; = piu; (no sum over 7) . (3.20)

The eigenvalues y; are all positive because of the assumption m;;£*¢7 > 0.
We normalize the eigenvectors so that u}‘u.- = (1/pi)di;. Representing q as
a linear combination of these eigenvectors, q = @;u;, we have the kinetic
energy

K =4"™™a/2 = Q;Q;uf Mu;/2
K = QiQ;uuiui/2 = QiQi/2=Q7Q/2 (3.21)

invariant under rotations in the n-dimensional space of the ¢};’s. By a
suitable rotation the potential energy can be brought to the form

U=uwlQ’/2 . (3.22)
Equations (3.14) are replaced by
Q) +wlQ: (no sum over 1) (3.23)
or by the first-order equations

Pl=-w}Q, , Q=P . (3.24)
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In some cases it may be convenient to interchange the roles of M and K
in the above prescription.
For example, U = mgl(2¢? + q3) /2, the potential energy of the double pendulum,
takes the form U = mgl(Q} + Q3)/2 by putting 1 = @1/V?2, g2 = Q2.
The kinetic energy is then K = (Q? + Q3 + v20:1Q2)/2.

Performing the rotation Q1 = (Q} + Q%)/v2, Q2 = (—Q! + Q4)/V/2, we find

U=mgl(Q? +Q2)/2 , K=mlP[(1-1/VDQ?+ (1 +1/V2)QP)/2
and the corresponding equations of motion are

Ql=—gl '@+ V2Q, , Gi=-gi"'(2-V2)Q}

The frequency w1 = v/ g(2 + 72)/1 corresponds to the mode Q% = 0, @1 +
Q: =0, V2@ + ¢z = 0, while w2 = \/g(2 - ;72)/! corresponds to Q7 = 0,
Qi~Q:=0,V2q —q=0.

3.3 Parametric resonance

We study the solutions of the equation
G+w?(t)g=0 (3.25)

in which the time-dependent frequency w(t) is periodic.

Example: By retracting and extending the legs, a child sitting on a
swing changes the parameters of the system, and so its w(t), setting it in
motion.

Equation (3.25) is equivalent to

. 0 1 _[q
x“(—w"’ U)x where x_(d) : (3.26)

Two solutions ¢; and gy of equation (3.25) are linearly independent if
their Wronskian W = ¢1¢2 — ¢261 ,

W =xTix; with J= ( _?1 . ) , (3.27)

is different from zero.

It is easy to show that dW/dt = 0, W = constant. Therefore two
solutions q;(t) and g2(t) are independent if their W is different from zero
at some arbitrary time.

We choose as a fundamental system set of independent solutions x; (%)
and x2(t) such that

x1(0) = ( {1) ) and x2(0) = ( {1) ) , (3.28)
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namely (g:(0) = 1,¢2(0) = 0) and (g2(0) =0, ¢2(0) = 1).
At t =T, where T is the period of w(t),

x1(T) = ( et ) and xo(T) = ( 12 ) , (3.29)

asy a2

where a11 = 1 (T"), a12 = q2(T), ann = i (T), and a3z = ¢2(7"). These can
be written in the form

xi (T) = ( 1 A2 ) ( (1) ) = Ax;(0) and x2(T) = Axa(0) , (3.30)

Ua1 U232

with

A= ( M1 G2 ) . (3.31)

dz1 d22

There will be no occasion to confuse this A with that of equation (3.3).
Since any solution can be expressed in the form x(t) = ¢;x; (t) + caxa(t), for
any solution we have

x(T) = Ax(0) . (3.32)
We want to find solutions such that
x(t+T) = Ax(t) . (3.33)
Putting
x(t) = ax;(t) + Bxa(t) (3.34)

for t = 0 we have
x(T) = Ax(0) = aAx; (0) + BAx2(0), and x(T) = Ax(0) = Alax; (0) + Bx2(0)).
Hence
{ ana+af =i ,
ana+apf=A0 ,

or
(A—)\)(Z):O . (3.35)
Note that det A=W =1,

dern=aer (20 20 )= (] 1) =1

The secular equation det{A — Al) = O gives the equation for A

AN —SA\+1=0 , (3.36)



3.3. PARAMETRIC RESONANCE 49

ZZ %
<1

18 B = N
2\

Figure 3.3: Instability zones

where S = ay; + ago. The eigenvalues are

(i‘;).—.(Si\/STII)/z : (3.37)

AL+ A2 = S, Atde = 1.

If |S| > 2, the eigenvalues are real and of the same sign (A Ay = 1).
If they are both positive, we might take A; > 1, Ay < 1, and write
A1 = exp(a), A2 = exp(—a) (« real and positive). The solutions are clearly
unbounded, x(nT"} = exp(na)x(0).

If |S| < 2, the eigenvalues are complex (A == X;). Since their product
equals unity, they lie on the unit circle, A\; = exp(iy), A2 = exp(—iy)
(v real). Then q(A1;t + T) = exp(iv) g(\1;t). The function

©1(t) = q(A1;2) exp(—iyt/T) (3.38)

is periodic with period T,

e {(t+T) = i (t)
Hence
g(Ai;t) = €7Tpy(t) and q(he;t) = e M/ Tpy(t) (3.39)

where ¢; and (s are periodic with period 7. This result is known to
physicists as Bloch’s theorem.

S is a function of T. The roots in T of the equations S = +2 separate
the zones of stability from those of instability. For § = —w3(1 + € cost)q
(0 < € € 1) the instability zones are shown in figure 3.3 .

It may be useful to go step by step through the above mathematics for the
harmonic oscillator equation § +wgg = 0 (wo= constant). Here ¢, (t) = cos(wot)
(@(0) =1, 41(0) = 0), ga2(t) = wy " sin(wot) (g2(0) =0, ¢2(0) = 1),
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N co (w T) _ a1l
x1(T) = ( _wozin(()on) ) B ( a2 ) ’

—1 .
_ _ [ wg sin{weT) \ _ [ a2
XZ(T) - ( COS(WOT) ) - ( a2 ) 3
while the matrix with elements a;;, which we now denote by Ao, is

cos{woT)  wy 'sin(woT)
Ap = .
{0 sm(on) COS(on)

Note that here T can be anything, it must not be confused with Tp = 27 /wo.
The eigenvalues of Ag are A1 = exp(iweT") and Ay = exp(—iwoT). The equa-
tion x(¢t + T) = Mx(t), with x(t) = ax1(t) + Bxz(t), gives 8 = (A — an)a/az.
Hence g(A1) = aexp(iwot) and g(A2) = a exp(—iwpt}, because in this case
Y= i—l In )u == on.
Referring to figure 3.3, for ¢ = 0 and T = 27 we have
Sp = |trAg| = |2 cos(2mwo)|, and so Sp = 2 for wy = k/2 (k integer), intersection
of instability zones with wp axis.

3.4 Periodically jerked oscillator

The equation

o0
Wi+ f ) 6(t-nT)g=0 (3.40)
n=—0oo
provides an exactly solvable model for equation (3.25).

Take 1 (07) =1, ¢,(07) = 0, ¢2(0~) =0, §2(07) = 1. At 0+ we must
have ¢, (0%) = ¢ (07), g2(0T) = g2(07), and, by integrating equation (3.40)
from —e to € (e — 0),

@ (0%) = ¢1(07) = —f@1(0) = — f, 42(0%) — ¢2(07) = —fq2(0) = 0.
In the interval 0 < t < T we take

q:(t) = cos{wet) — fwg,“1 sin(wot) , gqo(t) = wgl sin{wpt) . (3.41)

The matrix A, defined by x1(77) = Ax;(07) and x2(7"~) = Axo(07), is

_f cos(woeT) — fuwy ' sin(weT) wy ' sin(weT)
A= ( —wp sion(ng) 2 f cos(w(;T) Gcos(woflg) ) - (3.42)

We have det(A) = 1 and S = trace(A) = 2 cos(woT') — fwy ! sin(woT).
If |S| < 2, we find A; = exp(iy), A2 = Ay,
cosy = S/2 = cos(weT") — fsin(weT)/2ws.
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Figure 3.4: Stability zones for (3.40)

In figure 3.4 (S versus T for given wp), the thick lines show the stability
intervals.
In the interval 0 <t < T, the functions g(\; ¢) of equation (3.39) are given by
@1 (Ait) = a12qa () + (A — an1)qa(2)
= a2 cos(wot) + (—a12f + A — an)w; ' sinwot)
and in the interval —=T < ¢ < 0 by
qo()\; t) =ai12 COS(w()t) + (A - {11 )w;l sin(wot)
As an exercise, verify that g:(\;T/2) = Ago(); —T'/2).
The graph in figure 3.4 is familiar to physicists. In fact, the present
example is presented for comparison with the Kronig-Penney model of wave
mechanics. Our equation corresponds to the Schrédinger equation

—~(h2/2m)u" + vo i 8(x — na)u = Eu (3.43)

n=-—0oo

in G. Baym, Lectures on Quantum Mechanics(Addison Wesley,1969), eq. 4-
121 (cos(ka) = cos(ga) + (mvoa/k?*)sin(ga)/(ga)): v/T & k, T & a,
wg & 2mE/R?, f & —2muoh’.

Let us return to equation (3.30). Putting ¢n = ¢(nT ™), ¢n = ¢(nT")
(value of ¢ and ¢ just before the impulse at time nT'), we have

Xne1 = Axy (3.44)

where x,, has components (¢,,¢,) and similarly for x,4;. Since f in the
expression (3.42) for A is a constant, the map (qn,gn) = (Gn41,0n+1) i8
manifestly linear.

However, this is equivalent to

( i ) =7 =°( in fan ) (8.45)
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as is easy to verify.
Congider now the equation

§+uwig+ flg) ) 6(t-nT)g=0 , (3.46)

n=—od

in general non-linear in q.
By a procedure identical to that used for f = constant, one finds the
non-linear map

( i ) = Af:“( i — f o) ) : (3.47)

Consider finally the periodically jerked damped rotator

§+vi+fl@) Y 6(t-nT)g=0 , (3.48)

n=—oo

where g(mod2r) is the angle of the rotator.
From (3.46) for the oscillator with w?q replaced by 4, one finds easily

n+1 = gn + 7" {dn — fgn)an][1 — exp(—1T)] ,
s = [0 = Flam)an] oxp(=T) (3.49)

For f(q) = d{rg+ (1 —r)], v > o0, 6/ - 1, one obtains the
“logistic map”
In+1 = "'Qn(l - Q'ﬂ) . (3«50)
This derives its name from the equation dz/dt = rz(l — ) describing
population growth.

3.5 Discrete maps, bifurcation, chaos

Congider a discrete one-dimensional map Zp+1 = f(zn), such as the map
qn+1 = rqn(1 — ¢,) derived from the overdamped-overjerked rotator, equa-
tion (3.50).

A “fixed point” of the map is a solution of z* = f(z*). The fixed point
is stable if, starting from z* + ¢,

|f(z* +¢) - f(z*)] <|(z* +€) —z*| =|e| . (3.51)

(582)....

This requires

<1 . (3.52)
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For the logistic map 2,41 = rza(l — z,) (0 < r < 4) in the interval
0 < z < 1, there is always the fixed point * = 0. Since the derivative of
rz(l — x) with respect to z for z = 0 equals r, z* = 0 is stableif r < 1. In
this case (r < 1), starting from any z; in the interval 0 < < 1, one has
limp—osooZn = 0. Of course if zg = 1, z, = 0 without having to go to the
limit.

The other fixed point z* = (r — 1)/r exists only if r > 1, for the simple
reason that z* is assumed to be positive. Since the derivative of rz(l — x)
with respect to  for ¢ = (r — 1)/r equals 2 — r, * = (r — 1)/r is stable
for 1 < r < 3. Note that the fixed point z* = (r — 1)/r is born (at r = 1)
when the other, z* = 00, becomes unstable. For 1 < r < 3, starting from an
arbitrary 0 < zo < 1 one has limp=coTn = (r — 1) /7.

What happens at 7 = 3, when * = (r—1)/r becomes unstable? A limit
cycle is born consisting of only two points since we are in one dimension.
The disappearance of a stable fixed point accompanied by the appearance
of a “limit cycle” is known as a “Hopf bifurcation”.

For 3 < r < 1+ /6 ~ 3.45, starting from any value 0 < z < 1
(zo # (r — 1)/r) we have

lim ap = (r+12 /" —2r-3) /2r . (3.53)

L3 0O

This means that for large values of n, z, keeps flipping to and fro
between two limit values. These are fixed points of the square of the map,
defined as f2(z) = f(f(z)) (F2(z) # (f(x))*!). If we start from .z, one
application of the map gives z' = rz(1 — z), and a second application gives
z" =rz'(1 - 2') = r’z(1 — x)(1 — rz + r=*). To search for a fixed point of
f2, put =" = ¢ — z*. We get the equation

* = riz*[l — (1 + r)z* + 2rzs*? — rz*d] | (3.54)

Now z* = 0 is a solution. It is a fixed point of f, and so also of f2, but it is
unstable for » > 1 and, a fortiori, for r > 3. Knowing this we first reduce
(3.54) to (z* — (r — 1}/r)[rz*® — (r + 1)z* + (1 + r)/r] = 0, and, since also
z* = (r — 1)/r is not acceptable, to the quadratic equation

rg*? —(r+ D"+ (1+7r)/r=0 . (3.55)

This has the roots

(x;*)?zlr.(r“i\/m) (3.56)

3

(r? —=2r —3 > 0 for r > 3). Note that f(z}) = 23 and f(z}) = z} or, more
explicitly, z3 = ro}(1 — @}), o7 = rz5(1 — z3).
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Figure 3.5: ¢ = lim,,.,2, for logistic map

Is each of the above two values a stable fixed point of the f2 map? In
1 > |dz"/dz| = |dz"/dz'||dz’/dz| = r?|(1 - 22')(1 ~ 2z)| put z = =},
&' = 3, obtaining |4 + 2r — r2| < 1. This is satisfied for 3 <r < 1 + V6.

After the first bifurcation for the value r; = 3 of the control parameter,
another occurs at rp = 1 + /6 ~ 3.45, when each of the two fixed points
splits into two, another at r3 ~ 3.54, another at r4 ~ 3.56 etc.

The values of r at the onsets of successive bifurcations are given by
Feigenbaum’s empirical formula

e =Too —c/6F  (k=1,2,3..) (3.57)

where 0 ~ 4.67, ¢ ~ 2.64, roo ~ 3.57. This seems to apply also to other
quadratic maps (“universality”). Some authors are so enthusiastic about
this formula as if they believed that one day it will be equal in importance
to the Balmer formula for the hydrogen spectrum.

From Feigenbaum’s formula one sees that

TR 550 (3.58)

Th+tr — Tk

showing that the interval between the onsets of bifurcations decreases.

We have reached the value ro, >~ 3.57. What happens after that? For r
between rs, and 4 there are chaotic intervals interrupted by odd periodic
cycles, until chaos prevails at r = 4. Figure 3.5 is the result of a rough
calculation performed with the use of a pocket calculator.

When we speak of chaos, we do not only mean that the iterates are dis-
tributed at random. Sensitivity to initial conditions is an essential element

of chaotic behavior.
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Figure 3.6: Lyapunov exponent for logistic map

Suppose we start from two different values z; and z{, = z¢ + €, with €
arbitrarily small. In a chaotic regime, the iterates f™(xy) and f™(xg + €)
(fO(xo) = mo and fO(xp + €) = o + €) will diverge from each other as n
increases.

If we assume the divergence to be exponential and write

/™ (@0 + €) — f™(@0)] = e M=) (3.59)

for |¢| € xo we find
df"(z)

R . (3.60)
We define the Lyapunov exponent A(zxp) as
1, |dfm
Mzo) = nil’ngo;ln fd_x(m) N (3.61)
Note that f™(xo) = f(f(... f(x0))),
F).- (&), &), (&)
dz /., de /), \dz/, U \dx 2o '
and so
A(zo) = nl_:_’n;o;Zm | ()] - (3.62)

=0

Values of A for the logistic map are shown in figure 3.6 (rough rendi-
tion from R. Shaw,Z. Naturforsch.,36a(1981)80). Positive values of \ are
indicative of chaotic behavior.

Using a pocket calculator, it is easy to verify that equation (3.59) works
perfectly for the tent map of problem 3.11. Why are we not surprised?

In chapter 8 we shall briefly consider chaos for systems with time-
independent Hamiltonians,
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3.6 C_hapter 3 problems

3.1 Show that if v > 2./g/1 the fixed point (8 = 0, & = 0) of the damped
pendulum is an attractor (S < 0, A > 0) (overdamped pendulum).

3.2 For the fixed point (§ = 7,6 = 0) of the damped pendulum one has
S = —v, A = —g/l. The eigenvalues are (A = (—y + /7% + 4g/! )/2),
positive, and

(A2 = (=7 — /72 + 4¢/1 )/2), negative.
The fixed point is a “saddle point” or “hyperbolic point”.

Study the behavior of the solutions X, exp(Ajt) and X;exp(Aat) by
drawing graphs in the (8, 8) plane. Consider also the case v = 0.

3.3 Consider the case S? = 4A in which A = A\; = Ay = §/2. Show that
the general solution can be expressed in the for

x'(t) = [e1 Xy + c2(Xyt + X2)] exp(At)

with X; and X, satisfying AX; = AX; and (A — X)X, = X;. Find X; and
Xs.

3.4 Apply the result of Problem 3.3 to the damped pendulum with
v = 2+/g/! at the fixed point (0,0).

3.5 A wire hoop of radius R rotates counterclockwise about the vertical z
axis with angular velocity w. Let (z®+ 22 = R%,y = 0) be the configuration
of the hoop at t = 0. A bead slides on the hoop with coefficient of kinetic
friction +.

(i) Show that the angle @ of the position vector R of the bead with the
negative z axis obeys the equation

§+ 0+ (g/R)sin® — w?sinf cosé =0
(ii) Find the fixed points, linearize the equations about them etc.

3.8 The equations p = —(Up/a) cos(q/a), ¢ = p/m for a particle of mass
m with potential energy U = Upsin(g/a) (Us > 0) have the fixed points
(p=0,9g =—ma/2) and (p = 0,q9 = ma/2).

(i) Linearizing about (p = 0, ¢ = —ma/2), show that the solution can be
expressed in the form

(28)-~(78)
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Figure 3.7: Problem 3.8

where

0 1 0 —i 1 0
2= \1ro0) > % i o) T 0o 1)

and (nz,ny,n;), not necessarily real, are components of a unit vector. Use
the formula exp(ifi- oa) = cosa+ifi- osina (2 = 1) to express p'(t) and
¢'(t) as linear combinations of p'(0) and ¢'(0).

(ii) Follow the same procedure for the fixed point (p = 0,9 = Ta/2).

3.7 The system of equations
pL =M1, p2 =mie, P = —kiq — fa2, P2 = —kage — fou
is of the type (3.13). Find the normal modes.

3.8 Two blocks, each of unit mass, are connected to each other by a spring
of strength & and natural length /, and by springs of unit strength and equal
length I; to two walls. They can move on a frictionless horizontal floor as
shown in figure 3.7. Denote by L = ! + 2I; the distance of the walls. Find
the normal modes.

3.9 Three particles (a, b, c) of equal mass m, connected by springs of equal
elastic constant k and natural length [, are in equilibrium at the vertexes
of an equilateral triangle, ap = (agz, aoy) = (—dv/3/2, —d/2),

bo = (boz,boy) = d\/'/z ~d/2), co = (ComrCoy) = (0,d), d = 1/+/3, as
shown in figure 3.8. Study the small amplitude oscillations.

3.10 Consider the two systems of axes shown in figure 3.9. The unprimed
system of axes is at rest in the laboratory, with the y axis vertical and
pointing downwards. The origin O’ of the primed system oscillates with
angular frequency Q and amplitude a along the y-axis. O’ is the point of
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Figure 3.8: Triatomic molecule

suspension of a pendulum of length {. We have
mi' = —7 sing , mi =mg—T cosd + maf)® cos(t)
Putting =’ = ! sin¢ and y' = [ cos ¢, we have _
i =Idcosd — l¢* sin ¢, §' = —Ipsing — I¢® cos ¢,
Hence

T=-—-mi[sing = —ml(é;cosqb — ¢?sin $)/ sin ¢,
¢+ 1" g + af® cos(§t)]singp = 0

Try putting ¢ = ® + £, where ® is a constant and £ is small. We obtain
£+ 17 g+ af® cos(2t))(sin® + cos® &) ~ 0

G+ 1" cos®(g + a’cos(t))g~0 ,

where g = sin P + cos ® £.
Simulate the above situation by solving the equation

G+ 171 cos@[g-{»f i (=)*6(t —nT/2)|q=0 ,

n=—00
where T = 27 /Q.
8.11 For the “tent map” (also “delta map”)

T =r(l-2z-1/2)=2r(zfor0<z<1/2, 1—-zfor1/2<z< 1)

show that the chaotic regime can be expected to begin with r > rq, = 1/2.
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Figure 3.9: Problem 3.10
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Figure 3.10: Escape from or approach to top position

Solutions to ch. 3 problems
S3.1 The eigenvalues A1 = (—y++/72 — 4g/1)/2 and Ay = (—vy— /72 — 4g/1}/2

are real and negative.

S3.2 X; exp(Ait) (¢ = 1,2) correspond to

(B;ﬂ-)=ci(;i )e‘\"‘ , B=X(6—m)

For v = 0, A; = 1/g/l the straight lines § = +./g/I(8 — ) are tangent at
(@ = ,§ = 0) to the curve E = g/l. In fact
0=E—g/l=(62/2) — g(1 +cos8)/l = (6%/2) — g[1 — cos(8 — m)]/!
~ (6%/2) — g(8 — m)* /AU =6 + \@ﬁ(ﬁ - m)|[6 - \/Jf(é —m)]/2 for 6 near .
The curves E = g/l separate regions of librational motion (8(t + T) = 6(t))
from regions of rotational motion (8(t + 7"} = 8(¢) + 2x) (see figure 3.11).
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Figure 3.11: Librational and rotational motion

S3.3
d](Xst + Xz) exp{At)}/dt = AX1texp(At) + (X: + AXa) exp(At)
= A(X1t + Xa) exp{At).
While equation (3.10) gives

X = ( ae ) one finds Xz = ( (az2 —an)/2 )

(az2 — a1 }/2 1 —an

In checking this latter, note that §% = 4A, (a1 + a22)? = 4(a11a2; —212a21) can
be written in the form (au — 622}2 = —4&4a12091.

a8} \ _ a1+ et —v/2) o1/
8(t) }  \ —varf2+cof—t/2+ (1 +g/l)} !

o1 = (1+7°/4)80 + vho/2, ¢z = (+60/2) + bo.
Eliminating ¢1 we find 8 + 8/2 = ¢; exp(—7t/2).
For brevity’'s sake we do not discuss some pathological cases which occur for
A2 = A1

$3.5 (i) d(mR*§}/dt = m(w>R?sin§) cos § — (ymRI)R — mgR sinf
{ii) Putting #1 = 8 and z2 = § we have
&1 = z3, T2 = ~vT2 — (g/R)sinz, +w’sinz, cos ;.
There are two fixed points, (z; = 0,22 = 0) and (z; = cos™*{g/Rw?),z3 = 0),
the ldtter only for w® > g/R.
Linearize about (0,0):
a1 =0, e12 =1, ann =w? ~ g/R, az2 = —v, A = {(g/R) — w?,
A= (7% /7 +4? —4g/R)/2
If w? < (g/R) — v*/4, A1 and A, are complex conjugate with negative real part,
(0,0) is a spiral attractor.
Hw? = (g/R)— 7 /4, M = da = —v/2.
Hw? = g/R, A1 =0, A2 < 0. In this case the equation linearized about (0,0) is
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NP

Figure 3.12: Bead on rotating hoop

§= -fyﬂ with solution @ = 8 + fo[1 — exp(—~t)] /4, 8 = 8o exp(—t).
Hw?>g/R, A\ >0, A <0, {(0,0) is unstable.
Linearize about (cos 'l(g/sz), 0):
a1 =0, a1z =1, a1 = (§2/R2w?) —w?, a2 = —, A = w? — g%/ R%W?,
A=(—v£/¥ +(4§”/R“w2) 4w? )/2.
The square root is imaginary, and the fixed point is a spiral attractor, if
w? > /(g?/R?) + (y*/64) + v*/8.
Note that for 4 = 0, (0,0) becomes unstable and (cos™'(g/Rw?),0) comes into
existence as a stable fixed point for w = 1/g/R.

S3.8 (i) With p’ = p and ¢’ = g + na/2, the linearized equations
PO Y_af PO)
q'(t) q'(f)
_ 0 —Up/a?
A= ( 1/m 0 )
have the formal solution

( 40 ) Y ( 7 (0) )
q'(t) q'(0)

The matrix A can be expressed in the form A = i(nzo, + n,,ay)w,
s = (a* — mUp)/2iav'mUs, ny = —(a® + mls)/2av/mU; (n2 + ni =1),
w = a~'y/Us/m. Then

with

( ;’:g; ) = [cos(wt) + i{n.0- + nyo,) sin(wt)) ( fl) jgg; ) ,

{ p'(t) = cos{wt)p'(0) — a~' VmUssin{wt)q' (0) ,
¢ (t) = (a/v/mls ) sin(wt)p' (0) + cos(wt)g' (0) .
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(ii) Linearizing about (p = 0,¢ = ma/2), we have

0 Uo/a?
Az(i/m 0(4 ) ’

A = (ny0z + ny0y)w, iz = (a® + mUo)/2avmUs, n, = i(~a® + mUp)/2av'mUp
(n +n? =1), w=a""y/Us/m. Then

( g g; ) = [cosh(wt) + (nz0z + nya, ) sinh(wt)} ( f,"fg% ) ’

g (t) = (a/v'mUp ) sinh(wt)p' (0) + cosh{wt)q'(0) .

_ [ m 0 [k f
= (5 n) = (4

The secular equation det(K — w?M) = 0 gives
m*w?)? — mkr + k2)w? + (k1kz — f2) =0

{ P’ () = cosh(wt)p'(0) + o~ v/mUp sinh(wt)q'(0) ,

S3.7

with solutions

wi = [k + k2 + (k1 = k2)” +41%)/2m
and w? with a minus before the square root.
The kinetic and potential energies are
K =m(g} +¢3)/2, U = (k1g} + kag3 + 2fqrq2)/2.
With Q) = /mq and Q2 = /mg: we have
K =(Q} +Q3)/2, U = (:1QF + k2Q3 + 2£Q1Q2)/2m.

The rotation Q; = Q' cosa + Q2' sina, Q2 = —Q) sin o + Q) cos o gives
K = (@ + Q)/2 and an expression for U which, by choosing
tan(2a) = ~2f/(ky — kz2), reduces to U = (wIQ? +w3Q%)/2.

The normal modes correspond to Q2' =0 and @Q,' = 0.

S3.8 With gy = £y — hh and g3 = z2 — | — 1, the equations

f1=k(za—x1 —D—-(z1-h)and &2 = —k(zo— 21 - 1) — {m2 — | — 1)
take the form

G1 = —(k+ 1)1 + kg2 and G2 = kq1 — (k+ 1)qa2.

With M = |, the unit matrix, and K having diagonal elements & + 1 and off
diagonal elements —k, the equation det(K —w?M) = 0 yields the eigenfrequencies
w1 =1 and wy = V2k + 1. With Q1 = ¢ and Q; = g2 we have K = (Q? + Q3)/2
and U = [(k + 1)(Q? + Q) — 2kQ1Q2]/2. The 7/4 rotation Q; = (Q} — Qh)/V2
and Q2 = (Q1 + Q3)/V2 yields K = (QF + Q¥)/2 and U = (wiQ? + wiQF)/2
with wy = 1 and w2 = 2k + 1.
wy = 1 corresponds to the mode @2’ =0, Q2 - Q1 =0,q2 —~q1 =0, z2 =l +z,.
The two blocks, at a fixed distance from each other, oscillate together with period
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2,z =h+Acos(t+a),za=1+1 + A cos(t +a).
w2 = v/2k 4+ 1 corresponds to
Q' =0,Q2+ Q1 =0, q2=~q,
z1=U0 +A4 cos(vV2k+ 1t +a), z2=1+1 — A cos(v2k + 1t + a).
The center of mass of the blocks remains fixed halfway between the walls, (z) +
x3)/2 = L/2, the blocks oscillate towards and away from each other.

S3.9 Denoting by a = ap +a’, b = bg + b’, and ¢ = co + ¢’ the positions of the
particles, Newton'’s second law yields for particle a the (exact) equations

may = —k[.’b‘ab(l —I/res) + Zac(l — l/"'ac)] ,
{ m&y = _"7['.%!!:(1 - I/‘-"ab) +yac(1 - l/"ac)] y
where 744 = [@ — b|, Top = @z — bz, Ya» = 6y — by etc. Similar equations hold for
b and c.
If a’, b, and ¢’ are small, then, with z/;, = a, — b} etc. one has
1 —l/Tab = (ToasTap + YoabVss) /1> etc. One finds

ma; = —k[ﬂ-?Oab(Eﬂabﬁ:tb + yﬂaby:;b) + fUOuc(“’Oac-’”Lc + yo“cy:‘c)]/lz !
mii'y = —k[yoas(-- . +...) +Yoac(... + .. -)]/l2 J

and similar equations for b’ and ¢’.
Denoting by q' a column matrix of which, to save space, we write the transpose

T
q' =(a; bl ¢, a;, b;, c;) ,

we find mgq' = —Kdq', where

5 -4 =1 /3 0 -3

—4 5 -1 0 -3 V3

kBl -1 -1 2 =3 V3 0
T4 V3 0 -3 3 0 -3
0 -3 V3 0 3 -3

-3 V3 o -3 -3 &

The determinant of this matrix is zero. This can be seen by summing the
elements of the second and third rows to those of the first, thereby getting a
row of zeros. Therefore one of the eigenvalues of M is zero. We shall see that
zero is a triple root of the secular equation, and that there are three independent
eigenvectors belonging to the eigenvalue zero.

Note at once that d*(a’ + b’ + ¢’)/dt?* = 0. Therefore our equations allow
for a uniform motion of the center of mass, initially at a + b + ¢ = 0. The two
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Figure 3.13: Triatomic molecule (A =6 and A = 12)

3

mutually orthogonal eigenvectors of K,

ul® = and ul¥) =

[ BN o BN B
—_— e OO O

both belonging to the eigenvalue zero, provide for this: ¢’ = vtuff) andq = vtug”)
(v =constant) represent uniform motion in the £ and y direction, respectively.

K is rather formidable. We can reduce the eigenvalue problem to a simpler
one in four dimensions by assuming that the center of mass is at rest, so that
¢/ = —a’ — b’. Using this condition we reduce the problem to mg' = —Kq', with
qT = (a) b, ay, by) and

6 -3 23 3
ke k{ -3 6 -v3 -243
T4l 23 V3 6 3
-3 -2v/3 3 6

From mw?u = Ku we obtain the equation (6 — A)* - 36(6 — A\)® = 0 for
A = 4dmuw? k. We see at once that A = 0 and A = 12 are simple roots, while
A = A is a dombhle rant
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The eigenvector corresponding to A =0 is

1
1
(rot} __ ~2
UO — _\/g
V3
0
Since q = qo— (de/2)ul™" gives az = agy +eaoy, a4y = —€aos +aoy, and similar

equations for the components of b and ¢, it clearly describes an infinitesimal
rotation about the center of mass. Note that the angular momentum about the
center of mass is a congerved quantity.

The eigenvector corresponding to the eigenvalue A =12 is

V3
-v3
0
1
1
-2

Uiz =

It describes oscillations as in figure 3.13a with w = /3k/m.
There are two orthogonal eigenvectors for A = 6, w = 1/3k/2m,

-3 1

V3 1

— 0 r__ -2
ug = ] and ug = V3
1 -v3

-2 0

They describe oscillations as in figures 3.13b and 3.13c , respectively.

S3.10 Starting with ¢:(07) = 1, ¢:(07) = 0, g2(07) =0, ¢2{07) = 1, with the
notation of section 3.4 we have

x(T7/2) = Agx(07)
where
Ay = ( cos(woT/2) — f'wh ™ sin(whT/2) wh™" sin(whT/2) )
—wh sin(whT'/2) ~ f cos(whT/2) cos(wpT/2) '
wy = /g s )T, f' = (feos d)/L.
Then
x(T™) = Ax(07)
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with
A=A_A; , A_=[A{]

For our purpose we need

f’—i—f’

12

trace(A) = (2 + 2{:2.2) cos(woT) — f

! ;2
0 2ur,

We consider the case cos ¢ < 0 {pendulum rod above horizontal position) for
which wf = i1/g| cos #|/I. For small T we then have

trace(A) = [2 + (f? cos ¢)/29!] cosh(+/g| cos ®|/1 T) — (f* cos &) /29!

~ 2 + (g/1)| cos ®|T* + (f*cos’® T?)/4l?
At equilibrium must be v = 0, § = trace(A) = 2, cos ® = —4lg/f>
For the frequency of small oscillations about ¢ = 7, we must have
exp(iy) = A= (S xi\/4 - 8%)/2

with § = 2 4+ (g/)T? — (f*T?)/(41*). Then
sin?(y/2) = (1 - cos)/2 = (2 — S)/4 = (FT*/161%) — (gT*/4l),
7" = (TP /A) = (g7 /1), w? = 47 /T = (£2/40%) — (g/1).

S3.11
|dg’ fdz| = 2r, A = limageen™ ' In(2r)" = In(2r).



Chapter 4

COORDINATE
SYSTEMS

A detailed treatment of rotations in three dimensions, which will be widely
used in the book, is followed by a discussion of the fictitious forces which
must be included if the motion of a body is referred to a non-inertial frame
of reference.

4.1 ‘Translations and rotations

Let P be a point with coordinates z; (¢ = 1,2, 3} with respect to a system
of orthogonal axes S with origin at O. The coordinates z; of P with respect
to another system of orthogonal axes S’ with origin at O' are related to the
z;’s by equations of the form

T = Rij$;- + T (41)

where zo; are the coordinates of O' with respect to S (dummy indices
convention). If the axes of S’ are parallel to, and equally oriented as those
of S, then R;; = 6;; (=1if i = j,= 0if i # j).

Introducing the notation

zy x} Toi
r= D)) ’ r= :L‘"2 , Tp= o2 ’ (4.2)
T3 T3 Zo3
equation (4.1) can be written in the form

r=R'+ry , (4.3)

67
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Figure 4.1: Example of translation and rotation

where R is the matrix with elements R;;.

Let &; denote the unit vector along the i- -th axis of S. The distinction
betweenr = OP = z;6; and the one-column matrix r, though formal, must
be remembered.

Example (figure 4.1):

z; = T} coS¢p — xysing + Zo1
Zo = z} sin ¢ + x5 cos d + T2

T3 =x5 ,
cos¢ —sing 0O
R={ sing <cos¢ O | =Rs(p) . (4.4)
0 0 1

The S’ system is obtained by first translating S so that O coincides
with O', thus obtaining a system 5" with origin O” = O’ and axes parallel
to those of S, and then by rotating S counterclockwise through ¢ around
z4. The matrix for this rotation is R3(¢).

Similarly we would have

1 0 0
Ri(¢) = ( 0 cos¢ —sing (4.5)
0 sing cosg
and
cos¢ 0 sing
Ra2(¢) = ( 0 1 0 ) : (4.6)
—sing 0 cos¢

If ¢ — 4¢ infinitesimal, we have

Ri(6¢) =1-1; 8¢ (4.7)
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where | ig the unit matrix and

¢ 0 0 0 0 -1 0 10
J1 = 0 0 1 ,.|2 = 0 0 0 ,J3= -1 0 0
0 -1 0 1 0 O 0 00O

(4.8)
These skew-symmetric matrices are the “generators of infinitesimal
rotations”. Note that their matrix elements are given by (J;),;, = e€ijk,
where ¢;;;, is the Ricci-Levi Civita symbol, skew-symmetric in all indices
(€.8. €rji = —€ijk) and €123 = 1.
The generators satisfy the relations

[Jiyd5] = —€ijude (4.9)

where the “commutator” of two matrices A and B is denoted by
[A,B] = AB — BA.

Equation (4.9) can be verified by matrix multiplication obtaining
[J1,d2] = —Js and cyclic permutations, or by comparing the matrix ele-
ments of the two sides with the help of €,pc€cde = Saddpe — Faedpd:

For an infinitesimal rotation about an arbitrary direction specified by a
unit vector fi the matrix R is given by (see problem 4.1)

R=1-1J(n)dp , (4.10)
where
0 ng —no
Jw)=ndi=| —ng O 71 . (4.11)
2 -7 0

To obtain a formula for finite rotations, we write

(=t = lim (I- J@)g/MN¥ = e I®e (4.12)

where, we repeat, J(ii) = n;J;, n; being the components of i with respect
to S.

This formal expression can be reduced to a practical formula by using
the following properties of the J;’s.

First of all, one has

Jidide + Jidjds = —Jib — 035l . (4.13)
Multiplying by n;n;n; this gives

i) = —d(@) (4.14)
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so that (n =1,2...)
J@)™ = (<)N(@) and J(@)*" = (-)" (@)’
Furthermore, it is easy to show that
(J(0)%);; = nans(Jade);; = —8i5 + nin;

Now for R = exp(—J(i)¢) (equation (4.12}} we have
R=1+Y [-J@)¢]" /@)l + Y [-I@)g)" /e + 1),
n=0 n=0

R =1+ J(@)%(1 — cos¢) — J(A)sind (4.15)

and so
Rij = bijcos¢ + (1 — cosd)ngn; — €xnpsing . (4.16)

Note that changing the sign of ¢ in (4.15) is equivalent to transposing
the skew-symmetric matrices J;. Therefore

R-1=RT . (4.17)
The important formula
R™!'J;R = Ri;l; (4.18)

will be proved in problem 4.2 .

The informed reader may expect some grouptheoretical references. The
above rotations are the natural representation of the rotation group R(3).
This is a subgroup of O(3), the orthogonal group in three dimensions, de-
fined by v = Or, r'T¢ = ¢Tr, OTO = |, OT = 0~1. Besides rotations,
O(3) contains the inversion O = —I. Since det OT = det O, taking the
determinant of OTO = | one finds det 0% = 1, det O = +1.

The rotation group R(3) is restricted to have det O = 1. Thus
R(3) = SO(3) € O(8). In S0(83), the S stands for “special”.

Expressing a rotation matrix in the form R = exp A, since
det(exp A) = exp(traceA), detR = 1 implies trace(A) = 0. This is less
restrictive than the condition AT = —A, following from (4.17). The trace-
lessness of our J;’s is due to their skewsymmetry.

The connection between R(3) and the special unitary group in two di-
mensions SU(2) will be discussed in chapter 10 as a special case of that of
the Lorentz group with SL(2), the special linear group in two dimensions.
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4.2 Some kinematics

If S’ is in motion with respect to S, R and ry are functions of t. Let P be
a moving point. Differentiating r = Rr’ + ro with respect to ¢, we have

i=Rr+Ri'+ip . (4.19)

Case 1: S’ is in translational motion with respect to S (R = 0). The
components of the Velocity with respect to S, v; = :i:., are related to those
with respect to S’, v = &;, by the equation v; = R;;v}+wvo;, where vo; = Fo;.
More concisely v = Rv/ + vo.

If the axes of S’ are parallel to those of S (R = 1), then v = v/ + vq.
Carefully distinguish v and v. Even if R # |, one has v = v’ + vq, which is
nothing but dOP/dt = dO’ P/dt + dOO’/dt

Case2: rg = 0, i = 0, P at rest with respect to S’, whose origin
coincides with that of S, S’ obtained from S by rotation with constant
angular velocity w around fi. Then, with J(w) = w;id;,

i=%(e‘““’) ) —J(w)r (4.20)

Iy = —wk Jk) iTj = EikjWRT; (v =w x r in the usual notation).
f’)e point P is at rest with respect to S, rp = 0, but R is a
functxon of t.

At each time ¢ one can find an instantaneous angular velocity w(t) such

that
= —J(w(thHr . (4.21)

Proof: # = Rr' = Ar with A = RR™! = RRT, 4(RRT)/dt =0, RRT + RRT = 0,
A + AT =0, A is skewsymmetric.
" The Ji’s form a complete basis for all 3 x 3 skewsymmetric matrices. Hence
A = ~J(w(t)), where —w;(t) are the components of A in that basis.

4.3 Fictitious forces

Cage ]: S’ in translational motion with respect to the inertial frame S, S
and S’ axes parallel, ¥ = ¥ + fy. The applied force f in Newton’s second
law in S, mf = f, is supplemented by an “inertial force” when the motion
is referred to S', m¥' = f — mio.

Cagse 2: ro = 0, 8’ in uniform rotational motion with respect to the
inertial frame S.

Differentiating r = Rr’ twice with respect to ¢t we have
¥ = R’ + 2Ri' + R¥'. Multiplying by mR™! and rearranging this gives
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mi' = R=1(m#) — mR~'Rr’ — 2mR~'R¥'. Using R = exp(—J(w)t)
(w constant) we find

mi' = ' — mJ(w)’r' + 2mI(w)¥' (4.22)
where
fi
fF=R=|f |, (4.23)
f3

and f] are the components of the applied force with respect to S'.
In problem 4.4 it will be shown that
J(w) = w,-J,- = LUTL,'J,' = wn;J.- = wiJ,-.
The second term on the right side of equation (4.22) is the “centrifugal
force”

te = —mJ(w)’e’ (4.24)
with components mw?[z; — (nz})nj] with respect to S’. These are the S’
components of mw?(r — (fi - 1)) = —mw x (w x r), where r — (fi - )i is

the component or r normal to the rotation axis.
The last term in equation (4.22) is the “Coriolis force”

foor = 2mJ(w)F' = 2muw;lii' = 2mw}d;¢ . (4.25)
The i-th component of the Coriolis force with respect to S’ is then
—2me;jpw iy, = &+ (—2mw X [v — w x 1)

Note that v — w x r is precisely the velocity of P as seen by S5'.
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4.4 Chapter 4 problems

4.1 Let the system of axes S’ be obtained from S by a counterclockwise
infinitesimal rotation through the angle d¢ about the unit vector in. Show
that the coordinates z; and z;’ of a fixed point with respect to S and §’,
respectively, are related by the formula

' '
Ti ™ Ti — €ijkTj g O¢p

4.2 Show that R™'J;R = Ry J;.
4.3 Find eigenvalues and eigenvectors of J(fi (equation (4.11)).
4.4 In equation (4.10) we have written J(it) rather than J(d). Why?

4.5 A thin massless pipe is tilted from the vertical direction by an angle
and forced to rotate about the vertical axis with angular velocity w. A bug
crawls inside the pipe at constant speed v heading towards the upper end
of the pipe.

(a) Find the magnitude and direction of each force acting on the bug in
the frame of the rotating pipe.

(b) Find the power input of friction (F), of gravity (Py), and of the
centrifugal force (F;).

(c) Find the power F,, that must be developed by the motor in order
to keep the system rotating.

(d) Verify that

Pu+ P+ Py =dK/dt

where K is the kinetic energy of the bug in the lab frame.
(e) Verify that P, = 7w, where 7 is the torque exerted by the motor on
the bug.
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Solutions to ch. 4 problems

S4.1 The vector b obtained by rotating the vector a counterclockwise about i
through 8¢ is b ~ a + /i x a §¢. Then the unit vectors &; and &} along the axes
of § and S’ are related by e, ~ &; + i x &; d¢. Therefore

=OP.8;~O0P- (& — i x &; 6¢) etc.

S4.2 With R = exp(—1J(n)¢), we have
d(R™"'J;R)/d¢ = R™'[J(n), k]R

= n;R7{Jy, KR = €j6n; R kR
It is easy to verify that the solution of this equation is R™* LR = Ry;J;.

S4.3 det(J(i) — Al) = 0 gives A> + A = 0, A = (0,%i). The eigenvalue A = 0
corresponds to the eigenvector vo = n. The eigenvalues *i correspond to the

eigenvectors
ning Finz
vii= | menztim
ng — 1
The trace of J(fi) equals the sum of the eigenvalues, 0 +i — i = 0, as we expect.

Since the R(3) transformations are defined as real transformatiens in three-
dimensional real space, the two complex eigenvalues are not acceptable.

S4.4 The components of fi with respect to § and §’' are equal:
= R;;'n; = [8;; cos ¢ + (1 — cosd)nin; + €izrna sin Pln;
= n;cos ¢ + (1 — cos ¢)n; + zero = n;.

S4.5 As shown in figure 4.2, &, = &, c088 — &38inf, &; = &,8in8 + &3cosb.
(a) Flf = mg(&)sin g — & cos ), Fyy = mw’r sin 6(&3 cos § + &3sinf),

FGor = 2mwusin @ &), F; = m(gcos8 — w?rsin?8)é4,
and the normal reactions of the constraints

N} = —2mwusin 8 &), N} = —msin 8{g + w?rcos8)&}
Verify that the sum of these six forces is zero.
(b) P=F; v = mv(gcos@ wrsin®f), Py = Ff - v/ = —mgvcos¥,

Pus = Fly; - v/ = mow?r sin?6.
One has P+ Fg + For = 0.
{€) Pm = N} - (—wrsin 8 &) = 2mw?vr sin’g
(d) From (b) we have Py + Pt + Fy = Pm — Puy.

The kinetic energy of the system is K = (mv?+7Iw®)/2, where 7 is the moment
of inertia with respect to the rotation axis. Since v =constant, w =constant,
and the change of the moment of inertia is due only to the motion of the bug,
we have di/dt = (1/2)w’d(mr’sin’8)/dt = mw?rv sin®@ = Pn — Psr. Hence

= 2mw?rv sin?6.
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vk

MOTOR

Figure 4.2: Bug in tilted rotating pipe

It is sometimes stated that the power delivered by the motor is half as much,

an obvious confusion between Py and P — FPos.
That we have found the correct expression for P, is shown by the following:

(e) 7 = w dI/dt = 2mwur sin®f, rw = 2mw’vr sin’f = P






Chapter 5

RIGID BODIES

In this chapter we study the dynamics of rigid bodies intentionally abstain-
ing from the use of Lagrangian methods. Some problems requiring a fair
amount of work will be proposed again in the following chapter on La-
grangians, where it will be easier to establish the equations of motion and
to find conserved quantities.

5.1 Angular momentum

Let us consider two systems of axes, S fixed in the laboratory and S’ at-
tached to the body. We assume that the origins O and O' of the systems
coincide. Therefore the point O’ of the body is fixed.

Let L denote the angular momentum with respect to O' = O. When
translated into the notation of Chapter 4, the familiar expression

szrxvdm (5.1)

reads
L=- /J(r)v dm . (5.2)

Here J(r) = z;J; (see (4.8)),

Ll I U1
L= L , r=1 =z , v=1\ v . (5.3)
Ly T3 U3

The distinction between bold-faced roman and bold-faced sans-serif should
be remembered. Although r and r denote the same vector, r indicates

77
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its intrinsic geometrical meaning, while r stands for the coordinates with
respect to S. Therefore we shall have r', the coordinates with respect to
another system S’, but not r'.

Below w stands for a column matrix with elements w;. There is no
sans-serif omega! Since

v=—-Jw)y , (5.4)
where w is the instantaneous angular velocity (see 4.21)), we find
L= /J(r)J(w)r dm = — [/J(r)“"dm] w=lw , (5.5)
where
I = - f Ji)*dm (5.6)

is the inertia matrix with elements
i = /(r'zé.-j —zizi) dm . (5.7)
We have used the formula
Jw)r=-J(nw , (5.8)

which is easy to prove:
(Jw)r); = (Jrw);; 25 = €xijTiwe
= —zjeinwr = —(Jiz3) wr = —(J(rw); .
Note that the inertia matrix (5.6) depends on the spatial relation of the
rigid body with S, and therefore changes during the motion. For this reason
the argument of J(e) in (5.6) is r, rather than r.

5.2 Euler’s equations

In the laboratory system
L=1r , (5.9)
the rate of change of the angular momentum equals the applied torque.
Let R be the rotation matrix that transforms a’, the components of a
vector with respect to the body system S’, into a. Differentiating RL' = L,
we have RL' + RL' = 7 = Rr'. Proceeding as in chapter 4, we find
L' =7 + R~ J(w)L = ' + J(w')RIL,

L'=+ + JL' (5.10)
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in the usual language L = L' x o’ + 7.
Here J(w) = widi, J(w') = w}J;, and

L'=R-'L=R"w=| ' (5.11)

with
- / J()dm (5.12)
= f(r""d.-j - z;x;)dm (r'? =r?) . (5.13)

Note that || and its elements do not change during the motion.
If the S’ axes are principal inertia axes of the body, then ||’ is diagonal,
and
L; = Lw; (nosum overi) , (5.14)
where I; are the “principal moments of inertia”.
The kinetic energy is

K=uwlw/2=wTlw/2 . (5.15)
Expressing this in terms of primed quantities, we have
K=uJ7w/2 , (5.16)
and, if the inertia matrix is diagonal,
K =Luw?/2 . (5.17)

We now assume that the origin O’ = O coincides with the center of
mass of a body acted upon by neither forces nor torques. Then

L:: = €ijk L;w;c . (518)

If the S’ axes are principal inertia axes, this equation reduces to Euler’s
equations
hwi = (I — 3)wywy
Ig ; = (Ia - Il)waw, ) (5.19)
Iaw;, = (I1 - Ig)wiwz .

From these equations one easily verifies that K = L;w;' 2 /2 is a constant
of motion.

If I, = I, (rotational symmetry about the zj-axis) the third of (5.19)
yields wj =constant. Then, putting a = [(f3 — I)/L]w}j. the first two can
be written in the form

Wy =-awy, and wj=ow; . (5.20)
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L>Ta (ro0) L < L (oisk)

Figure 5.1: Body-cone and space-cone

Multiplying the first by w} and the second by ), and summing, we find
that w? +wj’ is a constant of motion, which might have been inferred from
K and w3’ being constants of motion.

For I, = I, the general solution of equations (5.19) is

wy =c cos(at+3) and wy =c sin(at + G) (5.21)

showing that, as seen by S', the angular velocity rotates around &j with
period 27 /|a|. For the earth (f3 — )/, ~ 1/300, w} ~ w = 2x/day, so
that the period 27 /a is 300 days = 10 months. This is shorter than the
observed value of 14 months (Chandler’s period). The discrepancy is due
to earth deformation caused by the polar fluctuations themselves.

The angle formed by the angular velocity with &} is

' = tan~! (\/wi® + wi Jws).

We wish to discuss more carefully the matter of the rotation of the
angular velocity of a rigid body free from torques with I} = I, # I3. For
such a body the angular momentum L is a fixed vector. On the other hand,
the angular velocity w is not.

If 6 is the angle formed by L and w, then cos8 = w - L/wL = 2K/wL.
The kinetic energy K is a constant of motion, and w = /w} + wi? + wi is
also a constant of motion because the sum of the first two terms and the
last term under square root are both constants of motion.

Therefore w is a vector of constant magnitude rotating arounf L on a
cone of semiaperture @ (“space cone” or, better, “lab cone”).

We have also seen that the angular velocity rotates around éj on a cone
of semiaperture §' (“body cone”). Furthermore, at each instant
L = L (w] & + whéh) + [3wiés, w = wié] + whé) + widy, and &} lie on the
same plane ((L x w) - &; = 0).
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Finally the angle 8” of L with &} is given by
tan 6" = /L¥ + Lf}/Lg = /WP +wZ /I = (I /I3) tan ',

For I > I3 (rod-like body) one has tan 8" > tané’, whereas for I; < I
(earth, flat disk) tan6” < tan@’. In the former case, w is to be found
between L and &}, in the latter L is between w and &5.

The body-cone rolls on the space-cone. At each instant the angular
velocity is along their line of contact (see figure 5.1).

One must not confuse the angular velocity with which w is seen to
rotate around & in the primed system attached to the Iy = I, body, with
the precessional angular velocity of &, (the symmetry axis of the body)
around the fixed angular momentum L.

We can write L = I} (w]é} + whdh) + Lwié; = w + (I3 — I)w; 83,

w= (L/Il) - &éa with o = [(I3 - Il)/Il]wé . (522)

Then déj/dt = w x & = (L x 8&3)/I, showing that &; rotates around L
with angular velocity
wPr = IL'/I] . (5-23)

On the other hand we have seen that with respect to the primed system
attached to the body, w appears to rotate around ej with angular velocity
a=[(I3 - L)/L|ws.
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Figure 5.2: Euler angles

5.3 Euler angles

Think of the S’ system as being obtained as follows (see figure 5.2).

By a counterclockwise rotation through ¢ around &3, S’ becomes the
system S, with basic vectors 4, 4, and a3 = é&s.

By a counterclockwise rotation through 9 about &, S, becomes the
system Sp with basic vectors by = a;, be, b3

By a counterclockwise rotation t,hrougih ¥ about bg, S» becomes the
system S’ with basic vectors &}, &5, éj = bs.

Thus
with .
Ry, 9, ) = e~ (bs)¥—J(31)0 —Has)p (5.25)
Using the formula R—!J(a)R = J(R~'a) we now find
R(#, 9, ¢) = Rs(¢)Ri(F)Ra(¥) , (5.26)

where R3(e) and R;(e) are the matrices for rotations around the S axes
given by equations (4.4) and (4.5).
Proof: Putting R(&;, ) = exp{(—J(%i)a), we have

R(B& 1»b)R(ali ﬂ)R(éi'h ‘P)
= [R(&:1, 9)R(as, ¥)R(&1, —9)] R(a1,9)R(&s, )

= R(&;,?)R(&s, ) [R(&3, —p)R(a3, Y)R(&s, p)]
= R{&,,9)R(&s, p)R(&s, )
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= R(&s, ¢) [R(&3, —)R(&1,9)R(&3, )] R(&s,%)
= R(é;;,(p)R(él,l?)R(és,!b)

= Rs(p)R1(9)Rs(3)
By equation (5.26)
1 Cosp oS — cos¥ sing siny
R(,d,0) [ O | = | siny cosyy + cosd cosyp siny . (5.27)
0 sind siny

From this we read out that

8] = (cosp cosy — cos sinp sing))é,

+(siny cosy + cosd cos¢p siny)ér + sind siny &3 . (5.28)
Similarly we find
&, = —(cosp siny + cosd siny cosp)é,
+(—sin ¢ sint + cosd cos@ cos)es + sind cosy é; (5.29)
and
&3 = singp siny & — cosy sind &, + cos? &3 . (5.30)

We shall frequently refer to the following formulae
ﬁ] = él Ccos + éz singa , 52 = '_él sincp + ég cosyp , 5.3 = éa (5.31)

B , 62 = ag cosd + azsind , 63 = —ag sind + az cosY (5.32)
&\ =b; cosy +basiny &) = —bysiny + by cosy | &, = bs . (5.33)
These can be used to check equations (5.28,29,30).
Since infinitesimal rotations around different axes are additive in the
first order, the angular velocity can be expressed in the form

W= (,063 + '!951 + ’l,bBa . (534)
Using repeatedly equations (5.31,32,33), we have

w = (sind sin¢) ¢ + cosy e, + (sind costp ¢ — sine ) e (cos ¥ ¢ + )8,
= (Jcosp + ¢ sindd sin )&, + (Jsing — ¢ sind cos )&y + (¢ + 1 cos e .
(5.35)
The kinetic energy of a rigid body with I} = I, can be written as

= [ (¢2sin® + %) + I3 (3 + pcos9)°]/2 . (5.36)
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Figure 5.3: Spinning top

5.4 Spinning top

The spinning top (I; = I3) shown in figure 5.3 has a fixed point O other
than the center of mass. Denoting by £ the distance of the center of mass
and O = ', the torque due to gravity is T = £é5 x (—mgés). Since
&3 = (& sin®y + &, cos ) sindd + &5 cos? ,
we have
T = fmg(e} cosyy — ey siny)sind . (5.37)

By a simple extension of Euler’s equations (5.19) to include the torque,
we have

hwly = (I3 — )wywi — €myg sind siny | (5.38)

Loy = (I} - L)wyw) + fmg sind cosy
Lah=0 .

Multiplying the first of (5.38) by w} and the second by w), summing,
and using (5.35), we find

L(w? +wl)/2+ tmgcos? = K — Iwi? /2 +Emgcosd = constant . (5.39)

Since wy is also a constant of motion, so is the total energy £ = K + U
with U = fmgcos 4.

There is another constant of motion, Ly = L : és3. In fact,
Ly =L &; =185 =0. A simple calculation yields

L3 = (I;sin®9 + I3c08%9)p + I3 cosd ¢

It is convenient to express the constant of motion wj = cosd ¢ + 9 in
the form w} = aly /I3, and the constant of motion Lg in the form L3 = L1b.
Then from the expression for L3 we find

sind ¢ = [I1b — I3 cos (¢ + cosd ¢)]/h sind = (b — a cos¥)/ sind.
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Pl)

Figure 5.4: Graph of P(u)

The energy can be expressed in the form

= (L/2)% + Us(8) (5.40)
where ) )
_ 5L fb—a cosd I3 fL1a
Ue = 5 (__sinﬂ ) + 5 ( A ) + fmg cos? (5.41)

is an effective potential energy for the J motion.

The angles ¢ and 1 have disappeared from this expression for the energy,
in the same way as the angle # did from the expression for the energy of a
particle moving under the action of a central force.

Introducing the variable © = cos, one finds 4% = P(u), where

2E hLa®? 2¢mgu
Pu) = —
(v) (h I3 I

) (1 —u?) — (b— au)® (5.42)

is a polynomial of third degree in u.
Since P{+1) < 0 and limy_, 4. P(u) = +00, we expect the graph of
P(u) to be as in figure 5.4 .

5.4.1 Regular precession of top

The “regular precession” is the analogue of circular orbits of Chapter 2.
We seek the conditions under which ¢ = Jy(constant) during the motion.
For ¢ = dg, 9 = 0, J = 0, the first two of Euler’s equations (5.38) read

I, sin¥d(sin 9 ¢)/dt = (I} — I3) sindg cosep  wh+EImgsindg cosyp (5.43)
and

I, sindod(cos ) ¢)/dt = (I3 — ) sindg sinyp ¢ wy — fmgsin Jp sin ¢
(5.44)
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Assuming Jg # 0, multiplying the first of these equations by cos 4, the
second by sin1), and subtracting, we obtain Iy gy = (11 — I3)pows + fmg,

tmg = ¢o[lzvo — (Iy — I3)po cos o] (5.45)

where we have denoted by ¢p and Yo the values of ¢ and ¥ pertaining to
the steady precession.
Neglecting the square of ¢y, we find
. fmg
Yo X —— (546)
I3t

in agreement with the elementary treatment: di. = 7 dt with |7] = fmg sind
and |dL| ~ (JL| sin 9)¢odt yields ¢ = émg/|L|. If the top precesses slowly
and spins fast, then |L| ~ I3yq.

5.4.2 Sleeping top

Consider the special case in which the the axis of the top is vertical, ¥ = 0,
d=0, ws = wj = wp. One has b = q,
E = (l3wd)/2 + tmg = I3a® /215 + fmy.

We wish to study the stability of this vertical top. We start from the
equation Iyd(w} + iw})/dt = i(f3 — I )wi(w] + iw})) + €mg sind exp(—iy).
Putting w} + iw) = dw, wh = (I /I3)a+ dwj, sind exp(—ip) = idx, we have
linearly in the § quantities

hdéw/dt = i(I3 — L)(i/I3)a éw + ilmg 6x (5.47)

and
idéx/dt = (I /I3)adx +dw . (5.48)

Putting dw = Qexp(irt) and dx = X exp(iAt) we obtain the equations

{ [I1)\+(I1 ——I3)(II/13)a]Q—£mgX =0 )

Q+[(I/L)a+A)]X =0 . (5.49)

This system of equation has a non-trivial solution if the determinant of
the coefficients is zero,

L% val [2(0L/5) = 1A+ (I = B)(ha/I) +tmg=0 .  (5.50)
The vertical spinning is stable if X is real,

eh (21 /Is) = DI = 4L[(1 - B)(Ia/I5)" + tmg] >0, (551)
namely

a® > 4fmg/l, . (5.52)
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Figure 5.5: Irregular precessions of top

5.4.3 Irregular precessions of top

Returning to section 5.4 and figure 5.4 , 1 > ups > u; > —1 (62 < 6,),
remember that
_b—au _ a(a'b—u)
eI 1-w?

(5.53)

I a~'b > ug, then ¢ never changes sign, and the motion of the axis of
the top is as in figure 5.5(a) .

If ua > a~'b > u;, then ¢ changes sign at u = a~'b, and the axis
describes loops as in figure 5.5(b) . .

If ug = a~'b, then [¢],_,, = 0. The axis describes cusps as in figure
5.5(c) . Note that us = a~'b means that a='b is a root of P(u). This gives
E = (I}a®/213) + fmgb/a,

K = E — tmgu = (I?a?/213) + tmg(a™b — u)

= (I3/2wg + tmg(a™'b —u) . (5.54)

At u = u2 (¥ = Umin), the kinetic energy of the top reduces to the spin
kinetic energy. If I hold the axis of a spinning top at a certain angle, and
then I release it, the axis falls and rises again as in figure 5.5(c).

Suppose we do precisely this, releasing a top spinning with wj = (i /I3)e
from the angle ¥ of the axis with the vertical. The total energy will be
E = (I}a%/21;) + fmg cosdy. If we put a='b = cosdy = ug in P(u), this
becomes

P(u) = (uo — u)[(2bmg/1)(1 - v°) = a*(uo — u)] . (5.55)

One root of P(u) is up, the other two are the roots of the quadratic
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polynomial in the square brackets,

U=u = [1’1 a? — \/[iza“ — 8fmgla?ug + 1682m2g? | /4fmg

being the smaller of the two.
If a2 is very large (top spinning very fast) one finds

wy ~ ug ~ 2fmg(l — ud)/ hia® |
cost ~ cosdy — (28mg/Ia?)sin®p
$ — Yo = (20mgly JI2w5) sindy .

Thus the axis to the top falls from the release inclination ¥4 to ¥,, to
rise again to J¢. The larger the spinning angular velocity, the smaller the
difference between 4, and .
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Figure 5.6: Gyrocompass

5.5 Gyrocompass

In its simplest form this consists of a gyroscope rotating about its axis
which coincides with the diameter of a horizontal ring. The ring can rotate
freely around its own axis (&} in figure 5.6). Clearly wj = 0, wh = &. We
anticipate that wj is a constant of motion, wj = wy (constant). In the real
thing, wj is kept constant by a motor in order to overcome slowing down
by friction.

The gyroscope is in the non-inertial frame of the earth rotating with
angular velocity

2 = &3 = Qé,sin X + cos X (—&] sina + &5 cosa)] . (5.56)

Therefore it will be subject to a centrifugal torque and a Coriolis torque.

The components of the centrifugal force acting on an element dm will
be

df! = dm [Q%z) - Q;(Q;x5)]
and those of the torque will be
dry = eijez;df = —dm(Qz)eizer; Q.

Integrating over the whole gyroscope, and using [zjzjdm = 0 if i # j,

Ja2dm = [zfdm = L /2, fzfdm = I, — I3/2, we find
sin A
The = 02 cosa cos A (I3 — ;) { —cosA sina . (5.57)
0

The components of the Coriolis force acting on dm are

df: = —2dme,-jk03-:i:"k
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and those of the torque are
[ S~ = f 4 f f [N
drj = 2dm(&(;Q5) — Qi()45)].
Since! @) = —wozh, &) = wor}, and &4 = 0, we find zi3} = 0 and
x; Q) = Q(—sina cos A x| +sin A x) +cosa cos A z3). Integrating over the

whole gyroscope, we find

sin A
Toor = —I3wo@l { cos A sina . (5.58)
0

Euler’s equations will read

Lot = (I ~ I)whwl + Q*(I3 — ) sin A cosX cosa — woQdsin A+ ...

Lol = (I3 — IN)wheh — Q¥ (I3 — I)cos® A sina cosa — Izwpflcos A sina

Ly =0 ,

where the dots denote a mechanical torque exerted by the ring.

With w] = 0, w} = &, and w§ = wp, we find that the first equation
is satisfied only by virtue of the constraint reaction. The second equation
yields

Li=-Q%(J; — I)sina cosa cos® X ~ Iawpflcos A sina . (5.59)

Neglecting the square of the earth angular velocity, the frequency of
small oscillations about the northern direction {stable equilibrium position)
ig

w=+/(Is/I1)woflcos A . (5.60)

'The axes & (i = 1,2,3) are not Euler axes, the coordinates ; of dm are not fixed.
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Figure 5.8: &} into page, &}, = ba, é; = bs

5.6 Tilted disk rolling in a circle

A uniform disk of radius r rolls on a perfectly rough horizontal plane, the
point of contact describing a circle of radius R (figure 5.7). The normal to
the disk forms a fixed angle ¥ with the vertical direction (see figure 5.8).

The Euler axes are attached to the disk, with &3 normal to it. At each

instant the unit vector f)g points from the point of contact to the center of
the disk. Figure 5.8 shows the situation at a certain time, say ¢t = 0, when
w=m/2and ¢ =0.

Note the rolling condition R¢ = —r¢, with ¢ and ¢ both constant.
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Since ¥ = 0, we have

wy = sind siny ¢
wh = sind cosy ¢
ws=cosPp+yY .

Euler’s equations give

{I;sinﬁcosdnj)gbz(ll—Ia)sinﬁcos¢¢(cosm9gb+¢)+r1’ " (561)

—I sindsiny P = (s — I,)sin¥siny p(cosd ¢+ ) + 75

while the third equation will be satisfied identically since 7§ will be found
to vanish.

At t = 0 (figure 5.8) the forces acting on the disk at the point of con-
tact with the plane are a vertical force F, = mgés and a horizontal force

(friction) Fy, = —~(R — r cosd)m?&,. The corresponding total torque is
T = —rby x [mgés — (R — r cos9)mep’ e,
= —rm[gcos¥ — (R — rcosd)p? sin)8] . (5.62)

At ¢t =0, when ¢ = n/2 and 3 = 0, the second Euler equation is clearly
satisfied, while the first, using the rolling condition, gives

.2 rmg cosd
= 5.63
¥ sin¥{r—'RI3 + (I1 — I3) cos¥ + mrR — mr? cos ) (5.63)
For a uniform disk (I, = mr?/4, I;'= mr?/2) we have
3 4g cosd (5.64)

~ sing (6R — 5rcos)
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5.7 Chapter 5 problems

5.1 A uniform sphere of mass m and radius r is uniformly charged with
total charge g. It rolls on the horizontal (x;,z2) plane under the influence
of the uniform electrostatic field E = (£,0,0).

(i) Show that its center of mass moves like a point particle of mass
Tm/5.

(ii) Show that the components w; and w3 of the spin are constants of
the motion, while wy = 5¢F/Tmr. The w;’s are the components of w with
respect to the fixed axes.

5.2 A sphere of radius a and mass m rolls inside a cylinder of radius a +
b, whose axis is horizontal and coincides with the z-axis of a system of
cylindrical coordinates.

Denoting by p = b, ¢, and z the coordinates of the center of the sphere,
show that

mbp = —(5/T)mgsing , mi= —(2/7)maw,¢
and
where w, = w- &,.
5.3 Show that a body whose principal moments of inertia I, I, and I3 are

all different, can rotate uniformly around one of them, say e;. Discuss the
stability of such a motion.

5.4 Discuss the regular precession of the spinning top by requiring that
E= Ue('ﬁo) and Ué(‘ﬂg) = 0.

5.5 Study small oscillations about the regular precession of a spinning top.
To simplify the calculations, assume I; = I = I3 = I. (How would you
realize this situation? Not a sphere!)

5.6 Derive the results for the sleeping top (section 5.4.2) by using the
equation 4? = P(u) with P(u) given by (5.42).

5.7 Study the motion of a “skating top”, a spinning symmetrical top con-
strained to remain in contact with a smooth horizontal surface.
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Figure 5.9: Thumbtack

5.8 (i) Find the components }; = w- b, of the angular velocity with respect
to the system b; (i = 1,2,3). Only the third, by = &}, is fixed with respect
to the body.

(ii) Find the components A; = L - b; of the angular momentum with
respect to the center of mass for the case Iy = I.

(iii) Express dL/dt = 7 in terms of the Q,;’s and of the components
T = 7. b; of the torque about the center of mass.

5.9 Consider the rigid body shaped like a thumbtack with a long pin shown
in figure 5.9. The end of the pin is fixed at O, and the disk can roll on the
inclined plane z3 = 0. (i) Find an equation for . (ii) Find the frequency
of small oscillations about the equilibrium position.

5.10 Establish the equations of motion for a uniform disk rolling on a
horizontal plane. This is an extension of the special case treated in section
5.6, where the point of contact with the plane was assumed to be on a
circle.
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Solutions to ch. 5 problems

S56.1 Denoting by Fi and F> the horizontal components of the force exerted by
the plane on the sphere at the point of contact, we have

méiy,=FR+qE, mi2=F, liy=rF | Ius= -1k
with J = 2mr?/5, and the rolling conditions
rw1 = —£2 and rws =
Then I\ = —(I/r)ar = —(I/r*)éy, Fy = (I/r)in = —(I/r*)Z,, and so
[m + (I/r*))E: = qE or (7/5)m#, =qE, and &, =0

Since there is no component of the torque in the vertical direction, ws=constant.
We have also @ = —%2/r =0 and w3 = &1/r = 5qE/Tmr.

S5.2 Denoting by F,, Fy, and F, the components of the force exerted by the
cylinder on the sphere at the point of contact, ma = mg + F gives

—bmc,t'S2 =F,, bmeé = —mg sing+ Fy ,mZ=F,
Idw/dt = 7 with » = ae, x F = a(Fsé, — F;&;) gives
I(@, — dwg) =0, I{@y + dw,) = —aFy , 1, = aFy
The rolling condition aw x (—&,) = r yields
—aw, =bqb,aw¢=é.

The final results are easily obtained by manipulating these equations.
S5.3 Euler’s equations, [1w} = (I2 — I3)whw§ and cyclic permutations, are satis-
fied by
w) = w) = 0 and w§ = constant.

For w} and w} infinitesimal, w} is congtant with an error of the second order,

and
I1wi ~ [(I; - Is)([g —— I])/Izlw':w;

The motion is stable if I5 is either greater or smaller than both I, and Iy,
unstable if Is is comprised between I, and Is.

S$5.4 It is easy to show that these conditions are equivalent to P(ug) = 0 and
P'(uo) = 0, where v = cos 9 and P(u) is the polynomial in equation (5.42), which
in turn imply that %p is a double root of P{u) (see figure 5.10). They give

(2 _ I1a2 _ 2£mguo

2y _ h 2 _
T A T, )(l-ug) (b — auop) 0 ,
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Figure 5.10: Double root of P(u)

I I3 I

Using the second of these equations in the first, one has

2
_2zImg(l ) — 20 (_2_§ _ ha® 2£m§'uo> + 2a(b — auo) = 0
1

[La(b — auo) — €mg(l — up)](1 — 43) — Liuo(b — aug)® =0

But now b— aug = @o(1 —ud), a = (Is/I1)(30 + o cos ¥g), and so one finds again
(5.45). This is a quadratic equation for g,

I coso@f — Iswipo + mg = 0 or I} cosYopd — Napoe + mg =0,
with the two roots

¢o = [a £ \/a? — (4¢mg/I1) cos 9o]/2 cos do

These are real if a*> > 4fmgcos¥o/I,. Assuming e very large (w3 very large), the
roots are
@o =~ a/ cos Jo(large) and o ~ ¢mg/Ia{small).

Only the second is obtained by the elementary treatment.

S5.5 Equation (5.45) for the regular precession reduces to I¢oto = €myg, while
equations (5.38) give

I(9 +sin ¥ @) = ¢mg sind ,
d(sind ¢)/dt = 9y
d(p cosd +4)/dt =0 .

Put 9 = 9o + 09, ¢ = o + dp, and ¢ = 4o + §9, where Jp, o, and 1) and
their time derivatives have the steady-motion values. Then linearly in the small
corrections, we have

69 + sin 9o (pody) + ¥0dp) =0
sindo d¢ + (cos Yo o —$%0)dd =0 ,
cos o 8 — sindg @pdd + 8¢ =0 .
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From the second and third equations we find that
sindo 8¢ = (Yo — cos Vo (o)dV + constant

and i _
sin ¥ 81 = (Yo — cos8¥p 10)dY + constant .

Substituting in the first equation, we have
89 + (@2 + 95 — 2oy cos¥o)dd = constant ,
P@asd + (Igs — 218mgy cos vo + £2m?g*)69 = constant .
S5.6 Differentiation of this equation with respect to the time gives i = P'(u)/2.
Putting u =1 — §u we find
d?u/dt® = [-P'(1) + P"(1)du]/2
For b =a and E = (I}a®/25;) + tmg
P(u) = (1 —w)*[(2mgt/1)(1 + u) — a’]

The roots of this equation are » = 1 (double) and v = (L;a*/2¢mg) — 1. The
former tells us that the curve describing P(u) is tangent to the u-axis at u = 1.
Hence we expect P'(1) = 0. Infact

P'(w) = 2(11a® — tmg — 3¢mgu)(1 — u) /1
does vanish for u = 1. We find also that P"(1) = 2(—Ia? + 4¢mg)/I and so
d%su/dt? = (P"(1)/2)6u = [(4¢mg/I1) — a’|du

Stability requires that P"(1) < 0, a? > 4¢mg/I1, wo > (2/13)v/Tmgl.

Note that P'(1) = 0 and P”(1) < 0 tell us that P(u) has a maximum for
% = 1. On the other hand the inequality 4émg — a’l; < 0 tells us that the other
root of P(u) = 0 is greater than unity. Figure 5.9a shows this situation, while
figure 5.9b shows the reason for instability when 4¢émg — a*I; > 0.

S5.7 The only forces acting on the top are gravity and the normal reaction from
the plane, N = Né&;. Denoting by z; (i = 1,2, 3) the coordinates of the center of
mass, we have #1 = &3 = 0 and mi@s = N — mg.

The torque is 7 = £N sin9(&} cos ¢y — &} sin ¢), and Euler's equations are

.t
I]wl
0!
11(.02
e !
Is(ds

These equations are like equations (5.38) with mg replaced by N. However, while
mg is constant, N is not.

= (I — I3)whws + ENsind cosvp
= (I3 — I)uwhwi — ENsind siny
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The horizontal component of the velocity of the center of mass and wj are
constants of motion.

From the first two Euler’s equations it is easy to obtain that
LW + W) + 28mgcos ¥ + mé?sin®Y 9 = constant

If the top is released from ¢ = 9o with § = 0 and ¢ = 0, the “constant” has
the value 2¢myg cosdy. Hence

(I + m&sin®9)9? + I ¢*sin®9 = 2¢mg(cos 9o — cos )

Both w§ and
Ls = (I1sin®9 + Iscos®9)p + Iscosd 4
= hsin®9 ¢ + I3 cos 9 wh
are constants of motion. Hence L3 = I3 cos Jowy,

sin’d @ = a(cos ¥y — cos V)

If z; = z2 = 0 (not skating after all, just twirling on the spot with the center of
mass going up and down in the vertical direction), the energy is
E = [ma} + 1$* + Lisin? ¢ + Is(y + ¢ cos¥) ]/2 + €mgcos 9.
Using
sin¥ ¢ = a(cos ¥ — cos¥), £z = £cosV, and ¥ + pcost = wh = (I /Is)a,
and putting as usual v = cos¥, E = (I;"a“/zfs) + #mgcos ¥y yields
W2 = Q(u) with

(uo — w)[28mg(l ~ v?) — La®*{uo — u)}

Qu} = I + mf2(1 — u?)

Q(u) has two roots of interest to us, v = up and

u = uy = [h1a® — \/I?a* — 8¢mgla?up + 1602m?g? | /4lmg

This latter is the same value found in section 5.4.3. In both cases the center
of mass G falls through £(cos ¥ — cos¥:).

[y, = a(cOsPg — co8¥1)/{1 — u}) has the same value in both cases. It is
determined solely by energy conservation.

S5.8 (i) w = db; + @sind by + (3 + @ cos¥)bs,
O =49, Qs = @sind, Qs =9 + pcosd.
(ll) A] == Ilﬂl, A’Z - Ilfh, Aa = 1393

(iii) Deriving db; /dt (¢ = 1,2, 3) either from equations (5.31,32) or from the for-
mula db;/dt = (w — ¥bs) x b;, one finds

115?1 - (I “Is)Qzﬂs—}—Iley:D‘—'Tx ,
115_1-2.+(11 — I3)ah ~ Ly =Ty
Isﬂg ﬁT3
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S5 9 (i) Let b, point from the point of contact P to the center of the disk C,
CO = —fbs. With the conditions ¥ = 0 and R = —rv, Euler’s equations for
the components §; of the angular velocity give

sin® @*[I3(cosd — R/r) — [ cosd] =T,
I; sin ¢ (p =T ,
I3(cosd— R/r)p=Ts .

Denoting by f = f;b; the force acting on the thumbtack at O and by F = F;b;
that acting at P, the components of the torque are given by
= Efz —rF;, T = ~€f1, and T3 = rF).
For the motion of the center of mass r = ¢bs, the equation mi =f+F + mg
yields

mf sind ¢ = mgsine cosp+ fL + 7
mé sin¥d cosy $* = —mg(cose sind +sine cosd sing) + fr + F ,
mé sin®9 ¢? = mg(cose cosY —sine sind sinp) — fs — F3

The condition (F+f+mg)-e; = 0 gives (F2+ f2) sin 9+ (Fs+ f3) cos¥ = mgcose.
Eliminating the forces f and F, we finally find

(17 + (Is + mr®)€%)p = mgRr®sine cos

(ii) In order to find the frequency of small oscillations about ¢ = n/2, we put
§ =n/2 — ¢, obtaining

[Ii7® + (Is + mr®)8%)6 ~ —mgRr*sine §

Hence 5
2 mgRr©gine

Wose = T & (I3 + mr2)¢2

S$5.10 Let ro and P denote the position vector of the center of the disk C and
the point of contact with the plane. With &3 vertically up, we have

mi"c = “""'mgéS + F 3

where F is the reaction of the plane at P.
If r is the radius of the disk, and b; is always along PC, the rolling condition
is
Expressing this in terms of the b; components of w, one has
i = r(hbs — Qsb1)
Differentiating this, after a moderate calculation F = mr; + mgés gives

F= mr(~Q3+Q1Qg)f)1 +m(gsin t9—rﬂ?—rﬂ§+rﬂsg[})f)g +m(gcos 19+rfl;+r9293)53 )
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The components of the torque 7 = —rbs x F are .
Ty = —mr{gcos 9 + 7 + r2Q3), Tz = 0, Tz = mr?(—Ks + %1 Q).
Euler’s equation give

(L + mr?)h + (Is + mr® — )00 + L9 = —rmgcosd
L + (I] - Is)ﬁ;;ﬂl — I;ﬂ]'l/) =0 ,
(Is + mr2)Qs = mr’ Q2 .

Since §13 = w§, the last of these equations gives
(Is + mr®)wg = mr?sin 19(;'2
The second equation gives
Iswyd — 21 cos 9 9p — Iy sind) p = 0
The first gives

(I + mr)d + (Is + mr®)wigsind — I, sin ¥ cosdp® + rmgcosd =0



Chapter 6

LAGRANGIANS

Praise be to the Lagrangian, labor-saving device and crystal ball.

A mechanical problem is encapsuled in the Lagrangian and the constraints
(if any). From these the equations of motion are derived by differentiations.
In many cases the existence of integrals of motion can be predicted by simple
inspection of the Lagrangian.

6.1 Heuristic introduction

Consider a system of two particles, a and b, interacting by a conservative
force with potential energy U(|r, — rpl). Denoting by z,; and zp the
coordinates (i = 1, 2, 3), we have the equations of motion

ma:iia,- = —6U/6:L‘ai and mbffb,' = —5U/8a:b,- . (6.1)

From these we derive the equations of motion in terms of the coordinates
of the center of mass, X; = (mq%,;+mpZp:) /M, and of the relative position,
Zi = Tai — Thi»

MX;=0 and m#; = -8U/Bx; (6.2)

where M = m, + my is the total mass and m = mamy/M the reduced
mass, and the potential energy is now written as U(|r|).

We may further introduce relative spherical polar coordinates,
r = |r|, 8, and ¢, and we find

MX;=0 , ma, = —dU/dr , mag=may=0 , (6.3)

101
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where

ag=r§+2f§-rsin9 cpsi?éz _— (6.4)
ayp =rsinf ¢+ 2sinf ¢+ 2rcosf 8¢ .

From equations (6.2) we see that the total momentum P = MV is a
constant of motion, while equations {6.3) tell us that the 3-component of the
angular momentum about the center of mass is also a constant of motion
if we remember that dl3/dt = mrsin# as. Here V = R is the velocity of
the center of mass. The angular momentum about the center of mass is

l=meres —R) x (Vo = V) +mp(zs —R) x (v — V) =mr xv.

Let us now introduce the Lagrangian

{ a, =7 —r8® —rsin’d ¢? |

L=K-U . (6.5)

This can be expressed in terms of the various sets of coordinates used above,
reading respectively

I = (mal‘;‘: -+ mbi-'g)/2 - U(tl‘ﬂ -— rb;) s
L=(MR?+mi?)/2-U(r]) , (6.6)
L = [MR2 + m(? + r20* + r’sin®4 $%)]/2 - U(r) .

Each of equations (6.1,2,3) can be expressed in the compact form of the
Lagrange equations

d (8L\ oL . _
a(%ﬂ~5; (i=1,..6) 6.7)

with L as given by the first of (6.6) and
q; = Tai (Z = 1725 3); Ji4.3 = Tbi ('I, = i,z, 3)1
by the second of (6.6) and
g = Xi (2 = 1,213)3 qit3 = T4 (z = 1:2’3)3
by the third and
qgi = Xi (3. = 132;3)$ qa=1,95 =20, gs =¢
Furthermore the Lagrange equations tell us that from the absence of a
coordinate ¢; from L, so that L /8¢; = 0, follows at once the conservation
of the “generalized momentum”

dL

i = e 6.8
Pi = 5o (6.8)

conjugate to that coordinate.
Since L in the second and third of (6.6) does not depend explicitly on X;,
the momentum py, conjugate to X; is seen to be conserved, px, = F; = 0.
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Similarly, py = I3 is conserved because L as given by the third of (6.6) does
not depend explicitly on ¢.

If a Lagrangian depends explicitly on the time derivative g; of a certain
coordinate, but not on the coordinate itself, it is invariant under a transfor-
mation ¢; - ¢; + dg; (dg; constant) of that coordinate, a translation in the
case of X;, a rotation in the case of ¢. The invariance-connection of con-
stants of motion will be presented in section 6.7, culminating in Noether’s
theorem.

Let us see whether the Lagrange technique works for a rigid body, for
instance the spinning top with a fixed point of section 5.4.

Start with the Lagrangian

L=K-U=[L¥+sin®9 ¢° + Is3( + (,bcosz9)2]/2— tmgcosd , (6.9)

and put pg = 8L/89, p, = OL/Bp, py = OL/4¢. Then dpg/dt = HL/8Y
gives

L3 - sind[[; cos 9 ¢ — Lp(¥ + peosd)’ +bmgl=0 ,  (6.10)
while dp,/dt = 0 and dp,,/dt = 0 yield respectively
p, = (I8in%9 + I3cos’¥)¢ + I3 cosd ¥ = constant (6.11)

and '
py = I3(¢ + pcos¥) = constant . (6.12)

(We had Ppo = I[b, Dy = La= Ia(dé :)

Multiplying equation (6.10) by ¥, and using the other two equations,
one finds easily that dE/dt = 0, where E = [,19? /2 + U,(9) (see equation
(5.40)).

6.2 Velocity-dependent forces

Consider a particle subject to both a conservative force F = —VU and a
force of a different type F'. Newton’s second law can be written in the form
d /oL AL
T ( 655.-) 5oy (1=1,2,3) (6.13)

In some cases F] can be expressed in the form

,_d [86L\ 8L
Fi = dt(3¢¢)+3x,- ! (6.14)
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and (6.13) can be replaced by
d (3(L + 6L)) _8(L+dL) _

A B 0 - (6.15)

One such case is that of an electron (charge —e) in a static electromag-
netic field (E = —VV, B = V x A), for which

F: = ——(e/c)e;jké:jBk . (5.16)

It is easy to verify that in this case L = —(e/c)A;&;. In fact

d (6613) 3L _ e (dA,- 94, )

_d-g O; ox; c dt B Ox; ¥
e aﬁi BAj) ]
= 2 2 g = L e Be = —F
c (31:3‘ Ox; o c Cijk® Tk '

Therefore the Lagrangian for an electron in an electromagnetic field is
L=mi?*/2+ eV — (efc)A - F (6.17)

The Lagrangian

L=¢eV ~ (e/c)A;i; — moc2\/ 1-— (1"/0)2

yields the relativistic equations

) oV e )
a—t(mg'ys:,;) =€ "5;' et E f,'jka‘jBk

(v = 1/4/1—(i/c)® ) for an electron (rest mass my, charge —e) in an
electromagnetic field.

The quantity U = —6L = (e/c)A;&; is sometimes called a velocity dependent
potential. This terminology is imprecise because U/ is an energy, not a potential.
It is also misleading. We are used to think of a potential energy as a function
whose space derivatives, taken with a minus gign, are the components of the force.
Now

WY _ _c 04
3:6;' - C 61:,' i
is not the i-th component of the Lorentz force.
Conversely, the damping force —yma can be trivially expressed as

asU
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with U = ymazd. However, the Lagrangian
L=m&’2 +muw’s®/2 —ymzi
yields the equation
md{g —yz)/dt = -mw’c—ymz , F+wlz=0

instead of the correct
i+t +wlz =0
This might have been expected, since —ymazi = dA/dt with A = —ymaz? /2. We
shall see in the following section that the addition of a total time derivative to
the Lagrangian does not change the equations of motion.
A correct Lagrangian for the damped oscillator is

L = "m(%* — w?z®)/2

6.3 Equivalent Lagrangians

This may be a convenient point to mention a certain degree of arbitrariness
in the choice of the Lagrangian. The reader will already have noticed
that the Lagrange equations for a particle subject to conservative forces
are homogeneous in L. Therefore the equations of motion yielded by the
Lagrangians L and kL (k=constant) are identical.

Also identical equations of motion are yielded by the Lagrangians L and
L+dA/dt, where A(g,t) is an arbitrary function of the coordinates and the
time. In fact, dA/dt satisfies Lagrange’s equations identically:

3 (o ()] -2 (%)

_d[o (or, oA\ _ o (oA, oA
=3 |86 \ g T B 3 \ Og; %5

In section 1.1 we mentioned that the equations (p = 0, § = p}
and (p = 1, § = p — t) are equivalent. The former are yielded by the
Lagrangian L = ¢*/2, the latter by the Lagrangian

L'=¢/2+ ¢t + q= L+ dA/dt with A = gt.

This property is particularly interesting when applied to equations (6.15)
for an electron in a static electromagnetic field. In fact, with A depending
only on r, we have

0L + dA/dt = —(e/c)2:(A; — (c/e)OA[Bx;) = —(e/c)2; AL,
where A' = A — (¢/e)VA is the gauge-transformed vector potential corre-
sponding to the same magnetic field as A.
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6.4 Invariance of Lagrange equations

The Lagrange equations (6.7) with the Lagrangians (6.6) were seen to yield
correct results. This is an example of invariance of the Lagrange equations
under time-independent coordinate transformations

¢ = qlgl,...qh) (i=1,...n).

From d (8L(¢,d)\ 8L(g,d)
a q,q _ 4.9 —
dt ( dq; ) B | (6:19)
follows that d (8L'(d, ") dL' (g, ')
q,q 9,9) _
at ( 34, ) T aq 0 (019

The Lagrangian is transformed as a scalar, L'(¢, ¢’} = L(g(¢'),4(¢’, ¢')). Before
presenting a general proof of invariance of the Lagrange equations under time-
dependent coordinate transformations q = g(g’, ¢}, we wish to verify this property
in the simple case of a transformation from an inertial to a uniformly rotating
frame of reference, for an electron in a uniform magnetic field in the 3-direction.
We start from

L =mi?/2 — (eB/2)(z152 — zag1) (6.20)
the Lagrangian (6.17) with 4, = —2:B/2, Az = :B/2 and A3 = 0, yielding the
Lagrange equations

m#; = —(eBJc)xy , mia=(eBlo)t; , miz=0 . (6.21)
Transforming to the rotating frame,

£, = 7 cos{wt) — zpsin(wt) ,
za = z sin{wt) + x4 cos{wi) ,
T3 = 5{3 s

with some algebra we find

mih = w(mw — eB/e)zh — 2m(w — eB/2mc)sy (6.22)

{ m¥; = w(mw — eB/c)z] + 2m{w — eB/2mc)ih
miy =0 .

But these are indeed the Lagrange equations derived from the transformed
Lagrangian

L' = mi? [24 (w/2)(mw—eB/c) (2 +25 )+ (mw—eB/2c)(z 25— 1221) . (6.23)

Which is the more economical way of obtaining equations (6.22)?

Incidentally, Larmor’s theorem states that the action of a uniform magnetic
field on a charged particle can be counteracted to first order by a rotation. In
fact, for w = eB/2mc the above equations reduce to

mi) = —(esz/4mc?’)x; , mih = *(3282/4mc2)mfz , mEsg =0 ,
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namely equations for a particle acted upon by an elastic force normal to the
3-axis.
We start from a more general form of the equations,

d /8L oL
-d_t(a_q;)_“-—'g’ ,

which will be justified later (see (6.27)). The @;’s are generalized non-
conservative forces, while L = T'(¢,q) — U(q) accounts for the conservative
forces. Of course, nothing would prevent us from taking L = T and adding
to the right side Q£°°““) = -9U/dq;.

We consider transformations of the type ¢; = ¢;(¢, t) Then

(aqi/aq )d; +0g; / Ot, and so ¢; is a function of the ¢', the ¢/, and t. Con-

versely q;= q,(q, t), 4; = (9q;/8q;)4; +6q‘ /0t etc. Note that even if the La-
grangian L is a function only of the ¢'s and the ¢’s, regarded as independent
variables, the transformed Lagrangian L"(q',cj’,t) = L{qg(qd',t),4(d', ¢, t))
may depend explicitly on ¢.

The formula 8¢;/0q¢; = 8q;/Bq; will shortly be used together with

2 2 7 ¥
N E AT
dt \ dg; Oqr Bq, otdq;  Oq;

Now
Qi = d QE_) 8L _ d (8L dg; 8L‘3d;+aL’5q;~
‘Tt \bu/) Bq;  dt\ B4 84| ~ \0d Ba: " oq] 0w
With a little work this gives
o= |4 (21 _ ou] o5
YT de aq; qu Bq,
Multiplying by 8¢;/dq},, we find
3 () o _g
dt \ 8¢,/  0q, **
with Q} = @; 9q:/0q;.

We end this section with a few relations, which will be used in chapter
7. Note first that from d¢}/8¢; = Bq}/Bq; one has

0L B¢; 8L _ 8q; 8L
8¢ 04 By Ogi B¢;
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Hence ) Bq;- |
pi = —BEP,'
and
pi dg; = pj dg; . (6.24)

6.5 “Proofs” of the Lagrange equations

We have deliberately presented the Lagrange equations as just another way
of expressing equations of motion which could be derived directly from
Newton’s second law.

In light of the previous section, and on the assumption that any physical
system, however complex, can be described as a set of point particles, we
may “prove” the Lagrange equations in the following simple way.

Each particle obeys Newton’s second law

Mate=F, (a=1,...N) ,

which can be expressed in the form
d /8K
- =F..
dt (B:i:m-) o

K=Y mqi?/2
[4.3

where

But this is already a Lagrange equation. If instead of the coordinates z4;
(x =1,...N;i=1,2,3) we introduce generalized coordinates g;
( = 1,...3N)) functions of the r,’s, then the Lagrange equations are

transformed into
4 (oY _o
dt \ J¢; A

Oz,
Qi = E Fak ;:q_k
. §

where

Another popular “proof” starts from Hamilton’s principle derived from
the d’Alembert principle, which in turn stems from the “virtual work”
principle of statics.

Let ¢;(t) describe the real “trajectory” of a system during the time
interval t; to ty, and q}(t) = qi(t) + 0¢i(t) a varied trajectory with dg;(t)
infinitesimal, subject to the restriction dq;(t;) = d¢;(t2) = 0. Thus the
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real and the varied motion start from, and arrive at the same points at the
same times. (It is not so in the case of the Maupertuis principle, equation

(1.37).)
Let OK oK
0K = [K] aried = [Klreat = a—di(séi + -6?‘5%: ,
where

b = Jim, { [qé(t + AXZ - qé(t)] _ [Qz'(t + AAtl - Qi(t)] }

ogi(t + At) — dqi(t) d

= dim, At 0e(®)
Hamilton’s principle states that
t3 ia ta
(K+8W)dt=6f Kdt+ Wdt=0 |, (6.25)

£ ty 131

where W is the work done by the forces for the displacements dg;.
Notice that in general we cannot write

2 tq
oW dt=46 W di
t1 9}
For conservative forces we have
t3 t2 ta
dWleomsdt = — | (8U/8¢;)oqi dt =6 U dt
tl t! tl

while generalized non-conservative forces can be defined by writing
oW = @Q; ég;

Therefore (6.25) can be expressed in the form
ta $q
é Ldt + Qibq; dt =0 (6.26)
£y £y
with L=K - U, or

ta FBL . oL
/ (—.—5%: + —dg; + Qi&?&) dt =0
ty 6gi 6(],7
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A simple partial integration, using d¢; = ddq; /dt and
0gi(t1) = 0gi(ta) = 0, yields

ta d /8L 8L
—— =)+ =+ Q;dq; ) 6q;dt =0
/t ( d¢ (6q.-) Ag; ¢ q) T

1

Since the dq;’s are arbitrary for ¢, < t < t,, we infer that

d /0L 8L
< (5&—) =@ (6.27)

A final remark. The first term in equation (6.26) is unchanged if we add

dA(q,t)/dt to the Lagrangian, since
¢
éftl’ (dA/dt)dt = (8A/Dq;),, dqi(t2) — (OA/Dq),, 04i(th) = 0.

This confirms what we wrote in section 6.3.

For Q); = 0, Hamilton’s principle (6.26) states that the real motion extremizes
the action A = f ::‘L dt. Extremize, not minimize! For

L = (¢* + aq*}/2 (@ < 0 attractor, a > 0 repellor)

and dq = ¢(t) (e(t1) = €(t2) = 0), using the equation of motion § = ag we have
(exactly)

64 = / 2[(é2+a52)/2]dt :

This is positive for a > 0 (repellor), in which case the action is a minimum. For
a < 0 it may be positive or negative.

6.6 Constraints

In the preceding chapter we have tacitly assumed that the number of the
generalized coordinates equaled the number of degrees of freedom. In deriv-
ing Lagrange’s equations from Hamilton’s principle, the final step required
the independence of the ég;’s.

We first consider “holonomic constraints”. A holonomic constraint is a
geometrical restriction on the coordinates expressed by an equation

Flq,...qnit) =0 . (6.28)

Examples:
Spherical pendulum: A point mass moves frictionlessly on the inner surface
of & hemispherical bowl {figure 6.1).
This time-independent constraint can be expressed by the equation
F(r) = R — r = 0 in spherical coordinates, or
F{z1,z2,23) = R— /2% + 22 4 22 = 0 in Cartesian coordinates.
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Figure 6.1: Spherical pendulum

Xy

o

Xy,

Figure 6.2: Bead on rotating wire

A time-dependent constraint: A bead can slide frictionlessly on a straight
wire which is forced to rotate in the (z:22)-plane around the origin with constant
angular velocity w (figure 6.2).

This constraint can be expressed by
F(8;t) =8~ wt =0 in plane polar coordinates, or by
F(z1,z2;t) = —z1sin(wt) + o2 cos(wt) = 0 in Cartesian coordinates.

A holonomic constraint can be used to eliminate one of the coordinates
from the Lagrangian or to express q¢i,...¢n in terms of new coordinates
Q- - Gnoy-

For instance, the Lagrangian for the spherical pendulum

L = (m/2)(#* +r*0% + r’sin8 ¢*) + mgrcosd

reduces to ' )
L = (mR?/2)(#* +sin’8 ¢*) + mgRcos 8

With z; = r cos(wt) and z2 = rsin(wt), the Lagrangian
L = (m/2)(z} + £3) for a free particle in the (1, x2)-plane reduces to

L= (m/2)(# +r’w°
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for the bead constrained to slide on the frictionless wire.

The use of a holonomic constraint to reduce by one the number of
coordinates in the Lagrangian does not provide information on the force
implementing the constraint. As we know from General Physics, this is a
reaction of varying magnitude normal to the surface F(q,...qn;t) = 0, for
instance normal to the hemisphere for the spherical pendulum and to the
wire for the bead.

For the spherical pendulum we may try to use the Lagrange equations in the
form (6.27), writing

i (_a_‘.[‘..) _3_.1’.. = Q’
dt \ Ox; —61:,' A
where
L = (m/2) (&} + 2% + 3) + mgzs
and
Qi = —Azi/r
We find
miy = —Azyfr , mEy = —Ax2/r , mis = mg— Aas/r . {6.29)

These equations, together with the constraint equation r = R, are sufficient
to determine the four unknowns ), z2, =3, and A. In fact, differentiating the
constraint equation > = R? twice with respect to ¢ we obtain

T1E1 + zody + wadks = — (&) + @5 + &3) = —R*(6” +sin’6 ¢°) = Ra,

Multiplying the first of equations (6.29) by z1, the second by z», the third by =3,
and summing we find

m(z1%1 + x282 + Ta¥s) = —AR+ mgzrs

mar = —A +mg coséd

showing that ) is the magnitude of the reaction of the constraint.
From the constraint —z; sin(wt) + 3 cos{wt) = 0 for the bead, we see that in
this case we must take

@1 = —Asin(wt) , Q% = Acos(wt)
Hence the Lagrange equations are
m#E; = —Asin(wt) , mi; = Acos{wt) ,

to be used in conjunction with the constraint.
Double differentiation of the constraint with respect to ¢, and use of the
constraint itself, yields

— &) sin(wt) + &2 cos(wt) = 2w[z; cos(wt) + &2 sin(wt)]
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and so
A = 2mw[E) cos(wt) + &2 sin(wt)] = 2mw(z181 + T282)/r = 2mws

Supposing # > 0, this is the magnitude of the Coriolis force, which the con-
straint must counteract (see bug with 8 = 7/2 problem 4.5).
In general, taking the variation of a holonomic constraint

F(qi,...qn;t) = 0 at a certain time t, we have

with
a; = OF/8¢;

The components of the reaction force are proportional to dF/8¢; and
s0 we can write !

Qi = gy

Note that the corresponding work W in Hamilton’s principle is
S (react) — Qidg; = Aaidg; = 0, as we expect since the reaction and
the “virtual displacement” are at right angles. On the other hand, when
we differentiate the constraint with respect to ¢ to supplement Lagrange’s
equations, we have (3F/8¢;)q4; + (8F/dt) = 0, a;g; + a; = 0,

a,-,dq,- + atdt =0 y

with
a; =0F/8q; , ay=8F/ot

Figure 1.3 emphasizes the distinction between the dg; and the
dg; = ¢;dt.
In general we may have more than one, say r holonomic constraints

Folgr,.--gn;t) =0 (a=1,...7)

or, in differential form,
Qoidg; +agdt =0

¥

with
Qoi = OF/0q; and ayy = OF, /3t

1In the examples, the constraint equation was written in such a way that the g;’s
turned out to be the components of unit vectors normal to the sphere and to the wire,
respectively. Thus A was the magnitude of the reaction. In general we can expect A to
be only proportional to the magnitude of the reaction.
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REACTION
¢ CONSTRAINT

Figure 6.3: dg; and d¢;

Then the Lagrange equations have the general form

d (0K\ 0K
dt(éa.-)“aqf@‘*@‘ ’

where
Q! = AaGqi (sum over «a)

These equations, together with the r constraints, are sufficient to determine
the ¢; and the r “Lagrange multipliers” A,.
A constraint in differential form

a;dg; +a;dt =0

i “non-holonomic” if it is not integrable, i.e. cannot be expressed in the
form dF(q1,...qn;t) = 0.

In order to determine the integrability of a differential relation
A;dz; = 0 it is not sufficient to calculate the components of the generalized
“curl”, (9A;/0x;) — (8A;/B8z;). Even if one or more of these are different
from zero, the differential relation may be integrable after multiplication
by an “integrating factor”.

For instance, the adiabatic condition C,dT + (RT/V)dV = 0 for an
ideal gas, after multiplication by 1/T becomes dS = 0, where S is the
entropy.

A rolling disk provides a good example of non-holonomic constraint. The
rolling condition #. = —rb; X w can be expressed in terms of components with
respect to the fixed axes

#1 = —rpcosd cosp + rdsindsinp — ripcosp
&y = —r@cosdsing — rdsindcosp — rpsing
£3 = rdcosd = d(rsind)/dt ,
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where z;, 2, and z3 are the coordinates of the center of the disk. The third
constraint is, of course, holonomic, d(zs — rsind) = 0.

We have
a1:dz1 + a1,dp + a19d? + ar1pdypy =0
{ azdzs + azgd(p + azgd?d + awde =0,
a3cdTs + azgdd =0 ,
witha;c =13 =1,2,3), a1, = rcosdcos, az, = rcosdsin g, ajg = —rsindsin g,
az9 =rsindcosp, agg = —rcosd, ayy = rcosy, azy = rsin .

With the Lagrangian

L= (m/2)(a? + &} + £3) + (mr® /8)(9 + sin®9 ¢*)
. 2
+(mr?/4) (¢ + pcos¥) — rmgsind
we find
mE) = A1, mEz = Ay, mis = A3,
(mr?/4)(9 —sind cos 9 ¢?) + (mr?/2)wipsind
+rmgcosd = Aiaig + Aaaze + Asagy ,
(mr?/4)d[sin®d ¢ + 2 cos wi)/dt = Aa1, + Aeaze
(mr?/2)dwh/dt = Mary + Aazy -

The last equation then gives
(mr?2)dws/dt = r(A} cos @ + Az 8in ) = mr’(—pcosd — ¥ + 29¢sing) .

In a similar way one obtains two more equations. Compare with problem 5.10.

The first and the second of the constraints are non-holonomic. For the rolling
disk with horizontal axis (¥ = m/2) problem 6.17 gives a direct proof of the non
integrability of the conditions 2

dz1 +rcospdy =0 and dzz + rsinp dyy = 0.

Non-holonomic constraints are restrictions on the infinitesimal changes
of the coordinates, whose range of allowed values is unrestricted. A rolling
disk can reach any point of the (z;z»)-plane, and ¥4, ¢, and 9 can attain
any of their allowed values, in spite of the non-holonomic constraints.

6.7 Invariance of L and constants of motion

Consider an infinitesimal transformation

a(t) = qi(t) + 6qi(t) , t' =t+ 6t

We say that the Lagrangian L is invariant under this transformation if
6L = L(g{(t'),dq}(t')/dt',t') — L(gi(t),dqi(t)/dt,t) =0

2See also A. Sommerfeld, Mechanics (Academic Press, 1964), Problem IL.1, pp. 244,
261,
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up to the second order in d¢; and dt. The first term is obtained from the
second by simply replacing ¢;(¢) and dg;(t)/dt by qi(t') and dg(¢')/dt/, and
t by t' if the Lagrangian depends explicitly on the time.

Coordinate transformations
Consider transformations ot = 0, ¢i(t) = ¢i(t) + €fi(q,q,t) with ¢ an in-
finitesimal parameter.

If 6L = O(¢€?), then

is a constant of motion.

Proof:
_ _aL oL oL ‘ BL df;
0=9oL= 6q’ dq qu, - (3 if' g dt)

- oL fi+ oL dfi| _ oL oL .
G ’ 3 dt dt ag:
Example: The Lagranglan
L = (ma¥s + mets)/2 — U{|ra — rs|)
is (exactly) invariant under the transformation
Yo 3 rg+48r , 1, I, +o0r |
where dr = efi (fi constant unit vector). In this case
I = ni(maTei + mpei) = ML - V=01-P

The component of the total momentum in an arbitrary direction is conserved.
Example: The Lagrangian

= (mi? + kr?)/2
is invariant under the transformation
ror+enxXr |, Ii— T;+E€EijpniTk
((¢ + ei x r)* = r? 4+ O(¢?)). The conserved quantity is
I = mi(eanice) = njleeze(med)]=a-1

the component of the angular momentum in an arbitrary direction.
Example: The Lagrangian

L=mi/2 —ctan™ ' (@2/21) + 23
(¢ = constant) is (exactly) invariant under the helical transformation

/ . [ N !
Ty =21C088—1x28ins, £, =x1sins+T2¢088, Tg =T3+ s,
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where s is a constant parameter.

In fact, 2 + &2 = &2 + 2 and 4§ = 23, while in cylindrical coordinates
(z1 = pcos ¢,z = psin¢g, z3) one has =) = pcos(¢ + s), o4 = psin(¢ + s),
c tan~ (x5 /z)) — 3 = ctan”'(tan(¢ + 8)) — z3 — 8 = c¢p — T3
=ctan~ ' (z2/21) — 5.

For s — ¢ infinitesimal, we have fi = —z2, fo = %1, f3 = ¢, and the
conserved quantity is

I = (8L/8i;) f; = m(—z22) + z1&2 + ci3) =3 +cp3

Time translations
For t! =t — € we have

SL = L(g(t'),dq(t')/dt', ') — L{q(t),dq(t)/dt,t) = —edL/dt |,

OL = S2 (@) = aut)) + 5 @u(#) = ) + - (~9

oL . OL d., OL _ d(a_L,‘ ;)
ag Bt

= - : — €— —— —

g B T Bgcdtt T Bt T Cdt
L = —edL/dt gives
dfoL. ,\__9%
at \ ag; T - Tt

If a Lagrangian does not depend explicitly on the time, then
I= —Qa - L
i

is a constant of motion, which will be seen to be the Hamiltonian.

This is a special case of a general property of the Euler-Lagrange equation of
a variational principle, d(8f/8y')/dz = 8f/8y. One has

d(y'af /3y’ — f)/dz = ~3f/0z.
If 3f/0x = 0, one has the Jacobi integral of motion
y'@f/8y — f = constant .

As a preparation for Noether’s theorem, we want to derive this result
in a slightly more complicated way.

Assume that the Lagrangian does not depend explicitly on the time 2
and that

L(¢'(t'),dg' () /dt') = L(q(t),dq(t)/dt) + O(¢’) ,

3For instance L = (1/2)ai;¢:d; — U(g), with a;; and U functions of the g;’s, but not
explicitly dependent on .
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where t' =t — € (e infinitesimal) and ¢!(¢'} = ¢;(t).
We write

0= L(q'(t), dq'(t')/dt') — L(q(t), dg(t)/dt)

= [L{q'(t),dg'(t")/dt") — L(q(t'), dg(t') /dt")]
+[L{q(t"), dq(¢')/dt") — L(q(t), dg(t)/dt)]

The difference in the first set of square brackets represents the variation of
the Lagrangian due to the change in form of the ¢;’s *,

6qi(t) = qj(t) — qi(t) = g} (t') — @i(t') + O(€?)

Thus we have

oL - 8L d - dL
AL T TR T
_(40LNg 0Lds 4L
T \dtog )t T et T St

Since ¢;(t') = qi(t) = qi(t' + ¢€), we have
6gi = qi(t) — qi(t) = qi(t + €) — qi(t) = edu(t),

0= e— (qu, L) ,

and we find again the integral of motion I = (8L/8¢;)¢; — L 5.

6.7.1 Invariance of L up to total time derivative

If under an infinitesimal transformation q; — ¢; + dg; with
dq; = €fi(q,q,t) the Lagrangian changes by

_ dA(q,t) 2
0L =¢ T O(e®) ,
then oL
I = 'azf,, - A (6-30)

is a constant of motion.

Proof: A
d oL oL oL
‘ar _(aq,)J +6q S =c5 (3 ;f)

4For instance, if q(t) = t% then ¢'(t') = q(t) = (' +e) , 6g(t) = ¢'(t) — q(t) =
(t+€)? — t% = 2¢t + €2, while ¢/ (¢) — q(¢') = t2 — (t- €)? = 2¢t — €.
SFor the example in footnote 3, I = (1/2)a;;did; + U is clearly the energy.
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Example: The variation of the Lagrangian
L = (m/2)(i* — w?z?)
under the transformation
' =z + € sin(wt)
is . . . .
8L = (m/2){[&"” - 4°] - w’[z”® ~ 2°]}
= em{wi cos(wt) — wzsin(wt)} + O(e®) = e dA/dt + O(€)

with
A = mwz cos(wt)

The integral of motion I = m# sin(wt) — mwez cos(wt},

I=m sin(wt) T

=™ dsin(wt)/dt dz/dt |’

is proportional to the Wronskian determinant of the solutions sin(wt) and z(t) of
the equations of motion.

Example:
Consider an infinitesimal Galilean transformation

ra = ra+tefi , rp =1y +ten

where i is a unit vector and ¢ is an infinitesimal parameter with the dimensions
of a velocity.
The variation of the Lagrangian given by the first of (6.6) is
8L = eir - (Mata + mots) + Ofe?) = e dA/dt + O(?)

A=n:(msrs +mupry)) =Min-R

where R is the position of the center of mass. The corresponding integral of
motion is
I = [t(mai'a + mbi'b) - (mara + mbrb)] ‘0

=M(iEV-R)-n=-MR(0)-i |,

where R(0) is the position of the center of mass at ¢t = 0.

6.7.2 Noether’s theorem

The following is a version of the theorem for Classical Mechanics.
Consider an infinitesimal transformation

qi(t) = qi(t) + 6gi(t) , t' =t+48t

where
JQi(t) = E.fi(‘]a g t) , 0t= Eg(Qat)



120 CHAPTER 6. LAGRANGIANS

Assume that the action integral is invariant under this transformation
with an error of second order in € &

[+ (o0 252 [ 0 22

Then with a second order error in ¢ we have

o [0 ) 0 )

giving

OL (dai(t) _ das(t)) , , dot
de’ dt dt

0= ;%(qi(t') a(®) + 5

1.

We already know that
gi(t") — @i(t) = (gi(t") — (") + (@:(t") — ai(t)) = bq; + bt

On the other hand, using

dt dt d¢’ dt / dt¢/
and
4 _f;_dit\d
de' — d¢ / dt °
we have
d ,,, d_Nd,,_. dét d
d# qt(t) dth(t) - dt[q’(t) Ql(t)} dt dt‘?t(t)
d. - ) dét . _ d - d .
= -a"t'((S(]g + q,dt) - E(R = dtdq‘ +5td
Hence

8L - L dét
0= —(8¢; + ¢;0t) + — —
3(]‘( G + 40t} + 5. ( 6q,+6tdtq;) + L=

8Do not confuse this with the exact, but trivial identity

th ta
/L(Q(t(t'))a(dtI(t(t'))/dt')(dt/dt')dt'=/ L{q(t), dg(t)/dt)dt
t'

1 ty
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= d (?—Iigq,- + Ldt) = ei (g—L-(fi — dig) + Lg)

dt \ 8¢; dt \ 8¢;
The quantity
oL .
I==(fi—9d:)+ Lg (6.31)
qi
is a constant of motion. For time translations one has f; =0 and g = —1.

Example: The action
to
[ @k
t1

is invariant under
qi)=viqlt) , t'=x

For A=1+¢ we have f = ¢/2 and g = ¢.
The integral of motion is

gL ) ,
I= gg(f—qy)+llg= —Et+4q/2 |

where E = ¢*/2 ~ k/q? is the energy integral of motion.
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6.8 Chapter 6 problems

6.1 Derive the equation for the thumbtack {problem 5.9) by using a La-
grangian involving only ¢, ¢, and the fixed angle 9.

6.2 A uniform plank initially leans against a smooth wall and rests on a
frictionless floor.

Discuss its motion (i) by an elementary method, and (ii) by using a
Lagrangian and constraints.

x=(£/2)cosh, y = (£/2)sinh, Iy, =me2/12, 14 = Ip =me?/3 = |

6.3 A particle of charge ¢ moves in a static electromagnetic field with
potentials V = —a Inp, A = (—By/2, Bx/2,0), where p = /2% + y2, and
e and B are constants.

(1) Express the fields and the force acting on the particle in terms of the
unit vectors €,, &y, and &,.

(ii) Write F = ma in cylindrical coordinates.

(iii) Write the Lagrangian and derive the equations of motion. Compare
with (ii).

(iv) Do you expect constants of motion other than the energy? Why?

(v) What are they?

6.4 Consider a system of N particles, interacting with one another with
velocity-independent forces, Lagrangian

N
L= "mai%/2 +U(ry,...tN)

a=1
Let ¢ be an angle about the unit vector n. We know that

oL
O o

pg = 0 - 1= €;56niTaj

{sum convention also for a).

(i) What is pj = py + 0py for the Lagrangian L' = L + L, where dL is
a function of the r,’s and their time derivatives r,’s 7

(it) What is dpg if 8L is the Lagrangian 6L = ¢ 'qaAiFas 7

6.5 Obtain the equation of problem 3.10 by a Lagrangian method.
6.6 Consider the block of mass m on the frictionless floor of a cart which

moves according to X (t) as shown in figure 6.4. Denote by k the elastic
constant of the spring, and by £ its natural length.
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Figure 6.4: Block on accelerated cart

(i) Write the Lagrangian for the coordinate = of m with respect to a
fixed z-axis.

(ii) Change coordinate from z (with respect to the fixed axis) to z’ (with
respect to the cart), find the new Lagrangian and the equation of motion
with respect to the cart.

(iii) Incorporate the inertial force found in (ii) in the Lagrangian (i) as
a potential energy, and find again the equation of motion for z'.

6.7 Let L(q, ¢;t) be a Lagrangian. A “complementary” Lagrangian L.(p, p, 1),
can be defined by the Legendre transformation

L(Q,Q;t) + aL(g,¢;t) = PQ + apg

where @ = p, P = aq, and a = +1. Only the case a = 1 seems to have
been considered in the literature.

(i) Show that P = 8L./8Q, P = 8L./8Q, BL./dt = —aBL/bt.

(ii) (a) Find L, for the harmonic oscillator, L = (mg® — kq?)/2.
(b) Find the corresponding Lagrange equations.

(iii) (a) Find L. for the Kepler problem, L = mq?/2 + k/|q| (k > 0).
(b) Find the corresponding Lagrange equations.

6.8 At ¢t = 0 a particle of charge ¢ and mass m starts from rest at the
origin of a Cartesian coordinate system, and moves under the influence of
the electromagnetic field E = Eé, and B = Bé, (F and B constant).
While the electrostatic potential is unique up to a constant, ¢ = — Ey,
the vector potential is determined up to a gauge transformation.

(i) Find the gauge transformation connecting the two vector potentials
A’ = —-Byé, and A" = Bzé,, both giving the same B.

(il) Write the Lagrangians L' and L” for the two cases.
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(iii) Check that these Lagrangians differ by a term dF/dt, and so can

be expected to yield equivalent equations of motion.
yi

(iv) Use L' to write the equations of motion, and solve them for the
given initial conditions.

(v) Use L" for the same purpose.

(vi) Qualitatively compare the paths of an electron and a proton.

P

6.9 In Hamilton's principle (equation (6.25)) the variation
q(t) = ¢'(t) = q(t)+ dq(t) is synchronous, i.e. the system is at P in the real
motion and at P’ in the varied motion at the same time ¢.

On the other hand, if the time is also varied, it is at P’ at a time
t(t) = t + 6t, and the varied motion is described by a function of £,
¢"(t) = q'(t(t))- In this case, one speaks of asynchronous variations.

(i) Show that, while 6g = ¢'(t) — ¢(t) and é*q = ¢"(f) — ¢(t) are equal,
one has 6*¢ = 6¢ — ¢dét/dt. Here

= pig TECE+AY) - q"(H ) . alt+ AL —g(t)
T a0 t(t+ At) — £(t) At—0 At

6*q

(ii) Show that Hamilton’s principle for motion under conservative forces
takes the form

ta
(6*K + 2K (d6t/dt) — 6*U)dt = 0
ty

in terms of asynchronous variations.

(iii) The varied motion is necessarily asynchronous if it is required to
take place with the same total energy as the original motion. From (ii),
derive Maupertuis’ principle for isoenergetic variations.

6.10 We have a Lagrangian L(q, ¢,t), but want to restrict the coordinates
and their derivatives by a holonomic constraint F (g, ¢,t) = 0, more general
than (6.28), since F depends also on ¢. Show that the equations of motion
can be derived from the modified Lagrangian

L'=L+AOF
where A(t) is regarded as a new coordinate.

6.11 Assume that the holonomic constraint F in the preceding problem
does not depend explicitly on ¢ and is of the form F = (a;¢ig; — b)/2 =0,
where the symmetric coefficients a;; and b are constants.
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Figure 6.5: Problem 6.13

Show that one finds
.‘i(% _on Al L OLY L l_g
dt \0g; )~ B¢ @ dt |b U By ) 1| T

6.12 A bead of mass m slides without friction on the curve ¥y = f{x). The
y-axis is vertically up. Find the equation of motion for z

(i) by using the holonomic constraint,

(i} by using a Lagrange multiplier A,
and

(i) find the reaction of the constraint and compare it with A.

8.13 Consider the system shown in figure 6.5. The pulleys are massless
and frictionless. Assuming that the acceleration A of M is known, find the
friction force ¥ acting on M and the tension T of the cord

(i) by an elementary method,

(il) by a Lagrangian method with a holonomic constraint relating the
position coordinate z of M with the position coordinate y of m,

(iii) by expressing the constraint in non-holonomic form and using a
Lagrange multiplier.

6.14 A solid cylinder of radius Ry and mass m (moment of inertia
I = mR2/2) rolls without slipping inside a cylindrical surface of radius R,
as shown in figure 6.6.
(i) Write the Lagrangian in terms of the angles 8; and 6; shown in figure
6.8.
(ii) Derive the equation for #; using the holonomic constraint
R8; = Rg(ﬂl + 62).
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Figure 6.6: Cylinder rolling inside cylinder

(iii) Use Lagrange multipliers to find the forces exerted by the cylindrical
surface on the rolling cylinder.

6.15 A particle of mass m moves under the action of gravity and of the
constraint

cosa dp — (sin*a/cosa)(z dz/p) =0

where « is a fixed angle, and p and z are cylindrical coordinates. The z-axis
is vertically upward.

(i) Write the Lagrange equation in Cartesian coordinates with a La-
grange multiplier.

(ii) Show that the constraint, though couched in non-holonomic form,
is, in fact, holonomic, and represents the frictionless motion on any of a
family of hyperboloids.

(iii) For the z > 0 branch of the degenerate hyperboloid that passes
through the origin, show the relation of the Lagrange muitiplier with the
reaction of the frictionless surface on the particle.

6.16 Consider the system of figure 6.7, two wheels of equal radius rigidly
attached to an axle, suggested by Goldstein. Find the constraints.

6.17 Show that the constraints for a rolling disk with horizontal axis,
dzy + rcosy diy = 0 and dxy + rsine dyp = 0.
(section 6.6) are non-integrable.

6.18 Derive the results of problem 5.1 by the method of Lagrange multi-
pliers, using as initial variables the Euler angles and (z;, ).
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Figure 6.7: Wheels and axle

6.19 The use of Euler angles is not convenient in treating the motion of
a uniform sphere. Derive the results of problem 6.18 by the Lagrange
multiplier technique without using Euler angles.

6.20 Derive the results of problem 5.2 by Lagrange equations with multi-
pliers.

6.21 Give a Lagrangian formulation of the problem of a rolling disk (prob-
lem 5.10).

6.22 Find the variation of the harmonic oscillator Lagrangian

L = m(¢* — w?¢?)/2 under the infinitesimal transformation ¢ — ¢+ dq with
dq = ie/2m(q — iwg), and determine the corresponding integral of motion
according to section 6.7.1.

6.23 Find the variation of the Toda Lagrangian
L = (&% +5%)/2 - exp(2(z ~ yv/3)) + exp(2(z +yV/3)) + exp(—42)]/24+1/8
under the infinitesimal transformation

{ z = €[—48&y + V3(exp(2(z — yv/3)) — exp(2(z + yv3))] ,
by = €[1692 — 24i2 + exp(2(z — yv/3)) + exp(2(z + yV/3)) — 2 exp(—4z)]

and derive an integral of motion according to section 6.7.1.

6.24 Apply the transformation zy — z + dz; with

0z = n[—2xid&s + (x;%;)0 + zod;)/k (n infinitesimal parameter) to the

Lagrangian L = mi?/2 + k/r. Show that §L = ndA/dt with A = —2z;/r.
(i1} Show that the ensuing constant of motion is the i-th component of

the L-R-L vector.
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6.256 Consider a particle of mass m in one dimension with Lagrangian
L = m#*/2 — U(x — ut), where U(z — ut) represents the interaction with a
field travelling with constant velocity u.

(i) Show that L is invariant under the transformation &' = = + ey,
t' = t + ¢, where ¢ is a constant parameter.

(ii) From this invariance property, derive a constant of motion.

6.26 The Lagrangian
L= (mni‘i + mbrg)ﬁ - U(‘l‘“ - I'J;D

is invariant under the seven transformations of the Galilean group (space
and time translations: 4 parameters; space rotations: 3 parameters). Use

{6.31),

oL
= 2 (f. — G L
! 5. (fi—dig)+Lg

to find the corresponding seven integrals of motion,

6.27 Find the integral of motion at the end of section 6.7.1 by transforming
both coordinates and time so that the action is invariant.

6.28 In problem 6.8 the Lagrangian
L' =m(z? + 9% + 22)/2 + qBy — (¢B/c)yz
yields the constants of motion
m# —qgBy/c = constant , my+qBz/c —qEt = constant, mZ = constant .

While the first and the third originate from the absence of z and z,
respectively, from L/, the second has a different origin. Derive it by consid-
ering the result of the transformation y — y + € (¢ infinitesimal constant).
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Solutions to ch. 6 problems

36-1
K = [m(& +43) + [1¢°sin®0 + Is(cosd o +9)1/2

U = —mg(z8ine — x3cose)

where (z1,z2,%3) are the coordinates of the center of mass with respect to the

fixed axes.
Since 1 = (R —r cosd)sing, £z = —(R —r cosd) cosep, £3 = r sind,
R —1r cos¥ = ¢ sind, sind = ¢/R, we have

L= (1/2)(m& + I + 1s/r*)*sin®9 + mg(€ sind sine sinp —r sind cose)

a(or) _or
dt \8p )~ B

(hr® + (Is + mr*) )¢ = mgRr’sine cos¢

The Lagrange equation for ¢,

gives

S6.2 (i) Elementary: )
mi = Fa, mjj = Fg — mg, Icm8 = (¢/2)(Fasin8 — Fp cosf)
Eliminating F4 and Fp, and expressing  and y in terms of 6, we obtain

Imf = —(fmg/2) cos 8 — (m&*[4)6

16 = (—mg/2) cos §
Puzzling? No, A is not a fixed point. Energy conservation gives

19* 4 tmg sing _ tmg sinfo
2 2 2 :

16? + mg(sin 6 — sinfp) = 0
F4a=0when =0, sin@ @ + cos@ 6% =0,

cosf (—3sind +2sinfy) =0

Either # = 7/2 (trivial unstable equilibrium) or 4 = sin~'((2/3) sin 8o).
(i) )

L=[m(& +9%) + Lmb’]/2 — mgy
Constraints:

fA=-$+§COSB=D , f3=—y+§sin9=0

The Lagrange equation

d (aL) _g_{ +AAafA

ofp
it \ 3z +2s

oz ox oz

=0 ,



130 CHAPTER 6. LAGRANGIANS

e
~

Figure 6.8: Plank, problem 6.2

another with £ — y, and another with = - 6, give
mE—-Aa=0, mij+mg—-ip=0 ,
IemB = £{Aasin® — Ap cos8)/2
In the last equation we substitute for A4 and Ap their expressions in terms of 4,
Aa = mi = —mé(sinf 8 +cosf 7)/2 ,
B = mg + mi = mg + mf(cosh § — sinf 6°)/2 ,

obtaining the same equation as in the elementary treatment. A4 and Ap coincide
with Fa and Fp of the elementary treatment.

S56.3 (i) .
) E = aé,/p, B = Bé,, F = g[ad,/p + B{—pés + pd&,)/c]
ii
m{p— p¢’) = q (a Bp¢>
m(p¢ + 259) = *;-—-'(p $) = ———p ;
mzZz=0 .
(iii)

L=m(p* + p*¢* + #%)/2 +qlaln p + Bp>$/2¢]
(iv) Yes. The Lagrangian does not depend on ¢ and 2

(v)

mp*¢ + qBp?/2¢c = ls + qBp® [2¢ = constant and z = constant
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S6.4
(i) 6p¢ = €k TToj a&L/aéak, (li) de. = C_lqbfijk'nixaj Ak

S56.5

With z = £ sin¢, ¥y = a cos(%) + £ cos ¢ the Lagrangian
L= (z*+9%)/2+ mgl cos¢

becomes

L =mf¢*/2 + mald¢ sin(§t)sin ¢ + mgl cos ¢ + a*Q?sin®(Qt)/2
This can be replaced by
L' =m¢*/2 + mal? cos(Qt) cos ¢ + mgl cos¢

since L — L' = dA/dt with A = —mafS) sin(§lt) cos ¢ + a?Q22 — sin(2Q1)]/8.
The Lagrange equation for L' is ¢ + £ [g + af¥* cos(St)] sin ¢ = 0.

S6.6
() L=mz?/2 —k(z— X - 0°/2
(ii)

g=1z + X, L=m(E?+ X*+2X&")/2 - k(' - 0°/2,

"= 8L/3%' = m(s' + X), ' =8L/8x', mE' = ~k(z' — &) — mX.
(iii) Add to the Lagrangian the term —d(mXz')/dt = —m(Xz' + X&'). Then
Lo L=m@E?+X%/2 —mXz' - k(z' - 0?2,

p = 08L/8:' =mi', p = OL/8x, giving the same equation as in (ii).

S6.7
(8L /8Q)dQ + (BL./3Q)AQ + (0L /0t)dt + a|(OL/Bq)dq + (BL/Bq)dq + (OL/Bt)dt]
=P dQ + Q dP +afp dg+¢ dp)
We find at once 8L./0t = ~adL/0t, P = 8L./0Q, and, using p = 8L/3q, we
are left with _
(BL./0Q)dQ + a(8L/8q)dq = @ dP + aq dp.
At this point, using Q = p, P = ag, and p = 3L/8q, we have P = 0L./3Q.

(ii) (a) L = —a(m¢® — kg°)/2 + agp + opd
Since p = mq, p = m§ = ~kq, ¢ = —p/k, this gives
+2 2 2 2 2 2
oMk _ P _a(Q_Q
L“‘“[z 2]‘“[2m 2k]_2[m k]
(b)

mQ = -kQ, mp = —kp, d(m§ + kq)/dt = 0.
(iii) (a)
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Lo == ~a(mq*/2 +k/la) +aq-p+ap-4
Using p = —kq/|q|® and p = mq, we find

2 2 .
L= +a (-2‘37;; - k;m) = -a (5%; -2y lei)

(b)
oL /60 = aEOn/1a} and B = BL. /80,
P, = 8L./8Q; = avkQ;/i1Q|* and P; = 3L, /8Q%s,
give
o/Fd(Q:/1Q1})/dt = —aQifm, aGps/ipi}) = —pi/mVE.
S6.8
(i) A" = A' + VA with A = Bzy.
In fact,
A’ + VA = —Byé, + B(yé. +zé,) = Bzé, = A"
(ii)
L' =m{z* +9* + 52)/2 +qEy — (g/c)Bys
L =m(&® +9" +£°)/2 +qBy+ (a/c)Bzy
(i)
L' — L' = dF/dt with F = (g/¢)Bzy = (g/c)A
(iv)

d(mz - qBy/c)/dt =0

d(my)/dt = ¢F - qBi/c ,
From the last, and the initial conditions, we have z = 0. From the first, and the
initial conditions, £ = (¢B/mc)y. Substituting in the second equation, we have

i +w2y =qE/m with w = |q¢B|/me

= (qB/muw)[1 — cos(wt)], & = (Ec/B)[l — cos{wt)], z = (cE/B)[t - sin(wt)}/w].
(V)
mi = (g/c)By ,
d(my + gBz/c)/dt = qE
mz=0 .

From the first and initial conditions, mz = gBy/c. Using the in second, we have
again §j + w?y = qE/m etc. asin (iv).

(vi) Assuming £ > 0 and B > 0, a proton (charge +e) is at time t on a circle
of center (Ect/B, Empc®jeB?) and radius Emyc? /e B*, while an electron will be
on a circle of center (Ect/B, ~ Emec® fe B?) and radius Em.c? /e B%. No wonder!
The proton’s trajectory is the cycloid (see figure 6.9)

g = (Emyc®[eB*)(r —sint) , y= (Empc’/eB>)(1 —cosT)
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Figure 6.9: Electron and proton trajectories

while the electron’s is the cycloid
= (Emec’JeB*)(r—sint) , y= —(Emec’/eB*)(1 —cosT)
From the equations and the initial conditions, we have
m(z’ + 4°)/2 — qEy = constant 5 0

Vmax = (2B/m)|q¥] o
S6.9
(i) While §¢ = ddg/dt, we have

_ e TEHAY) (@) gt At) —g(t)
Fq= lm @) Aim, At

Since df/dt =1+ dét/dt, for 8t infinitesimal this gives

g+ A —¢(t) déty  q(t + At) —git)
“‘A‘f-’-‘o[ At (I"dt)‘ At

_ s, dot dd'() .. . ast

=0- g g =iy

(ii) For K = c(q)¢* one has
o - dc w .2 s oW
JK—dqéqq +2cg 87g
de dét dét
=5 hd +25§(Jq ¢ dt) 5K - 2K S
On the other hand, §U = §"U. Therefore

i iy
= [ (6K — YAt = | (8"K +2K dét/dt —6*U) dt
f1

.31
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(iii) For isoenergetic variations, 8*(K +U) =0, #U = -§"K,

tq tg

0 =/ (20"K + 2K dét/dt)dt / 2K dt)=0 ,
£ t1

since d*dt = £(¢ + dt) — £(t) — dt = (di/de)dt — dt = (dét/dt)dt.

Then

0ﬂ6*f2Kdt=6*2/(E—U)dtw6*/2v’E—U(x/E}-—Usit)

mé’fﬁ\/E—U\/mj2vdt=§*/\/2m(E~U)ds

In chapter 1, equation (1.37), we wrote § instead of 4" in order to keep the
notation simple at that early stage.

S6.10 " , 1 ’
oL aL oL
—_— G = 8¢; + == A} dt =0
/tl ( ¢ ¥ o TTER )
afopy ey _, o _,
dt \ 3¢; 8¢ A ) N

The second equation is nothing but F(q,q,t) = 0. The first gives

d { 8L aL d JoF ar
?‘;(EI:)_EE-‘-H—#(AE’_(}:)MAEI—, =0

For the simple case F{q,t} = 0, we have
4 (3L) oL _, oF
dt aq, Oq; - dy;
as expected. The generalization to the case of r constraints F{q,4,t} =0
(@ =1,...7) is trivial.
S$6.11 One has

d /8L aL ¢ ..
7y ('5'&:) % +Aaizg; + Aaid; =0,

aijgiq; =b , @ijig; =0
Multiply the first equation by ¢; and integrate with respect to ¢ finding

aL .d {aL
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Since in the present case dL/dt = (ab/aq;)q.- + (OL/34¢:)g:, we have

d [ 9L
hA = /—-dt—/ q,dt /qut(a )dt

d /. oL oL
=L- fdz(a) =L-dizs
S6.12

@) L=m(3* +7)/2 — mgy = m[l + f'(2)°]&* — mgf(x)
and the Lagrange equation gives

_ @) (" ()& + 9)
1+ f'(z)’

(i) v = f'(z)&, f'(z) dz —dy =0
mé — Af'(z) = 0, mj + A = —mg and §j — f'(2)E — f'(z)s* =0
A= —m(j+ g) = —m[f'(x)E + f"(2)2* + g]
Use this expression for A in mi = A f/(z) etc.
(iii) mZ = Rg, mjj = Ry — mg, and so A = —Ry. One has also

Ri = m|f"s* + gl//1+ 7 .

=

Special case:
f@)==vVE-2%, f(z)=x/V/B =z =tand,
F(z) = /(8 — )} = 1/8c05%), & = €6 cosb
R{=m ("'-1‘— £6° cosd +y) 1+ 88 (g cost +8%)
3¢ cos?f ’
|IR| — mg cosf = méd? = ma, .
S6.13

(i) A: acceleration of M, a: acceleration of m, MA =7 — F, ma = mg — 27T,
where F is the friction force and T is the tension. Since a = A/2, we write the
second eguation in the form mA/4 = mg/2 — T. Summing to the first equation
we find

F=mg/2 —(M+m/4)A, T =m(g— A/2)/2.
(n) If £ is the length of thecord, £ =d—z+2y+ €, y=(z+ £ — € —d)/2,

= &/2, U = —mgy,
L=Mz?[2 +m§?/2 +mgy = (M + m/4)3®/2 + mg(z + constant)/2
6W = -F dz, d(3L/04)/dt - 8L/ds = Q = —F
(M +mf4)i ~ mg/2=—F, &= A, see (i)

(ii) From the constraint we have £ — 25y = 0 and & — 2y 0, this last to be used
together with the Lagrange equations

Mi+A+F=0 , mj—-mg—2)=0
Eliminating A we find (M 4+ m/4)% -~ mg/2 + F = 0. Clearly A = -T.
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S6.14
(i) L =m(R: — R2)*6}/2 + (mR3/2)83/2 — mg(R: — Ra)(1 - cos 1)
(if) L = (3m/4)(Ry — R2)*87 — mg(R1 — Rp)(1 — cos 61),

(3m/2)(R1 — R2)*61 = —mg(R1 — Rz) sin 6,
Frequency of small oscillations about lowest position:
w? =2g/3(R1 — Ry), T = 21w == 7+/6(R, — Ra)/g
(iii) L =m(#* +r262)/2 + (mR3/2)0%/2 — mg(R1 — r cos 6, )+constant
Constraints: r = Ry — Rz, (R; — R2)61 = R20:

mi = mrﬂf +mgcost + A1,
d(mrf&;)/dt = —mgrsin ) + A2{R1 — Ra) ,
mR302/2 = —Ry)a .

~A1 = -+ /N is the normal reaction. Since the first constraint implies ¥ = 0, we
find N = mgcosf: + m{R, — Rz)6%.
Az, from the third equation, is the frictional force.

S6.15
(i) Since dp = (z dz + y dy)/p, the constraint is a, dz + ay dy +a, dz = 0 with
ar = cosa z/p, ay = cosea y/p, a, = —(sin’a/cosa)z/p.

If the equations of motions are written as m& = —Aag, m§j = —Aay, and
mZ = —Aa, — mg, then A turns out to be positive (see (iii)).

(ii) By integrating p dp — tan’« z dz = 0, one finds p? — 2’tan’a =constant.
(iii) For constant = 0 we have a cone z* + y* — tan’a 2° = 0. The unit vector
cormal to the cone has components n, = cosa z/p, n, = cosa y/p, n, =
—(sin®a/ cos a)z/p. Then

mi - i = m[cos a(xE + yif)/p — (sin’a/ cos a)z3/p)

= mg(sin’a/ cosa)z/p — A cos’a — A(sina/cos’ a)z?/p* = mgsina — A

having used p = tana 2.

S6.16
z,y: coordinates of midpoint P, z;,y;: coordinates of point i (: = 1,2)
¢:: angle of rotation of i-th wheel, positive direction clockwise
i = ag; sinf, y; = -aqf),- cosf
Check: If ¢; increases, the point of contact moves left to right, z; increases,
7; decreases.

T = a:;-;—a:g =% sind (¢ + ¢2)
ﬂ=ﬂ%ﬂ=—% cosf (¢: + ¢2)

Hence dz = (a/2)sin 8 (d¢y + d¢s), dy = —(a/2) cos 8 (d¢1 + d¢2), from which

cosffdz +sinfdy=0 ,
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sin @ dz — cos @ dy = a(d¢1 + dez)/2
On the other hand, from 8 = tan™"[(y2 — 11)/(x2 — 71)] one finds

4o < @2 = @)(dyz — dy) — (y2 — 31 )(dz2 — dmi)
(z2 — 2:1)* + (32 — 1)’

= __% (d¢g — dg) = %d(qSl — ¢2) integrable, holonomic

All the above can be condensed as follows:
2= 41y, 2 = T; + iy;, u = exp(if), 21 = z — bu/2, 2z = z + bu/2
Rolling without slipping of each wheel: Im(u dz;) =a d¢;
Displacement of midpoint is normal to axle: Re(u dz) =0
Rotation of axle: df = ~Im(u d&) = ~Im(u[dz: — dz1}/b) = (a/b)d(¢1 — ¢2)

S6.17
(i) Assume the existence of two integrating factors f(z1, z2, p,¥) and g(z1, x2, 0, ¢)
for the two conditions. Write

Jdz1+0xdzs+0xde+ freospdy =0 ,

Oxdr +gdza+0xdp+grsinpdy =0

Write “curl= 0" conditions: 8f/8z3 =0, 8f/0p =0, 3f/OY = rcosp 3f/0x,
8f/0p reosp — fraing =0.

The second and the fourth imply f = 0, except for the trivial case ¢ = 0, rolling
along the z;-axis.

Similarly

8g/8x, =0, 8g/0p = 0, Bg/dY = rsinp 89/0z2, Bg/dyp rsine + grcosp = 0.
The second and the fourth imply g = 0, except for the trivial case ¢ = m/2,

rolling along the z;-axis.
integrable 2oro sero

”- I ot ~—
Rolling along the zi-axis: dzy +7r dy =0, dzz +rsingdy =0
Rolling along the z;-axis: dzy +rcosp dyy =0,de2 +rdyYy =20

e Nt b ~ d

aeto woro intagrable

S6.18 Using the expressions for the components of w with respect to fixed Carte-
sian axes (see (5.35)), we have

L = I[9® + ¢*sin®9 + (4 + ¢ cos9)’)/2 +m(s? +32)/2 +qEm
and the constraints
&1 —r(d sinp — 4 sind cosp) =0 (C1)

g2+ r(§ cosp+ 9 sind sing) =0 (C2)
Hence the equations

méE+A=¢F (1) mE2+A=0 (2) ,
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I(9 + ¢y sind) — Mir singp+ dor cosp=0 (3)
I+ @ cos9 — G sin¥) + Arir sindd cos + Aar sind sinp=0 (4) ,
d(@ + 1 cos¥)/dt =0 (8) ,
namely ) .
@+ 1) cosy — 49 sind (5)
Equation (5) tells us that ws =constant.
Multiplying {4) by cos ¢, and subtracting (3) multiplied by sin ¥ sin ¢, we have

A7 sin 9+71{cos g P+cos? cosp —sind cosp pd—sind sinp F—sin’d sing pP) = 0
Subtracting from this the time derivative of (C1) multiplied by ! sin 9/r, we have
sind (M7 — IZ1/r) + 1 cos cos? (G + ) cosd — ¢ sind) =0

which by (5') gives
)\1 = (Ifrz):'i:l

In a similar way we find Az = (I/r%)%..
Thus we have (7Tm/5)%1 = qE, &, =0, wy =0, and w2 = 5qE/Tmr.

$6.19 With w, =&, w2 = B, ws = 4, we have the Lagrangian
L=m(i? +23)/2 + 16+ 8 +4%)/2 + ¢Bx
with the constraints
Tr4ra=0 , & -r8=0
The Lagrange equations with multipliers A and p read
miy+pu=qgFk , miéz+A=0 ,

Ta+M =0, If—pr=0, I5=0

The first and the fourth give m#; + (I/r)3 = gF, and this, using the second
constraint, gives (m + I/r*)#, = qFE.

The second and the third give m#2 — (I/r)a = 0, and, using the first constraint,
2 = 0. The last equation gives w3 = ¥ =constant,
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S6.20

With & = wi, ,3 = w3, ¥ = ws, we have
L=m®*¢* +2%)/2 + I(6* + 8 +4%)/2 — bmg(1 — cos¢) ,

wy,=0a cos¢+[§§in¢ ,
we = —a sing + 3 cos¢
wy =9 .

Constraints:
bp+ay=0 , %+ad sinq’)—alli cosgp =10
Lagrange equations:
mb’p +bA = —bmg sing , mE+pu=0 ,

Iis+pa sing=0, If—pa cosdp=0, I¥+ra=0

Time derivative of constraints:

b +a¥ =0, +ad sing — af 08+ acd cosg +afg sing =0
We have )

da=—15=(bI/a)} ,
bim¢ + (I/a”)¢] = —mg sin¢ ,
pe = ~I(& sing — 3 cos¢) = I(3/a + & cos¢ + B¢ sing) ,
mi + (I/a)(3/a + & cosd+ (¢ sing) =0 ,
(m+1/a®)s = —(I/a)dw, .

From the third and fourth Lagrange equations we have & cos¢ + 3 sing = 0.
Hence

wp = (—d sing + 8 cos P)¢ = z¢/a
S6.21
L=m(i} + &} +3)/2 — mgas + [1(¢ sin®9 + 9%) + Ia(4) + ¢ cos9)’]/2
Constraints: £3 = r sind (holonomic), and the nonholonomic
i‘l = —r(f)z X w) . 61 = —-r(é1 x 62) W

= —r([b1 cosp + b3 sind sin @] x by) - w
= —r(ﬁa cosp — b, sind¥ sin @) w
= —r(§l3 cos — ) sind sinp)

and similarly
2 = —r(23 sin + O sind cosyp) ,
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where Q; = w - f).- (see problem 5.8).
Since Q; = 9 and §23 = ¥ + ¢ cos ¥, we have the constraints

dzy+r cosp dyy +r cosp cosddp —r sind sinpdd=0 ,
dzz + 7 sinp dy +r sinp cosd dp+r sind cospdd =0 ,

for the Lagrangian
L = m(&} + &35 + r*9? cos®9)/2 — mgr sind

+[ (67 sin0 + 97) + Ls (9 + ¢ cos9)’)/2
The Lagrange equations
aL\ oL
(32) ~ 5o 2 =0
L\ oL

(3)- 8ono.

d
dt
d
dt \ Ox2 Oz2
dL oL

(-3_1;) ~ 59 — A7 sind sing 4+ Agr sind cosp =0

(_6_1;_) - -g—fi + A17r cosd cosp+ Aar cos¥ sinp =0

4
dt
4
dt \ d¢
-ad; (g—-i) - g—i +Mir cose+ Aarsing =0 ,
give
mér+A =0 (1), mE+ A =0 (2),
(I + mr? cos’9)9 — 2mr?9? sindg cosd + mgr cosd
~N¢? sind cos? + Iswgp sind + r sind(~A; sing + Az cosp) =0 (3),
I sin9{p sin® + 20 cosd) + Iswy cosd
—Iswyd sin®g +7 cosI(A1 cosSp + A2 sing) =0 (4),
Isws + Mir cos + Agr sing =0 (5).
Differentiating

&y = -r cosgo(v,'b+¢ cosﬂ)+n9 sind sing ,

+

&2 = —r sinp(y) + pcosd) —rd sind cosp

we have
M =-—m# =mr(P cosp+ @ cosyp cos? — 3 sind sin

—¢np sinp— @* sing cos® — P cosp sin ¥ — 9% cos® sinp — @dsind cosp)
Ay = —miy = mr(t;b. sin 4+ ¢ sing cos?d + 9 sing €08 ¢

+ptp cosp+¢° cosp cos? — P sing sind +9? cosd cosp—@Isind sing)
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r sin9(—A; sing+ A2 cosp) = mr® sind( sind+@yp+¢° cosd+9° cos¥d) .
Therefore (3) becomes

(I + mr®)d + (Is + mr®)wie sind — [, sin? cosd + mgr cosd =0
Similarly we have
r(A1 cosp + A2 sing) = mr’ (P + @ cosd — 29¢ sindg)

and so (5) becomes _ )
(Is + mr")wé = mr2¢19 gin 9
Finally, using (5) equation (4) becomes

Iswid — 209 cosd — 11 sind =0

$6.22
§L=edA/dt + O(e?) with

L D SRR Bk )}
A_2[(j—iwq iwt ]n( o )]

_ 9L _i[- 4—iwg
I=¢ aq.&q A—21wt+1n( e )]

is an integral of motion.
For ¢(t) = A cos(wt + a), choosing C = —¢(0) — iwgq(0), one has I = a.

Hence

S56.23

i 98 .. 2
6L-48£dt(3 :z:y)+0(e)

Hence 3

oL AL Y .2,

I e— — Sy, | 2
I 6:&6x+63}6y 85(3 :ty)
= ef8y(y” — 36") + (5 + V3 &) exp(2(z ~ yV/3)
+(§ — V3 &) exp(2(z + yV/3)) — 2j exp(—4a)]
is an integral of motion. This integral of motion was found by Hénon.
In the limit of small displacements I ~ 12¢(xy — y£)(angular momentum

conservation), as one might expect since in the same limit

L=(&*+9%)/2 - (2® +4*)/2
is invariant under rotations.
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S6.24 (i)

dJmk/dt = (n/k)[—-i‘iitk + i‘265k — 2z + ¥ & + mka'i.-]
Using the equations of motion, we have

déxzi /dt = (n/k)[—&izx + (F* — k/mr)dix + kxizy /mrd).
With 6% = ddxi/dt, we have

8L = miidzy + k 0r~ ! = (2n/r¥)[—riii +r . F 23] = 5 d(=2zi/r)/dt.
(i) Integral of motion:
OL/Bky 6z — A = —2[—z; /v + max;|¥|*/k — mr . i /k] = —2nA;

S6.25 (i)

m(ds’ /dt' ) /2 — U(z' — ut') = m(dz/dt)*/2 - U(z — ut)
(ii) Since dt’ = dt, the action is also invariant. Using equation (6.31) with f =1
and g = 1, we have

I = mi(u—z) +mz’/2 ~ Uz — ut)

= m({ut — :i:”)/2 — U(z — ut) = constant
The reader who wishes to work from first principles may proceed as follows:

0=0L=0L/0x 6z +OL/O% é& + OL/Ot 8t = OL/0z eu+ 0~ 0U(x — ut)/0t €

= 0L/0z eu — e dU{z — ut)/dt + ez OU(x — ut)/Ox
But 8U(x — ut)/dx = 8(—L + m?/2)/0x = —8L/0z = —d(8L/d%)/dt, and so

0 = 6L = edlumz — Uz — ut) — mz?/2)/dt

S6.26

5%: (f“ 9%ai) + (fbt giei) + Lg

= Mafailfai — 9%Tai) + meToi (foi — gvi)
+gl(mats + mui3) /2 — U{jra — r3))]
= maxa‘lfas +mb3b3fb: - QE )

where E is the energy £ = K + U.
Space translations: fui = fri =1,g=0

MeLqei + Mpdp; = constant

(i-th component of total momentum conserved)
Time translations: fo; = fou =0, g = -1

E = (m,F2 + mpi?)/2 + U(jra — 13|} = constant

(energy conservation)
Space rotations: fai = €ijkTak, fbg = €ijkTok, § = 0

€jki(MaTakTai + MpTorEsi) = COnstant

(j-th component of total angular momentum conserved)
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$8.27

L = (ma#2 + myr})/2 = U(jrs = 13])
Consider the transformation r, = rs + €iit, 1y = ry + eiit, ¢’ =t + (¢/E)(mars +
mpty) - fi, where F = K, + K, + U is the total energy, treated as a constant. We

have
dr, dr, + endt
dt’ — dt 1+ (¢/E)(mata + msy) - A1)
~ (#s + €i)(1 — (¢/ E)[ma¥s + myiy) - 1)
{and similarly for b),

(and similarly for b)
K, + K~ Ko + Ky + €[l — 2(K. + K,)/E)(mats + mpts) - H
5[1 = (E/E)(E - 2Ka - 2Kb)(mai'a + mbi'b) ‘0 .
One sees at once that the action is invariant,

L dt+ Lédt=0

Hence the constant of motion
ol oL arL . oL
===+ =— ) enst - i + = L
I (Bzéai + a:.cb‘) en;i (aifas% + Oxb;wb') g+ Lg

= e[(Mata + meots) - 0it] — (2K, + 2K, — L)g
=e(MVt—MR)-n

S6.28
6L = qFe — (gB]c)ez = e dA/dt

with A = ¢Et — (gB/c)z. Then, according to equation (6.30),

oL’ .
B —A=mg+qBz/c - qEt

is a constant of motion.






Chapter 7

HAMILTONIANS

The evolution of a system with n degrees of freedom is described as the
motion of a point in a 2n-dimensional space, governed by Hamilton’s equa-
tions. These are of the first order in the time.

Canonical transformations are discussed at length.

The use of Cartan’s differential forms in providing a concise description of
mechanics is extolled with missionary zeal.

7.1 First look. 1

Using the notation of chapter 3, the Lagrangian

L=ai(q)0ig;/2 - Ulg) (aji = ay;) (7.1)
can be written more concisely in the form
L=4TAq/2—-U(q) , (7.2)

where the coefficients a;; may be functions of the coordinates.
According to the program outlined in section 1.1, we wish to replace
the Lagrange equations

d sy laa.-,-(q) s BU(Q)
dt(aqua) =3 00 YT TBg (7.3)

with first-order equations.
We note first that by inverting the equations

oL )
Pi= 5 = aji(q)ds (7.4)

145
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we have
G =a; P , (7.5)
where a;;' are the elements of the matrix A= 1,
Then we rewrite the Lagrange equations in the form
3a1:, 1 T a —1 8A _1 BU
== —p AT —A
( i m)aq (3jnp) - - 2P dax . © Ogs
i 1 TE)A‘1 oU
== - 7.6
Pr =3P 5P~ 5o (7.6)
Defining the Hamiltonian
H(p,q)=pTA 1p/2+U (7.7)
we have 8H (p,q)
. D, q
= ——2= 7.8
Dr e (7.8)
Going back to equation (7.5), we see that it can be written in the form
. _OH(p,q)
= — 7.9
gk o~ (7.9)
Equations (7.8) and (7.9) are Hamilton’s equations.
Example: L = me?/2 + k/r, A=ml, A~ =m™}|,
1 k
H = %p - with p=mr . (7.10)
Hamilton’s equations yield
b= _kZ =L
pi = _kr3 » &= —pi {7.11)

In spherical coordinates L = m(r* 4 r26% + r2sin8 ¢2)/2 + k/r,

m 0 0 1/m 0 0
A={ 0 m? 0 . ATl = 0 1/mr? 0 ,
0 0 mr’sin’g 0 0 1/mr?sin?4

1 1 . 1 k
H = (st +5pb 3) - - .
2m \P +r2p0+r2sm de’ r '’ (7.12)

Pr T
Do ¢

10f course, in general a, 1o (a,J) , although the equality may be true in some
cases for some matrix elements
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pr=mr , pp=mrid , p,=mrisin’0¢ . (7.13)
Hamilton’s equations
pr=—0H[Or , po=-0H/00 , p, =—-0H[0¢ (7.14)
give 2
. P k d, g,  cos® 5 .
M= s T MO = g P Pe=0 (7.15)

Since ¢ does not appear in the Hamiltonian - it is “ignorable” - the momentum
conjugate to ¢, pg, is a constant of motion.

Example:
The Lagrangian for the gpinning top can be written in the form
t, L 9
L=5(9 ¢ ¥ )A| ¢ |-tmgcosy , (7.16)
Y
where

I 0 0
A= 0 Iisin®9 + Iycos®d Iscosd
0 13 cogd 13
The Hamiltonian will be

1 af P
=§( Ps Po Py )A ! ( Py ) + {mgcos ¥ (7.17)
Py
with
/1 0 0
Al = 0 1/ sin*9 —cosﬂ/{lsinzﬁ
0 —cosd/Iisin®9 cos®9/Nsin®d + 1/13
Therefore
1, 1
H = 5T, P + YA Singg(p‘p py cos#)? + Pq, + fmgcosd . (7.18)

Since @ and ¢ are ignorable, both p, and py are constants of motion.
The Hamilton equation ps = —9H/88 for ps = 119 gives

5 _ _(po — py cos9)(py — py cos V) :
I8 = — 2) .
19 Tosin®0 + £mgsin g (7.19)

2From the identity i = 72 4 (r x #)2/r? one can write the kinetic energy in the form
K = mi?/2 + /2mr? = (p2 +12/r?)/2m. Comparing with the expression for K as
given by equation (7.12), one finds

12 = p3 +p3 /sin?0
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or, with the notation of section 5.4 {(p, = Iib, py = 61a),

(b —acosd)(a — beos¥) + ¢mgsin 9

v=- sin®y I (7.20)
7.2 First look. 2
Canonical transformations
Suppose we are given a system of Hamilton’s equations
Pi = —8H/8q,- 3 t}i = 8H/6p,- . (721)

We express the “canonical” variables p and ¢ in terms of new variables
P and Q, p = p(P,Q) and ¢ = ¢q(P,Q), and define a new Hamiltonian
K(P,Q) = H(p(P,Q),q(P,Q)). It is unlikely that the reader will confuse
this K with a kinetic energy.

Will Hamilton’s equations

P,=-38K/8Q; , Q;=0K/OP; (7.22)

hold?
In general, they will not, unless the transformation (p, q) = (P, Q) is suit-
ably restricted. Then it is a “canonical transformation”.

In one dimension, let us express P and @ in the above equations in
terms of p and ¢, and viceversa. Using the scalar transformation property
of the Hamiltonian and Hamilton's equations for H, we obtain the system

oP Op oP  9q\ .
( +6Q) +(55 aQ)” 0
8Q dp oQ -
(aq ap)"+(F’+a_ﬁ)” 0.

Regard this as a system of equations for p and ¢. Requiring that the
determinant of the coefficients be zero, we find

[QJ P]p,q + [Q!p}P’Q = 2 3 (7-23)
where 0Q 8P 8Q8P
P = —
(@ Plp,g 8¢ 8p Op Oq
and
dq p Oq Op

9.Plre = 303P ~ 3P 30
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As we shall see later, these are “Poisson brackets”. In the present one-
dimensional case, they are equal to Jacobian determinants,

Q, P)
d(q,p)

o= 292 - (327)" - (07,

Using this in equation (7.23), we have

@, P]p,q =

and

2
([Q’P]P,q) —2{Q. Pl +1=0
with the double root
Q. P, =1

With the Hamiltonian transforming as a scalar, equations (7.22) follow
from equations (7.21) if the Poisson bracket [Q, P], , is unity like that for

the identity transformation [g,pl, , = 1.
The transformation @ = p, P = —q is canonical, and so is also Q = —p,
P =q.

Generalizing to a system with n degrees of freedom, define the Poisson

bracket n
DA 8B 08A OB
A, B = -
4, Bly.q ,,z=[:} (3% Opr  Ops 3%)
[Qi’Qj]p g 0, [pivpj]p,q =0 ,
[Q'u Py ]p g 6:,1
A condition for the transformation (p,q) — (P,@Q) to be canonical is

[Qi,Qj]p,q =0 , [Pia Pj]p,q =0, [Qi’ Pj]p’q = 6ij

Let us consider a region “S” of the (p,q) plane bounded by a closed
curve “c”. If the transformation (p,q) = (P, @) is canonical, we have

_ [2@.P) _
Japae= [FESaar= [10.P), dpda= [dpaa |

}{ (pdg — PdQ) =

This last tells us that the integrand must be a perfect differential,

pdq_PdQ=dGl ’
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where the “generating function” is a function of ¢ and @. Thus

p= a_G_l s P = 8G1 (7,24)
g 8Q
In section 7.8 we shall encounter three more types of generating functions.
Example:
We check all the above on the harmonic oscillator, H = (p?/m + mw?¢?)/2,
Hamilton's equations p = —8H /8¢ = —mw?q, ¢ = 0H/3p = p/m.
Let p=v2mwP cos Q, ¢ = /2P/muwsinQ, @ = tan™! (mwq/p),
= (p*/m + mw?¢*)/2w = H/w. This transformation is canonical since
[Q, Pl, , =1 as is easy to verify.
Since the transformed Hamiltonian is K = Pw, Hamilton's equations read

P=_-9K/8Q =0 and Q=08K/0P=w

These tell us that P = constant, namely H = E = constant, and Q = wt + a,
g = A sin(wt + o), where A = \/2P/mw = /2B [muw?.
The generating function is

G\ = (muw/2)q* cotan@

In fact, 8G1/8¢ = mwgq cotanQ) = p and 8G1/8Q = —P.
In most textbooks, canonical transformations are introduced starting
from the Lagrangian. If @; = Q;(g,t), the Lagrangians L(q, ¢,t) and

M(Q,Q,t) = L(g,4,t) + dA(q,Q,t)/d¢

are equivalent. Differentiating we have

oM . OM oL . OL
5@76@,’ + P; §Q; + '-5';-—5!5 = —a-a:dq,' + p; 6¢; + 'é—tdt
d /OA
+a ("'—5Q£ SQ,‘SQ’ + _5t)
Equating coefficients of 6Q; and d¢;, we find
=8A/8Q; and p; =-9A/0qg;
Clearly A = —G4, but owing to the time dependence of the coordinate

transformation, the Hamiltonian does not transform as a scalar, but instead
K(P,Q) = P:Q; — M = H(p,q) — 8A /Bt

as is easy to verify.
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In section 6.4, equation (6.24), we saw that if ¢ = q(Q})
then p = (8Q /8q)P and p dg — P d@Q = 0. The transformation
(p,q) = (P, Q) is canonical since [@, P, , = (dQ/dq}(dg/dQ) = 1. In this
case, however, G; would seem to be zero and so equations 7.24 would give
p = 0 and P = 0. However, write G; = G, — PQ with Gy = PQ(q),
dG, = dG; — PdQ — @QdP. Then pdg — P d@ = dG; = 0 gives

pdg+QdP =dG,

This tells us that p = 8G, /8¢ = P 8Q/08q and Q = 8G2/8P = Q(q) as we
want.

Constants of motion
For a function f(p(t),q(t)) one has

df _8f. 8f. OfOH _8foH
at ~opP 97T "Bp g T g Bp

df
= =1H),, .

a formula valid also in more than one dimension. Hence f(p(t), q(t}) is a
constant of motion if its Poisson bracket with the Hamiltonian is zero.
Before proceeding, the reader should prove that

[A,B+C]=[A,B])+[A,C] , [AB,C]=[A,C]B + A[B, (|
and

1), Bl = L& 14 gy

For brevity’s sake, we omit the SubSCI‘lptS ‘p,q” in the Poisson brackets.
Using these formulae one finds

(i, 4] = €semr , [P 1] = €ijapi s iy 1] = €igule

where !; = €;j; ;P i8 the i-th component of the angular momentum.
We prove the last one:

iy 1] = €iav€jed [TaPo, TePa] = €iab€jod(dadTePo—ObcTaPs) = —tiba€ajcTcPbtEiabEbjdTaPd

= —(8;j0bc — 8icOb;)TcPo + (8ij0ad — 0iddaj)Tapd = Tip; — Tipi = eijily -
The important “Jacobi identity” for three functions (A, B, C)

[(4, B),C] + (B, C}, A] + ([C, A], B] = 0

can be proved by work. In section 7.14 we shall present a neat proof learned
from Arnold.
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The following is an important application. Let A and B be constants
of motion, so that
[A,H|=0 , [B,H]=0

Then the Jacobi identity tells us that [[A4, B], H] = 0, and so [A, B] is also
a constant of motion.

Example: If the components [; and [; of the angular momentum of a particle
are constants of motion {Hamiltonian invariant under rotations around z; and z;
axes), S0 is also their Poisson bracket [I;,{;] = €ijxlx.

7.3 H as Legendre transform of L

We pulled out of a hat the expression (7.7) for the Hamiltonian correspond-
ing to a Lagrangian which depends bilinearly on the ¢;’s. Some readers may
ask for a prescription by which the Hamiltonian can be constructed from
the Lagrangian.

The prescription is a simple Legendre transformation from the ¢;’s to
the p;’s.

Let A(x,z2,t) and B(y, z,t) two functions satisfying the relation

Az, z,t) + B(y,z,t) =ay . (7.25)

Partial differentiation with respect to x and y gives

84 _ B
6.5[7 =Yy ) ay ?

and with respect to z and ¢

@__8_A OB 0A
8z 0z Ot ot

Replace ? (x,y,2,t) by (4,p,q,t), A by L and B by H. We have at once

_9L | _OH oH _ 9L  d(dL\_ . OH_ oL
P=%i """ > 8¢ "¢ " a\dg) " P &t T &t
where the arrow denotes equality by Lagrange’s equation.
If there are several coordinates, then
H=pygi-L , (7.26)

3Omitting ¢, replacing (x,y,2) by (v=volume of environment, p=pressure,s=entropy),
A by (u=internal energy) and B by (—h=minus enthalpy), we have u ~ h = pv,
oufOv = p, 8h/0p = —v, Oh/8s = Bu/Bs(= T), as is known from Thermodynamics.
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oM . _oH OH_ aL

pi = aq; y 3 = 6pi ’ at = at

The reader should check that these formulae yield those in section 7.1.

Example:

Electron in time-dependent electromagnetic field.

L=mi*/2 — (e/c)i- A(r,t) + eV (x,t), pi = OL/Bd:i = mai — (e/c)A,,

H =pii; ~ L = pi(p; + (e/c)Ai)/m - (m/2)[(p + (e/c)A)/'m]
+(e/mc)A - (p+eAfc) —eV ,

(7.27)

__1 2 _
=5 [p+ (e/c)A] eV (7.28)
). S WY\
pi = az; m\"’ ¢ c O0z; eB:c; !
oH 1 e
xg—-é;i'——(pi'l'cfl;) 3
d € e. OA; v
— A = g 2T —_—
de (m:v, cA') ca:’ dz; eBa:,- ’
(2 _OA), | 0V c0d
s dzr; Oz )7 “oz; ¢ Ot

= —eE, e (e/c)e;jkd:jBk y
mr = —eE ~ (e/c)r x B
From the last equation we obtain
diK d m.2\ .
3 dt( g ) ==-er-E (7:29)

where the right side is the rate of work done by the electric field.
We now have

dH @8H. O8H, OH 0H aL

Tt~ e i Tl i P (7.30)
where we have used Hamilton’s equations. Thus
dH e. OA av av v oV,
F =G eg e (VB e = e Boe (G b pri)
dH d{K +U
at ( at L, (7.31)

where U = —eV is the potential energy.
The Legendre transform of the relativistic Lagrangian

L= —moc®y\/1 - (#/c)* — (e/)Aji; + eV

is the Hamiltonian

H= a\/mga'z +(p+eAfc) —eV
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Example:
According to equation (6.23) (but omitting the primes), the Lagrangian for the
motion of a particle in a rotating frame is

L = [mi® + mw*(z? +£2))/2 + mw(z1d2 ~ Tad)

Since p1 = m(&1 — wx2), p2 = m(&z +wx1), ps = ms, a straightforward calcu-
lation gives .
H = p?/2m + w(p172 ~ paz1)

or, expressing H in terms of the coordinates and their time derivatives,
H = m[i® — (2] + 23)]/2

It is easy to verify that Hamilton’s equations give m#1 = 2mwiz + mw’a
etc.

7.4 Liouville’s theorem

The conservation of phase space volumes under Hamiltonian flow will be
expressed in the next section in the language of forms as the invariance of
one of Poincaré’s integrals. However, we now wish to present the standard
proof, which is a generalization of that for n = 1 given in the chapter 1.

In an N-dimensional space, let x(t) = (z:(¢),...zn(t)) be the position
vector of a point P at time ¢, x(¢ + dt) the position vector at the time ¢+ dt
of P which has moved under a flow

x(t + dt} = x(t) + A(x(t))dt + ...

Let D(t) be aregion in the N-dimensional space at time ¢, and D(t+d¢)
the region occupied at the time ¢ + dt by the points of D(t) if they have
moved under the fiow.

The volumes v(t) and v(t + dt) of D(t) and D(t + dt) are related by the
formula

u(t + dt) = v(t) + ( divA da; (t). ..de(t)) dt +...

D(t)

Proof:
’U(t+d£)=_/ dz;{t + dt)...dzn{t + dt)
D{t+4dt)

_ / dx; (£ + dt)
D(t)

ax_f(t) dzy (t) - dm}v(t) .
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But now to the first order in d¢ the Jacobian determinant is

1+ (8A:1/0x1)dt (8A,/Ox,)db cen
(0A2/0x:)dt 1 + (A2/0x2)dt

0A;
—1+( ' -_Bx—;)dt-'-“'

If divA = 0, then (¢ + dt) = v(t) + O(d¢?).

In phase space (N = 2n), (z1,...zn) correspond to (g1, ... @n, P1 - - - Pn),
qi(t + dt) = q(t) + (OH/Op:)dt, pi(t + dt) = pi(t) — (BH/Bg;)dt, A has
components (8H/8p,...0H [Opn, —0H /8¢, ... — 0H [8gy). Thus

[0 (8H\ & [ 8H\] _
dWA“,Z [qu- (319.-) " b ( 3%)} =7

Remark: The Lagrangian for a damped oscillator:

Ozi(t +dt)
dz;i(t)

L=e"m@z* - wiz?)/2 ,

p = 8L/8% = mi exp(t), yields the Lagrange equation & + & + w?z = 0.
This can be replaced by the system of equations ¢ = A;, y = A,
with 4, = y and Ay, = —vy — w?s.

The area change in the (x,y) plane is determined by

8A, OA

=% 4 =Y _ _

Oz + Ay Y

On the other hand, working with the canonical variables p and z, since

& = Ay, p = A with A, = (p/m)exp(—t), A, = —mw’zexp(yt), the
area change in the (p, z) plane is determined by

' DA
94 9% _p40=0 .
Oz dp

There is no area shrinking in the (p,z) plane.
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7.5 Cartan’s vectors and forms

The purpose of this section is not to give a smattering of modern differential
geometry?, nor to pander to the mathematicians, but rather to introduce
the reader to a notation they have invented, which is as useful in Hamilto-
nian mechanics as vectors are in General Physics.

We define a yector U as a set of n numbers, its components U?, and
write
U=U ‘é,‘ ,

the €;'s being basis vectors.
A ]l-form @(e) is a linear function on vectors,

&(U) = number
A 1-form can be expressed as a linear combination of basis 1-forms,
G(e) = wiE'(e)
Assuming the orthonormality condition
&) =6;
and using the linearity of &(e), we have
o) = oUte) = Ula(&:) = Ulw; & (&) = wU*
For example, a force F is a 1-form, a displacement D is a vector,
F(D) = Work {number)
If F = F;& and D = z* &;, then
Work = F; ozt

So far so good. The reader may still doubt the usefulness of this notation
(why a bar rather than an arrow for vectors?). A mild shock may be
experienced when we say that a vector is defined as an operator acting on
functions on a manifold, roughly speaking a space, whose points are labeled
by coordinates z!,...z".

4 An excellent introduction for physicists is B.F. Schutz, Geometrical methods of math-
ematical physics (Cambridge University Press, 1980). See also W.L. Burke, Applied
Differential Geometry (Cambridge University Press,1985), and M. Crampin and F.A.E.
Pirani, Applicable Differential Geometry (Cambridge University Press,1986).
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I f(z!,...z") is one such function, then

of o e O - 0
B ,andso U =U 3t and &; = 5

The followmg application of this definition of vector is specially useful.
If (z'(£),...zV (t)) is a curve in our space, and U* = dz*/dt, then

Uf=U"

da? af df

Uf =4 at 6F  dt

This is the rate of change of f(z! ...z") along the curve, taken at the point
of coordinates z*(t).
The basis 1-form é*(s) will now be written as

&i(e) = da'(s) ,

so that the condition &%(g;) = &; will now read {greater shock?)

d\ _
dz’ (3:09) = &}

A useful 1-form is the gradient

dh(s) = 2% di(s)
Oz’
where k is a function on the manifold. The standard example is
h=height above sea level, {z!, %) coordinates on a map etc.
If 6z are the coordinate changes in an infinitesimal displacement, define
the vector

- e,
' i
oz = 6x o

Then
Oxi Oz’

giving the change of h corresponding to the displacement.
What does this have to do with Hamiltonian mechanics? Let our man-
ifold be the phase space with coordinates p;, g;.
Define the “Hamiltonian vector field”
8 b7}

(-]:Up‘-gg-f-Uq;% s

dh(Fa) = oo bt ( 9 ) = Oh syt

(7.32)



158 CHAPTER 7. HAMILTONIANS

where
oH oH

" ops
Let f(p,q) be a function on phase space. Then
dt dt 8p; dt Og;

OH 8 8H & _
= | — - U
( dq: Opi + ap; 5‘1;) ! f

If A(p,q) and B(p, q) are functions in phase space, the expression

0A8B OBAHB
4. Bl,.q Z; (3%' Op; Op; 3‘1;)
is, as we know, a Poisson bracket. Clearly df/dt = Uf = [f, H]. We
already know that a function f(p,q) is a constant of motion if its Poisson
bracket with H is zero, [f, H] = 0.

We now proceed to define a 2-form as a function on pairs of vectors.
For example, the product (cia:" ®dz?)(e, ) is a 2-form which, acting on two
vectors U and V yields

(da* ® do? ) (U, V) = (d=*(O0))(dz? (V) = UV

We shall make use of a special kind of 2-forms, the “exterior” 2-forms
&%, which are antisymmetric,

& =det Ade? = do' @ da’ — da? @ d'
go that o o o
@0, V) =UtvI - yiv?

If U and V are vectors in the z'z? plane (figure 7.1), then

(de' Adz?)(U,V) = U'Vv? — U%V! = area of parallelogram

The following in small print will not be needed until later.
Generalizing we define an “exterior” m-form as an antisymmetric function on m
vectors,

a)m(Ul...Uj...Ui...l—Jm)'—'"G)m(ﬁl...Ui...fjj...gm)
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Figure 7.1: Area of parallelogram

L)
x

4
x

Figure 7.2: Volume of parallelepiped

Basis m-forms are

dz'! Ade™ .. Ads'™ = Z(—)Ptfa:i‘ ®dz'? ... @ds'™
P

where P denotes permutation of the indices.
Example: In 3-dimensional space

vt v U
dz' Ade® Ad* (O, V, W) =| V' v? 3
w w?* w?

This is the volume of the parallelepiped shown in figure 7.2.

In an n-dimensional space, @™ = 0 (m > n). In fact, any basis form will have
two or more indices with the same numerical value, and will vanish because of
the antisymmetry.

The wedge product of two exterior forms, ®" A &*, is an exterior form with
r + 8 slots. For our purpose it is sufficient to say that
@" A (a@°® +bi') = al” A" + bo" A&, and that the product of two basis forms
is

(dz* AL Ads'" YA (dz* AL AdD® ) =dz* AL AdD' Ade AL A dZ®
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A few words about the operator d. This is defined to act on an m-form

@™ = Y fiinds AL AdT (7.33)

$1.09m

by generating the (m + 1)-form

jmo_ a . . Jond j .3 3. 5m
do™ = Z (5;;,’.,....,“) do’ Adzh Ado'™ (7.34)
Jitedm
Note that .
di=0 . (7.35)
In fact
ddo™ = Z -iz—f- iV do' Ade’ AdD' .. Ade'™ =0
= AT O $1im =

iji1...im

because the double derivative indices (symmetric) are contracted with those of
dz’ Adz’ A ... (antisymmetric).
We now define the 2-form

@ =Y dp; Adg, (7.36)
i

operating on pairs of vectors in phase space. If V and W are two vectors,
then
GV, W) =Y [(dpV))(dgi(W)) = (das(V)) (dps(W))]
i

is the total area of the projections of the “parallelogram” formed by V and

W on the planes (p1,q1), ... (Pn,qn).
Let us fill the first of the two slots of @&?(e, o) with the Hamiltonian vector
field U, equation (7.32). Thus we obtain the very important equation

(U, o) = —~dH(e) . (7.37)
Proof for n = 1: Remembering that dp(d/8q) = dg(8/8p) = 0, we have

3H£+8Hi .
Bq 8p Op Oq’

(0, %) = (dp A dg) (-

OH - OH - .
= ——d — —d = —dH
o da(e) = Todp(e) = ~dH(s)
The following section 7.6 is included for completeness. It is not necessary
for understanding section 7.7.
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7.6 Lie derivatives

The following is a pedestrian definition of Lie derivative.
The Lie derivative L 7 of a geometrical object such as a vector, tensor, or
form, is the change undergone by that object when “transported” through
As along the vector field A, divided by the infinitesimal parameter s.

If f(x) is a scalar function,

Lz = [f(z! + A=) 5,..) — f(z',.. ))/s

_ 40l _
Ly=Agh=Af() . (7.38)
If B is a vector,

LB =[B(sz') — B(z)]/s ,

where

_ . o
N e RE(! .
B(x)—B(x)Bx“ .
. 5 8  8Ai@) O
o 4 Al 2 - _ 2 2
't =zt + A*(x) s+ O(s°) iy sl e sl + O(s%)
Therefore 5B a8 3
5 (9B 4 _ 94 g}y 2 | _
LB (axf A - o B) o (7.39)

If @ is a 1-form,

oY L N N T _a_“ﬁ_ i %4 314‘ ~ s
@(z') = wi(z") dz —w(:c)+(axj Als) dx* + wy wsda:’ ,

and so 5 947
5= (Y% AF 4w 2 daf
Lz = (6:1:3' A7 + wy 51..') dz* . (7.40)
It may be interesting to verify equation (7.37). Show first that the Lie

derivative Ly of ©® = dp A dq is zero,

Lpa® =0 . (7.41)
Then, since J{b"’ = de'p A dg) = 0 and Lp&? = 0, using the general formula
L6 = dio(A)] + (do)(A) (B.F. Schutz, loc. cit. eq. (4.67), p. 142), we

have 3
dl*(U,e)] =0 .

Since dd = 0, this agrees with equation (7.37).
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7.7 Time-independent canonical transforma-
tions
The “canonical variables” (p;,q;) are not unique. A time-independent trans-

formation to new variables (P;(p,q),Qi(p,q)) is a “canonical transforma-
tion”, and the new variables are also “canonical”, if

ngi' A gq,- = ZJP; A IEQ, . (7.42)
] ]

Filling the slots of equation (7.42) with two phase space displacements
6(1) and 8(2), the condition for a transformation to be canonical reads

> (6WpisPlg; ~ s g6 py) =3 (6 PP Qs — M Q6P Py
: ;

It is given in this form in several textbooks.
Hamilton’s equations are invariant under time-independent canonical
transformations,

__oH p,q) _9Hpa9)  ,__9K(PRQ) 0, = BK(P,Q)
! 0q; ' Ap; ' 8@, ' ep

with K(P,Q) = H(p(P,Q),q(P,Q)).
Proof: We know that

> (dp: Adgi) (U, ») = —dH (p,q)(s)

with

0=2(_8H(p,9) 9, 2H(p.q) 3)

; og; Bpj Op; Og;

Expressing dH in terms of the new variables,

dH = Z (akgg K (2.Q) Gp. aKggJQ)dQ,) ,

and using equation (7.37), we have
S (@dP: A dQi)(D, #) = —dK (P, Q)(s)

Hence oK oK
Un=-3q, » V=3p
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Example: The transformation P; = —g;, Qi = p: i obviously canonical. Note
the minus sign!

Example: Coordinates in a plane, (p1, z1)(p2, %2} = (pr,7)(pe, 8).
We have

r=+/z}+1z2,0=tan""(z2/71), 1 =7 cosb, T2 =r siné,
Pr = (pim1 + P2@2)[\/a + 23 , po = maps — 721,
11 = prcos — (pg/r)sin b, p2 = p,sin 6 + (pe/r) cosb.
Using these formulae, and performing a few differentiations, it is easy to verify
that
(fpl A dzy + Jpz Adzy = Jpr Adr +Jpa A do

7.8 Generating functions

In the above two examples we expressed the new canonical variables in
terms of the old, and proceeded to verify that EiJP; A dQ; was indeed
equal to Ein; A Jq;.

Suppose now that we have formulae expressing p and P in terms of ¢ and
Q, p=plq,Q), P = P(q,Q). (For simplicity’s sake we confine ourselves to
one dimension.) Then, substituting

o %) opP .
dp = pdq +

QdQ dP = —dq+ QdQ
in JpAJq = JP/\JQ, we find
ag dQ A dg —wdq/\dQ , %2‘%?
If the functions p = p(q,Q) and P = P(g,@Q) can be expressed in the
form 3G, G,
p="t  P=-35 (7.43)

where the “generating function” G, is a function of ¢ and @, the relation
Op/8Q = —O0P/dq is satisfied, and the transformation is canonical.

For the canonical transformation Q@ = p, P = —g¢, the generating func-
tion is G = ¢Q.

Example: The generating function

= (g’ cosa — 2¢Q + Q* cosa)/2sina
yields
_9G: _geosa—@Q P _0G: _q—Qcosa
8q _ smna ' T 8Q  sna

3
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namely the rotation
QQ =qgcosa—psina , P=g¢gsina+pcosa

in the (p,q)-plane. For & = ~7/2, G1 = qQ, Q = p, P = —q. There are
altogether four types of generating functions as listed below:

G](Q,Q) p= BG;/Bq ’ P= -aGi@Q
Ga(g,P)| p=08Gy/0q, Q =8G,/8P

Ga(p,Q) | g= —8G3/0p, P = -0G;3/8Q
Ga(p, P) | g=-0G4/0p, = HG4/BP

Note the following relations, which can be easily verified:
pdg - P dQ = dG, = d(G, - PQ)

= d(G3 + pq) = d(G4 — PQ + pq)

This string of Legendre transformations is analogous to the well known
Thermodynamics relations

T ds — p dv = du(s, v) = d(h(s,p) — pv)

=d(f(T,v) +Ts} =d(g(T,p) + Ts — pv) ,

where v is the volume of the system.

The generating functions G, and G, are rather special.
What is special about G? Just that
0G, v 060G,

dG1=a—qdq+%dQ=pdq—PdQ . (7.44)

A transformation is canonical if the difference between the action elements
2_:pidgi(e) and Y, PidQ;(e) is a gradient dG, (s).

The special role played by G(g, P) is due to the fact that the identity
transformation F; = p;, Qi = ¢; (1 = 1,...n) is induced by G, = ¢; B,
where we start using the sum convention of equal indices. Therefore a G2
generating function is convenient to describe infinitesimal transformations.

For the moment, consider

G2 = (i + 0¢:)(F; — 0ps)
with dg; and dp; not necessarily infinitesimal. This yields

G, oG,
2 T e— P. J— '. ’ i _— — : :
= B i —opi , Q op, ~ % + 0q;
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For a particle, G = z;F; + 6G> with dGy = P; éa; and 0G2 = —x; 6b;
generate the translation X; = x; + da; and the boost P; = p; + 0b;, respec-
tively.

For both coordinates and momentum components, an orthogonal trans-
formation with coefficients a;; satisfying ariar; = d;; is induced by

Go = agjqi P

In fact, Q; = 8G2/OP; = ai;9; and p; = 0G2/0q; = asi Py, or, inverting by
use of the relations for the a;;’s, P; = a;;p;.
The inversion @; = —q;, P, = —p; is given by the above with
ai; = —by;, 80 that G§™) = —G49,

It is easy to show that Gy = z;P; + 8G2 with 6G2 = da €T Ping
generates the infinitesimal rotation

Xi = z; — dox €41 ing, Py = pi — 0o €505k

In general, infinitesimal transformations about the identity are induced

by a generating function of the form

Gy = ¢;P; +6G(q, P)

Then oG 860G oG 806G
] ——.2- T : — . == .—2. e o —
and so

Pi=pi+6opi , Qi=aqi+0dg

with dp; = —80G /8q; and é¢; = 306G/ B PF;.
The Hamiltonian flow (p(t), g(t)) — (p(¢ + 82),q(¢ + dt)) can be regarded as
an infinitesimal canonical transformation with generating function

G2 = q(t)p(t + &) + H(p(t + 8t),q(t))ot
where H (p(t+4t),q(t)) is obtained from H(p(t),q(t)) by replacing p(t) by p(t+4t).

In fact, ‘
p(t+4dt) = -(%% =p(t) - ayﬁ(.g(,:; L a(t)) 5,
~ dH(p(t),q(t))
= p(t) - Ba(1) ot

and similarly for g(¢ + d¢).
Consider now a function f(p,q). Its change if p and ¢ are replaced by
P =p+ épand Q = ¢ + ¢ with ép = —06G /8q and 6Q = H4G/IP is

af 06G(q, P) Of 86G(q, P)

6f = fp+0pg+60) — f(po) = —5 = =+ 5-—3p
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_ _0f86G(q,p) 8f86G(q,p) _

Here [f,0G(q,p)] is the Poisson bracket of f(p,q) and
6G(q,p) = 6G(q, P)|p_,,- In particular, dp = [p,dG] and dq = [q, 6G].

It is interesting that G2 = da I, with | = |l| = /12 + 13 + I3, generates
infinitesimal rotations about 1. In fact,

; dz; Ol al ol ol 1
[ws,l]=2(6$ o o )=“"-='—k.—=if='a‘wa' )
k

dzie Opx  Opi Oz

l
[P"l] = -ic' €i;kPj » [lhl] =0 .

Hence X-; =+ S [:lt,‘,l] =T; — do e.-jk:c,-lk/l, P.’ = Pi -+ da [‘pi,l]
= pi — 8o €ixpili I, Li = L.

If the Hamiltonian is invariant under an infinitesimal transformation,
then the corresponding dG(q, p) is a constant of motion. In fact,

d6G/dt = [6G, H] = —6H =0

Therefore, if the Hamiltonian of a particle is invariant under a space
translation in the direction of the unit vector fi, the component of the
momentum in that direction is a constant of motion; if it is invariant under
rotations about i, then the component of the angular momentum 6. 1lis a
constant of motion.

7.9 Lagrange and Poisson brackets

In the condition Eicfp;/\ dgi = E,-JP,- AdQ; for time-independent canonical
transformations, let us express p; and ¢; in terms of the new variables (P, @).
Defining a Lagrange bracket as

— _ 8qi Opi _ Oqi Bp;
{A! B}p,q - {B? A}pﬂ - Z (BA aB aB 3A) ] (7'45)
we find
> Qs Qu}QuAQ;+{ Py, P}dPAIP+2{Q;, Pe}dPendQs] = 2y dPindQ: .
ik i

Hence the conditions for a transformation to be canonical

{Qi @k}, , =0, (P B}, , =0, {Q, P}, , =i - (7.46)
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The identity transformation @; = ¢;, P, = p; {1 = 1,...n) satisfies these
relations.

We shall show that the above conditions for Lagrange brackets are equiv-
alent to the conditions

[stQk]piq =0 t [R); Pk]p,q =0 ¥ [Qja Pk]p'q = Uik (747)

for Poisson brackets, also satisfied by the identity transformation.

Proof: Put #3-1 = g, x2i =pi (i=1,...n) (21 = q1,%2 = p1,. . - Tan—1 = qn,
ZTan = pn) and define the symplectic metric ¥ ogre13 = +1, @izic = -1
(piz=l,gnn =-lLgaa=1, 93 =—1,...,
all other gi; being zero}),

( o 1 0 0 ..
-1 0 0 0 ...
0 0 0 1 .
G={lgsll=] 0 0 -1 0 (7.48)
o 0 0 0 ...
The Lagrange bracket {4, B}, , can be written as
dz; Oz;
{ABL,=D si5155 (7.49)
i
and the Poisson bracket [4, B}, = as
8A OB
[4,B],, = Z %5 Ba; (7.50)
i
Put now Xsx-1 = Qx, Xox = Py. Then
Z{X;?Xi}p‘q{xh Xj }p,q = J*j * (7'51}

5The condition

Z{g{umgzsq{ — 5N q8Pp,) = 2(5(1} P62 Q; — 60 R)
i i

for a transformation to be canonical, can be written concisely as

Zg‘,ﬂ(z)wﬁs(z)% = Zg;;ﬁmxiémxj )
if i



168 CHAPTER 7. HAMILTONIANS

In one dimension

- 9Qar 9PoQ _2Q.F) _ -1
{q,p}P,Q‘_ aq ap aq ap - 3(@;?) —([Qr ]p,q) H

and so
'{qﬁp}P,Q{Q} P]p,q =1.
The proof is straightforward, we only have to use GTG = | (3. GabGac = d.) and

Ea(awa/aX,-)(an/Bm.,) = 15;_.,'.
Using (7.51), we find

> ({@n QM@ Qi +{PLQIPL Q) =65
i

zero — Z!sil{Pthl =85 , [Qi Fs] =6y
!

Similarly we find the other Poisson brackets.
The reader can easily show that the Lagrange bracket of two functions
(4, B) on phase space is invariant under canonical transformations, namely

{4,B},,={A,Blpq
and so is also the Poisson bracket
[4,B),,=[A-Blpg

Therefore from now on we omit the subscripts (p.q), and write simply
[A, B] for the Poisson bracket of A and B.

7.10 Hamilton-Jacobi equation revisited

Let H(p,q) be the (not explicitly time-dependent) Hamiltonian of a system.
Perform a canonical transformation from (p;, ¢;) to (P;, Q4) with generating
function Ga(gq, P) = S(g, P) such that the new momenta are constants of
motion, P, =0 (i =1,...n).

Since P; = —8K/8Q;, where K(P,Q) is the transformed Hamiltonian,
P, = 0 requires that K be a function of the P;’s, but not of the @;’s,
K = K(P). We have also K = H(p,q) = E.

Let P, = E, and P; ( > 1) (n — 1) more constants of motion. Then

Gg(q, P) = S’(q, P1 = E, Pg . .Pn) . (752)

Since p; = 8Gs/8q; = 85/8¢:, substituting in H{p,q) = E we obtain
the Hamilton-Jacobi equation

aS
H ("5‘;;, q;) =FE . (?53)
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What about the coordinates J; conjugate to the F;? From the equations
Qs = 8K [8P;, since K depends only on the P;’s, and these are constants
of motion, we have that all the ¢;’s are constants of motion. Note that
Q1 = 8K/3P1 = 3P§/6P1 = 1. For i > 1 we have Q.‘ = 6P1/3Pi = 0.
Therefore ; =t — to, while Q,...Q, are (n — 1) constants.
We have collected the right number (2n) of constants of motion, (n) P;'s
(including the energy), Q@ =1, and (n — 1) Qy's (i > 1).

We have the equations dS/OE = 8S/0P; = t —t and, for ¢ > 1,
0S/8P; =

Going back to chapter 1, equation (1.21) (¢; — ¢; == 8S5(q2, q1; E)/3FE) agrees
with ¢ —~ ¢p = 3S/0E, and there is only one P;, P, = E.

In the two-dimensional example in section 1.6, P, = F and P; was denoted
by a. (In most books the P;’s are denoted by «;.} We have also

Q2 = 3S}8P; = 8S5/0p,,

Q:=z-p; [1,/2‘{;1(157} - Eg)— \/2m(E - B, - mgy)] Jm?g

= I — oz [Voy + gt ~ Voy]/9 = vozl — vo.,t =0

Q)2 is indeed a constant, which in this case happens to be zero.
Returning to the general case, we now state that

= / S pida (7.54)
]

where the integral of the 1-form }.p; dg; is along a trajectory “c” in phase

space from (po, 90) to (p,q).
We must first define the notation, which is also necessary for later use. Divide

“c” into intervals, each of which is represented by a vector
- ij i)
ds = dgj = + dp; —
Jz_( e + i)

Do not confuse the numbers (dg;, dp;) with the 1-forms (dg;, dp;).
In (7.54) dg; stands for

dgi(ds) =) [deJQs‘ (%) + dp;dg; ( 29; )]

J

=" [dg; 8; + zero] = dg;
i

Thus

D
S(p: q, Po,qO f Z pidg; = / Z pig; dt
p Po

0190 |, :00 ‘
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¢ t
=/(L+H)dt.-=/i;dt+E(t—ta)
t

0 to

Then for an isochronous variation

&L

t
88 = 6Ldt+(t-—to)6E‘=[ T

to

t
to

= Z pi(t)dgi(t) — Z pi(to)dgi(to) + (t — to)0E
8 i

This tells us that

os_ 8S __ 3S_,
aqi""p’s ¥ 30{3.'— Poi H] 3t -

7.11 Time-dependent canonical transforma-
tions

They leave invariant the 2-form &2 = Zﬁp; A Jq.- —dH Adt,
&*(P,Q, K, T) = &%(p,q, H,t) , (7.55)

Z(Jﬂ/\&'@.- 35, dP /\dTu--gQEdQ,AdT)
)

i

~ = 8H - - 0OH - »«)
= dp; Adg; — = dpi Adt — — dg; Adi
};(p @ = 5 dp 5, :

where H(p,q,t) and K(P, @,T) are the Hamiltonians.
This is equivalent to the condition

S (vidas — PidQ) - Hdt + KdT = dG, (7.56)
i
which is an extension of equation (7.44) to the (2n + 1)-dimensional phase
space (p;,qi,t). If T = ¢, then

oG aGy
8t

From Hamilton’s equations in terms of the old variables
dpi - O0H dq,- - oH

dt ~— 8¢ ' dt ~ Bp;’

K=H+ (7.57)
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follow those in the new variables
dF; _ oK d@¢; 8K
dr = 8Q; ' dT ~ 8P’

Formal proofs will be given shortly (see section 7.13).
Example:
Galilean transformation for a free particle, q; = =i, Qi = =} (i = 1,2,3) etc. ,

r=r-ut, p’=p—mu, t'=t, H3P2/2m, K=P’2/2’m'
Note first that
H=p’/2m = (p + mu)’/2m # K =p"*/2m

We verify that equation (7.55) is satisfied. Since H and K depend only on the
momenta, we have

> " (dp} A dz} — (8K /9p})dp} A dt)
= Z((ip,‘ A (Ja:, - uiét) - m_l(p.' - mu;)dpg A d~t)

= Z(Jp; Adz; —m 'pidp; A dt) = Z(Jp; Adz; — (OH/3p;)dp; A dt)
§ i

Equation (7.56) is satisfied if we take

!

G’l(r,r',t)=(r—r’)-p’+mu-r—mu2t/2—u-pt

In fact
@w ‘+mu-—- . gg_l———’.
T = Ps i =Di 617: =-D ,
%:—muzﬁ—u-p':}{—H

7.12 Time-dependent Hamilton-Jacobi equa-
tion

If the Hamiltonian H depends explicitly on the time, we perform a canonical
transformation with generating function Ga(q, P, t) = S*(q, P,t) chosen in
such a way that the new Hamiltonian K vanishes.

This means H + 8G, /8t = K = 0. We still have p; = 0G2/8¢;. Hence
the Hamilton-Jacobi equation

H8* aS*
H(Et}:,qi’t)_*- 5 =0 . (7.58)
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Since K = 0, = —-8K/0Q; = 0 and Q,— = 8K [8P; = 0, and so the new
coordinates and momenta are constants of motion.

Equation (7.58) is a first order differential equation for a function of
n + 1 variables, the ¢;’s and t. Therefore we would expect S* to depend
on n + 1 constants of motion. Of these, n are provided by the P;’s, while
another can be the value of S* at some particular time, S*(qoi, Pi, to)-

If H does not depend explicitly on {, the relation between Hamilton’s
“principal function” S* and Hamilton’s “characteristic function” S is

S*=S-Et . (7.59)

Like S, S* is related to the action integral,

S*(Q;%;f,ta) == /Ldt 3
c

where “c” is the trajectory. In fact

dS* o5™ S* .

=2 5ar i sz*?e S =2 pi—H=1L
i ¢ i

Example: Suppose for a particie of mass m we are given

5*(g, P,t) = (poa ~ pot/2m)8(~t) + [(po + P)g — (po + PY’t/2m}6(t) ,

where pg is a constant, and 8(£) = 1 for £ > 0, =0 for £ < 0. We have
p=05"/8q = po+ PB(t) and Q = 85™ JOP = [qg — (po + P)t/m]6(t).

Thusp=pofort <OGandp=po+ P fort >0

On the other hand, @ = 0 for ¢ < 0 because 6{t) = 0, and so, being a constant of

motion, @ must be zero also for ¢ > 0. Hence ¢ — (po + P)t/m =0 for ¢t > 0.

Here is clearly a particle of mass m with momentum pg for ¢ < 0, receiving an

impulse P at t = 0, after which it moves with uniform velocity (po + P)/m.

Now 2
1 [85"\* a5
553(&@?) MY
= ([poB(—t) + (po + P)B())" — pob{—t) — (po + P)*6(t))/2m
~(pog — Pt/2)8(t) + [(po + P)g — (po + P)’t/2m]é(t)

Since 8(—t)8(t) = 0 and £ 4(t) = 0, we find

1 (85" a5
z_m("é?) Ulg, e+ =0,

where U{g,t) = —Pq é(t), the potential energy for an impulsive force P#(t).
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We want also to check the invariance of &*:

dpAdq—dH Adt =dP AdQ — dK Adt

The right member is zero, because P and @ are constants and K = 0. Substituting
P=po+ P9(t) and H = p* /2m Pq&(t) in the left member, since dp = P&(t)dt
and dt A dt = 0, we find P&(t)dt A dg + zero + Pé(t)dg A dt = 0.

7.13 Stokes’ theorem and some proofs

First a bit of mathematics. In section 7.5 we saw that the operator d acting
on a 0-form (a function) A yields the 1-form dh(s) = ¥ ,(8h/0z%)dx (s).
The action of d on a 1-form is defined as follows (see equation (7.34)). If

G)l(o) = in(a}] oo .x")Ja:‘(O)
1

is a l-form, then

2X; 4

dis'(s,9) = 8.-1:; dad A dz'(e, )
i,j
For instance, in three dimensions
d(Xdz +Ydy + Zdz)
8Z 9Y 80X 0Z 9y 9X
_(aua)d Adz + (_6-:'5_“_6-;)dzj\dm (—a;wa)dxl\dy ,

which corresponds to the elementary vector calculus operation

oz _ov

curlV = (Ey—— EPIRRRTEEE

) if V=(X,Y,2)

It is apparent that if @! is a gradient, X; = Oh/Oz, then, combining
in dio! a pair of terms (8.X; /BxJ)de Az and (X ;/0z)dx* A zF we have
[(82h/ B2 8xt) — (8%h/Ox'Oxi))dx? A dz* = 0. Thus,

if &'=dh, then di'=dh=0 |,

which corresponds to curlgradh = 0. We already know from (7.35), i
general d? = 0, the double application of the operator d gives zero. We
shall encounter later n-forms @". These will be defined so that d2&" = 0.
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A special case of Stokes’ integral theorem can now be expressed in the

following concise form:
j{aﬁ = /d’o‘ : (7.60)
c S

where “c¢” is a closed curve, and “S” a surface having “c” as boundary.
The left side simply means that we must fill the single slot of &' (e) with

the vectors ds defined in section 7.10. The right side means that we must

fill the two slots of div! (e, ®) with pairs of vectors (ds,ds), each pair forming

two sides of an infinitesimal parallelogram of a set covering all “S”.

In three dimensions, with @' = Xdz + Ydy + Zdz,

faﬁ =f(xdz+yd'y+zciz)(ds) =f(Xd:r:+Ydy+Zdz)¢> %V-dr :
C C C [

_— 92 Y\ .. o
de -L[(ay 3z)dy/\dz(ds,63)+...+...]

0Z oY .
_/S[(-@-—B:) (dyéz—dzé'y)+...+...}@./scarlv-nd}i

In our extended (2n + 1)-dimensional phase space, if

while

@ = ZP:'JQ:' — Hdt |
i

then
do' = dp; Adg; - dH A dt = &*(p, q, H,t)
$

Note that ) ) ) ) )
dy>; pidgi = ), [(BPi/ Op;)dp; A dgi + (Opi/0q;)dg; A dpa']
= E,-jd,-jdpj A Jq,- + zero ;Zidp,- A qu .
For an arbitrary closed curve “¢” we have

f@‘(p,q,H,t)=/cﬁ2(p,q,H,t)

c S
= [@(PQ KT = for o
S c

where we have used the definition (7.55) of canonical transformations.
Hence

}{[@‘(p,q, H,t) - &' (P,Q, K, T)] =0
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for an arbitrary “c”, implying that
GJI@,Q,H,t)—(Dl(P,Q,K,T)=JG1 )

namely (7.56).
In order to prove the invariance of Hamilton’s equations we use Hamil-
ton’s principle for isochronous variations vanishing at ¢, and t2, namely

(Zp;q, HYdt=0 or 6/ Yp,q, Hyt) =0

Since by agsumption 6[G;(2) — G1(1)] = 0, Hamilton’s equations for
(K, P,Q,T) follow from the following steps:

2 2
~l foeres ~1 — 7
5/} & (P,Q,K,T)_.(S/l [ (P,Q,K,T) — dGi]

2
=6/ &Hp,q, H,t) =
1

7.14 Hamiltonian flow as a Lie-Cartan group

Let d
-(%‘-:A,-(x) , X=(21,...2N)

be a system of first order differential equations. In an infinitegimal interval
t, a point x = (z1,...2yN) is shifted to the point

Alx = (zy + Ay (X)t,...on + AN(X)E).
The corresponding change of a function f(x) of the coordinates is

df(x) = f(A'x) - f(x) = tA(x)f(x) ,

where A(x) is the vector field
T 3
A(x) = ZA‘(")_ax-
i 13

Consider now another system

d:z:i

5 = Bix)

and rewrite the above formulae with A - Band ¢t = s.
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Let the point x be shifted first by the vector field A acting for the in-
finitesimal parameter interval ¢, and then by B for the infinitesimal interval
8!

z; = o; + tA;(x) = z; + tA;(x) + sBi(xy + tA (x),...)

Pulx) Az(x) +

g

= z; + (tA;(x) + 9B;(x)) + stz
J

If x is shifted first by B through s and then by A through ¢, we have

dA;(x)
B B; (x) +

Zj

T = ... >z + (8Bi(x) + tA;(x)) + tsZ
J
The difference of the values of f(x) at B*A? (x) and A*B®(x) is
8f(x)
8 gt t s — _
f(B*A*x) — f(A'B°x stz ( 5, BJ) ol

the error being of the third order in the infinitesimals.
This difference has the form of a vector field acting on f(x). This vector
field, divided by st, is denoted by [A, B]. Its components are

- 8B; , 0A;
(4, B); = Z (Bx_, A; &cj‘ Bj)

It, is called the “commutator” of A and B. It is skewsymmetric in A and

B, [B, 4] = —[4, B].
It A and B commute ([4, B] = 0), it does not make any difference in what
order they act on a function.
Example: )
Ay =0, Ay = —x3, A3 =z, (At induces a rotation through ¢ about z,),
B; = z3, B2 = 0, By = —x, (Bs induces a rotation through s about z2)
. 2 : i, 9 =
A= —gq— —_— = — e L — = ]
50362:2 + z3 62}3 lL] 3 B 1:361:1 Tz 51‘3 le )
a i) -
A B =g — g1 = —
[4, B] -’L‘zax g D72 iLs
Hence {1, L;] = iLs and cyclic permutations. The imaginary unit has been

introduced so that (Ly,Lz,L3) are the components of the quantum mechanics
angular momentum operator in the coordinate representation (h = 1).
Consider now two Hamiltonian fields U; and U,,

Ua = - = 1, 2
Z,-: ( Bqi Opi * Op; 3%') (e )
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and evaluate their commutator. A not-too-long calculation gives

I ) . a
[U!.’U2]p‘. - &;[HlyHﬂ ] [U11 U?]q‘- - —_6-;);[Hh HQ] )

where [H1, H,] is the Poisson bracket of H, and H,. Hence

L OH 8 OH 0
[U:,Ua] = }; (_ 9q; Ops + Op; 6q5>

where
H = [H), H;]

Summarizing, the commutator of two Hamiltonian fields is also a Hamil-
tonian field with a Hamiltonian which is the commutator of the Hamilto-
nians in reverse order.

In light of the above, the condition df(p,q)/dt = [f,H] = 0 for a
quantity f(p,q) to be a constant of motion, can be expressed by stating
that f(p,q) is a constant of motion if the Hamiltonian field with f as a
Hamiltonian commutes with that with Hamiltonian H.

Finally here is the neat proof of the Jacobi identity for Poisson brackets
learned from Arnold and promised in section 7.2. The expression

[[4, B], C] + [[B, C], 4] + [[C, 4], B]

ig clearly a sum of terms each containing a second derivative. The terms
containing second derivatives of A are the first and the last. Denoting
by (dA/dt)5 and (dA/dt), the rate of change of A under a flow with
Hamiltonians B and C, respectively, we have

B0+ ie.ae = (%) o] - [(5) 8

= [BA,C)~[CA,B)=(CB-~BC)A=|[C,BJA ,

where B and C are the Hamiltonian fields with Hamiltonians B and C,
respectively. But [C, B] is a first order differential operator. Therefore our
original expression cannot contain second derivatives of 4. Similarly we
show that it cannot contain second derivatives of B and C, Therefore it
must be zero.
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Figure 7.3: Magnetostatic field example

7.15 Poincaré-Cartan integral invariant

In phase space consider a tube formed by flow lines, and two arbitrary
closed curves ¢; and cg encircling it.
We shall show that

ol = f ot (7.61)
Cg

where &' = Y pydg;.

Proof: Following Arnold we begin with a similar elementary problem. Con-
sider the curves ¢; and ¢; encircling a tube of lines of force of a magnetostatic
field B =V x A (see figure 7.3).

Let S1 and Sz be two surfaces having ¢1 and ¢ as rims, respectively. Since
VB = 0, Gauss' theorem applied to the closed surface consisting of Si, S3, and
the portion of the tube comprised between ¢; and ¢3, gives

(/s +/S +-/u.ba)B'ﬁdA=° : (7.62)

The integral over the tube is zero and so we find (see figure 7.5)

/ B- ﬁl dA1 = / B- (—ﬁz) dAz . (7.63)
84 83

Then Stokes' theorem yields

/A-dr:[A-dr
cy ca

We want to cast the above into a new form. Define
@' = Agdz + A,dy + A.dz,
@? = dar' = Bpdy Adz + Bydz Adz + B.dz A dy,
where B; = 94, /0y — 0A,/0z etc.
Filling the slots of &* with two vectors U and V', we have

SO, V)=B. . (UxV)=(BxU)-V=(AU,V) ,
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0 _Bz B—y
A = Bz 0 ‘_Bz y

"‘""'.By Bz 0

where

and (AU, V) = (A;;U;)Vi.

The matrix A has zero determinant. Therefore the secular equation
det(A — Al) = 0 has a solution A = 0, and so A has an eigenvalue zero. This zero
eigenvalue corresponds to an eigenvector with components (B;, By, B,),

B
B,

In our elementary treatment we applied Gauss’ theorem to a closed surface
consisting of S1, Sa, and a surface spanned by vectors U/ which are eigenvectors
of A belonging to the eigenvalue zero (the “How lines” of B), so that

/ &* =0 because w?(U,e)=0
tubse

The above method can be extended to any godd-dimengional space, in
particular to the (2n + 1)-dimensional space (p1,...Pn,q1,-.-gn,t). We
show this for n = 1, the extension to n > 1 is trivial.

We have @' = pdg — Hdt,

&? = di' = dp A dg — (OH/8p)dp A dt — (BH/Bq)dg A dt

@O, V) = UpV, — UV, — (0H/8p)(Up Vs — Up V) — (8H0q) (U, V; — U V)

= (AU, V)
with
. UP - V?
U= U, , V=1V, ,
U, Vi
and
0 -1 8H/0p
A= 1 0 dH/0q
—8H/dp —0H/0q 0

Now detA = 0. In fact, the determinant of any skewsymmetric
(2n + 1) x (2n + 1) matrix is zero:

detA = detAT = det(—A) = (=)*"*'detA.
Therefore A has a zero eigenvalue, corregponding to the eigenvector

[#)-(4)
oH/Op | =1 ¢
1 1
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Figure 7.4: Equation (7.63)

Hence (see figure 7.4)

f o2 = f @? Stoyee }( @ = f @t (7.64)
Sq Si c3 c1

If ¢; and c, are the intersections of the planes t = ¢; and t = t; with
the tube of flow, then we have, generalizing to n > 1,

f Z pidg; = Z pidy:

Ceg 4 Cty 4

faﬂ:/ &,
Stg Stl

where &? = Z'-Jp,; A dQ; (no Jt!), and S;, and S;, are the portions of the
planes t = ¢y and t = ¢, having as boundaries ¢;, and ¢;,. Since the tube
can be as thin as we want, we have also that &2 = Y.,dp; A dg; is invariant
under the Hamiltonian flow, as it is under canonical transformations. We
already showed in section 7.5 that the Hamiltonian flow is a canonical
transformation. This is a mere confirmation of something we already know.

and ¢

6For n = 1, this is Liouville’s theorem.
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7.16 Poincaré’s invariants

The invariance of @? = Z,.c'i'p;/\c’l'q; under canonical transformations (p, g} =
(P, Q) implies that

f}:&p; Adgi = [ZJ-P& AdQ;:
s 5
where S is a two-dimensional surface. This is Poincaré’s first integral in-

variant
Il = /degdq; = deP,dQ, . (765)

If the surface S is pa.rametrized, n= pi('“} ‘U), a4 = qi(u’ U): Pi=h (p(’tl., 7—’)9 Q(u‘» ’U)),
Qi = Q:i{p(u, v), g(u,v)), this implies

8(pi,25) (P, Q)
fszm -y dude fZ Sy F

namely ( )
a(Pn q; ij Pl: i
Z O(u,v) Z &u,v)
Here
s, @) _ | 9pi/Bu Bpifdv
3(11,, 'u) Bq.- /Bu Bq; /3‘0

The powers (5;2)‘ are also invariant. Note that the highest non-vanishing
power is 0 _ _ 3
(G =dp A...dpp Adg A ... dg,

up to a numerical factor depending on the definition of a product of exterior

forms.
Integrating over a region V of phase space, we have

I, = fv (@), , = fv () ) (7.66)

expressing the invariance of phase space volumes under canonical transfor-
mations.

For p - p(t), ¢ — ¢(t), P — p(t'), @ — ¢(¢') we have Liouville’s
theorem for finite time intervals 7, while the proof in section 7.4 was for the
interval (¢, t + dt).

TIn his Classical Dynamical Systems vol.1 of A Course in Mathematical Phyasics,
(Springer,1978) p. 84, W. Thirring writes:
“In the framework of {old] classical mechanics the proof of [Lmuvxlle s) theorem requires
some effort. But modern concepts are so formulated that there is really nothing to
prove.”
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7.17 Chapter 7 problems

7.1 (i) Write the non-relativistic Hamiltonian and Hamilton’s equations for
a particle of mass m and charge ¢ in the uniform static electromagnetic
field E = (0, E,0), B = (0, B,0).

(i) Verify that C, = p,, Cy = py + (¢B/c)z — qEt, and C, = p, are
constants of motion.

(iii) Assume that at ¢ = 0 the particle is at rest at ¢ = y = 2z = 0.
Expressing the Hamiltonian in terms of C;, C,, and C,, find the trajectory
of the particle.

7.2 (i) What is the Hamiltonian H. derived from the complementary La-
grangian L. in problem 6.77

Comment on the invariance of Hamilton’s equations under the transfor-
mation (p,q, H) - (P, Q, H.).

7.8 Using the canonical transformation Q = p, P = —q, write the Hamilto-
nian H = p2/2m —k/|q| and Hamilton’s equations in “momentum space”,
and show that the Laplace-Runge-Lenz vector is constant.

7.4 Study the canonical transformation generated by

2qP —sina (g% + P?)

Go =
2 2cosa

1

containing a parameter ¢, and the case of o infinitesimal. What happens
for « = —n/2? Use the corresponding G, for transformations differing
infinitesimally from p = @, P = —q.

7.5 (i) Show that the generating function
GQ = (P]Q‘] -+ qu-z)COSC! + (qu; - P](]Q) sin a

induces the canonical transformation

(Pryq1, P2, @2) = (P, G, P2, Q2)
with
P, =pcosa—pssina , Py, =pysina+ pycosa
Q1 =qcosa—gsina ,@y = q;sina + ¢ cos o
(ii) Show that this transformation with

2
tan(2a) = —a;z-_f—w%
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uncouples the two harmonic oscillators with Hamiltonian (w; > ws)
H = (p} + wig})/2 + (0} + w363)/2+ far e
Expressing / in terms of the new variables, one has
H = (P! + 01Q})/2 + (P + 03Q3)/2

with

02 = (wf+w§+\/(w12—w§)2+4f2)/2 :

0: = (wf+w§—\/(w¥—w§)2+4f2) /2

(iii) What happens is w; = ws —= w ? Nothing bad, a = —= /4,
= (P - P)/V2 a1 = (@1 — Q2)/V2,
pr=(PL+P)/V2 aa= (i +Q2)/V2, B =w?+ [0} =uw?-f.

7.6 Find the generating function for the canonical transformation
(1‘, 9, qbvpﬁp&v ptb) - (SL‘, v, z, pz,py’pz)-

7.7 (i) Consider the canonical transformation induced by the generating
function

Go(r,P) =53 P + PPy + VA (21 P2 + 22 P1) + Az1 22
and use it to transform the Hamiltonian
H = [p} + (p2 — Mz1)® + p3]/2m

(i) Write and solve Hamilton’s equations in the new variables.

(iii} Use the result to study the motion of a positron (charge -+e) in a
uniform magnetic field of intensity B in the z3 direction (4; = A3 = 0,
Ag = BQI] )

7.8 (i) Verify that the Poisson bracket of the Toda Hamiltonian
1 1 . 1
H=-"- 2y o [e2(e—yV3) | o2e+yV3) | 4w _
2(pi+py)+24[e +e + e~ 2
with the Hénon integral of motion

I = 8p,(p? —392) + (py +2V3 )79V 1 (p, —p, /3 )e?(=+¥V3) _gp g4

is zero.
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(i) Since I does not explicitly depend on t, its conservation must cor-
respond to the invariance of the Hamiltonian under a transformation
p — p +0p, x = x4+ &x, with dp and 0x of the order of an infinitesimal
parameter €, H = O(¢?). Find dp and dx.

7.9 (i) What are the infinitesimal transformations for z; and p; generated
by nA;, where 1 is an infinitesimal parameter and

is the i-th component of the Laplace-Runge-Lenz vector.
(ii) Show that the Hamiltonian H = (|p|°/2m — k/r) is invariant in
the first order in 7.

7.10 Let p and g be canonical variables for a particle with Hamiltonian
H =p?*/2m.
(i) Perform the canonical transformation (p, q) = (P, ) with

Ga(g, P) = (g — at)(P +b)

where a and b are constants. Find P and Q.

(i) We calculate Q = AH (p(P,Q),q(P,Q))/8P, then we express the
resuly in terms of ¢ and p finding ¢ = p/m + a (strange!). What have we
done wrong? What should we have done?

7.11 In a frame XY 7 an electron is subject to the uniform magnetic field
B = (0,0,B), A = (—By,0,0). In a frame X'Y'Z' moving in the z di-
rection withe velocity u (2' = = —ut,y’ = y,2' = 2), it is subject to the
magnetic field B’ = B and the electric field E' = (0, —Bu/c¢,0).

(i) Write the Hamiltonians H and K for the electron in XY Z and
X'Y'Z', respectively.

(ii) Find p and p’, and Hamilton’s equations in the two frames.

(iii) Verify that

Ga(r,p',t) = —upht — mu®t/2 +r-p' + mux

induces the Galilean transformation from (r,p) to (r',p’). Note that this
corresponds to

Gi(r,r',t) = Gy(r,p'st) — ' - p’

as we had in section T7.11.
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7.12 Suppose we have the integral of motion u(p, ¢,t) explicitly dependent
ont

u(p, q,t) = In(p + imwg) — iwt
for the harmonic oscillator with Hamiltonian H = p?/2m +mw?¢?/2. (For
g = Acos{wt + o), p = —mwAsin(wt + a), u = In(lmwA) + i{a + 7/2).)

Th
o _du O
Tt ot
which can also be written in the form
Ou OH Bu BH Su

Find the corresponding inﬁnitesxmal transformation under which

du
SH = —€ —
H eat

7.13 (i) Find the infinitesimal transformations induced in p and ¢ by the
integral of motion I = up — H for a particle in one dimension with Hamil-
tonian H = p?/2m + U(x — ut) (u =constant).

(i) Show that under this transformation dH = —e 9I/8t.

7.14 For &% = dp Adg and U = —(8H/8q)8/8p + (8H/0p)d/dq, show
that LUG'J2 = 0.
7.15 Verify the formula

L& = dl@(A)] + (d@)(A)

in the case where & is a 1-form.

7.16 Show that the operators d and L z acting on a form commute, dL AW =
L zd&.

7.17 Consider a flow generated by the vector field V' and a closed curve C;
whose points are transported by the flow, so that at the time ¢ + d¢ they
cover the curve Cyyg;.

If &' = A;dz? is a 1-form, one has

% @t =f a;‘+dtf Lyt
Ct+dt Ce Ch
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Interpret this formula in three dimensions.

7.18 Use the result of problem 7.17 to show that

f pdg= % pdg
Crapde Ci
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Solutions to ch. 7 problems

S7.1 (i)
H=(p—-qA/c)’/2m + qV,V = —Ey, A, = —By, A, = A, =0,

H=|(ps+ qu/c)2 +p,2, +p§]/2m —~ qEy

Pz = mi + qA./c = mi — gBy/c,py =my, p, =mz
Att=0,p2=py=p: =0, z=y=2=0.
(i) C» = p» and C; = p, are constants of motion because r and z do not occur
in the Hamiltonian. It is easily verified that C, = p, + (gB/c)z is a constant of
motion. In fact Cy = —(8H/dy) + (¢B/c)& —¢E

Cy = ~(gB/me)(p: + qBy/c) +qE +qBz/c-qE =0 .
(iii) Since C, = Cy, =C, =0 at t = 0, we have

H = [(¢B/c)*y? + (¢Bz/c — qEt)*]/2m — qEy

From this we see that H = 0.
The trajectory is the cycloid

with r = Emc®/qB>.

S7.2 (i) _ _
Ho = PQ - (PQ +api - aL) = —aH(p,q,1)
(ii)) The equations

~9H O
8P ’ aQ
give
. _O(-aH) @ OH _ O(—aH) . _OH
T 8 M T

Hamilton’s equations are invariant under the canonical transformation Q = p,
P = —q without transforming the Hamiltonian, while their invariance under the
(non-canonical) transformation @ = p, P = ¢ requires a change of sign for the
Hamiltonian.

S7.3
H=Q/2m —k/|P|, Qi = 0H/0P; = kP:/|P|*, Pi = —0H/0Q: = —Qi/m
l=qxp=QxP,li=ex(kP;P/|P|® - Q;Qi/m) =0
A =-q/lq| +p x1/km =P/|P| —1x Q/km
d(P/|P)/dt = P/|P| - (P- P)P/|P}* = [-|P|’Q + (P - Q)P}/m|P|®
d(1x Q)/dt =1x Q = kl x P/{P|* = K[~[P|’Q + (P- Q)P)/|P|’
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S7.4

p=08G2/8q=(P—q sina)}/cosa, Q =08G:2/0P = (q— P sina)/cosa,
namely P =p cosa+q sina, g =Q cosa + P sina. Note that G2 = G + PQ,
where

_ 1 2 2
G, = 5 sina(q cosa — 29Q + Q° cosa)

While G1 is singular for o = 0, G2 is singular for & = —n /2. Therefore G
with a@ — da (infinitesimal) can be used for a transformation differing infinitesi-
mally from the identity P = p, Q = ¢, in which case P~ p+¢q do, Q =~ q—p do.
On the other hand, G; with & = —7/2 + §a could be used for a transformation
differing infinitesimally from p = @, P = —q.

S7.8 A simple extension of the two-dimensional case, gives
G(r,0,¢,P,py,p;) =7 sinf cos¢ pr +r sinf sing p, +r cosé p,

One finds p, = 8G2/8r = sinf cos ¢ p: + sinf sin ¢ p, +cosb p,,
pe = 0G, /08 =7 cosf cosd pz+ 7 cosf sing p, — r sinéd p,,
pp = 0G3/0¢ = —r sinf sing p, + r sinf cos ¢ py,
z = 0G2/3p, = r sinf cos ¢, etc.
The following may be useful:

py = sin¢ (sinf p, 4 cos pe/r) + (cos ¢ /rsinf)py ,

{ Pz = cos¢ (sind pr + cos® pg/r) — (sin¢ /rsinf)p,
p. =cosf pr —sinf pp/r .

S7.7 (i) One finds
™= 6G2/6w1 = \/XPz-i-sz y P2 = 8G2/aw2 = \/XP} +Az, y P3 = 3G2/6$3 = PB,

G = 0G, /0P = Po+VAzy, Q2 = 0G;/8P, = Pi+VAz: Qs = 0G2/0P; = 3.

Note that p1 = VA Q1.
(ii) The transformed Hamiltonian is

_ "\ 2 2 1 2
= 5 FT + Q1) + 5P

(harmonic oscillator and free particle in one dimesion). P and Q2 do not appear
in K.
Hamilton’s equations yield

P, = —ﬁ Q: , Q1 = ﬁ Py, P, = constant , ()2 = constant |,

with the solution
Pi+igy=A exp(i(.\t/m 4 a))
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(A and o real). Then, since
P +iQ1 = Q2 +iPy — VX (:1 —iz2)

we have

—izy = [Qz +iPs — A exp(i(At/m + &))]/VA
If A > 0, this gives

g1 =[Q2 — A cos(At/m +a)}/VA
g2 = [-P + A sin(M/m + a)]/VA

(iii) Comparing the Hamiltonian in (i) with
H = [p, + (p2 — eBa:l/c) + ps]/2m
we see that the equations of motion for the positron are

r1=[Q2— A cos(wt + a}]/v/mw
{ T3 = [-P2 + A sin(wt + a)}//mw
z3 = z3(0) + vt ,

with w = eB/me.

S7.9 (l) Jf = Tl[f: Ai])
0zi = (n/km)[2zipx — (v - p)dix — zkpi]
opx = (p/kmr®)[kmr?di, — kmazizy — r2p|28ic + r3pipi]
(ii)
8|pi* = (2n/r*)[r’pi — (p - r)zs] + O(n*)
8(1/r) = (’?/kmra)[’" pi—(pr 33-]+0(71) :
§H = 6(lp*/2m - k/r) = O(n*) .

S7.10 (i)

=0G2/0q=P+b P=p-b,Q=08G:/0P=q—at
(i) H(p(P, Q),q(P Q) = (P+b)*/2m. If we write (wrongly) Q = 3H/3P, we
obtain @ = (P + b)/m. If in this we substitute P = p — b, Q@ = q — at, we get
¢—a=p/m.

We should have remembered that the new Hamiltonian is

K=H+08G:/0t =(P+b)?/2m —a(P +b)

and so
Q=08K/OP = (P+b)/m —a ,§—a=p/m —a.
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S7.11 (i)
H = (p. — eBy/c)" +p} +p]/2m ,
K =|(p: ~ By /¢)" +p} +p7']/2m — (eBu/c)y
(ii)
p = (mi + eBy/c,my, mz), p’' = (ma’ +eBy Je,my ,mz’') = p—mu
Pr=0, py =eB(p# - EBy/C)/mci 5 =0
&= (ps —eByfc)/m, §y=py/m, & =p;/m
mi = —eByj/c, mij = eBifc, mi=0
Py =0, p, = eB(p, — eBy' /c)/mc + eBujc, p, =0
&' = (p, —eBy'Je)/m , § =py/m, ¥ =p,/m
Sincet' =& —u, & =%,y =g, 2 = 2, the equations
mg' = —eBy/ /cand m# == 0 are clearly equivalent to the corresponding unprimed
equations. We have also
my=mij =eBi'fc —eE, =eB(% —~u)/c +eBujc=eBz/c.

S7.12
P — p+0p, ¢ = g+ 8q, with ép = €[u,p], ¢ = €lu, g},
imw 1

o= imwg 20T TSy imag

S7.13 (i)
dp=¢[l,p] = —e OU(x — ut)/0z , 8z = €[l z] = e(p/m — u)
(ii}
....9...{1 OH _pOU(z—wut) OU(x—ut) P )
oH dp 6p+6 0z [m oz + Oz (m Yie
- Uz —ut) | OU(z—ut) A
u oz = te ot - Eat

Elementary remark: In a system moving with velocity u, we would have
mi'?/2 + U(s') = E' =constant. But now &' = z —ut, &’ = £ —u, and so

= (m/2)(E* + v’ ~ 2ud) + U(z — ut) = [mi?/2 + Uz —ut)] — ums + mu?/2
= H — up + mu®/2. Thus [ = up — H = mu?/2 — E' =constant.

S7.14 i N i N
dp' Adg' = d(p— s dH/8q) Ad(q+ 3 BH/dp)
8*H FPHY\ ; s =
=11 - =
( +83q6p sapaq) dpirdg=dpAdg
Also, since dir® = 0 for &® = dp A dg, the formula in the following problem 7.15
gives

Loc? = oU, , 98Uy i =
Lgo? = dla(0)] = (ap +3 )dp/\dq-—(}
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|

Figure 7.5: Problem 7.17

- - - - . _ ARy L
& = wyds? |, dio = (Bw, [0Y)da’ A do? , d[@(A)] = 9‘-"-(:;5‘-1 o

- - 6(‘)' s - . o aw. a . PR
- $ 7 3 $ 3 3 3
(do)(A) = —La:c‘ (A'dz? ~ A’ds’) = (_Bwf - —L&c‘ ) Adx

The sum of the last two expressions is

0w 4y o O Gk o (L5).do
(33:5 A +wy am'.)da: = (Lzw),dx

S7.16 Acting with d on the equation in the previous problem, and remembering
that d* =0, we have o )
dL 1o = d[(d@)(A)] = Lgdi - (ddiv)(A) = L zda.

S7.17

Che
84; OA ; .
= it Nk § i J
jf,, (6:0" 5 ) (0 a0

The above equation simply expresses the vanishing of the solenoidal ¥V x A
through the closed surface formed by the surfaces Si4.q¢, Si, and the flow tube
connecting them (see figure 7.5).
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S7.18 For &' = pdyg, it is easy to show that
Lye' =dj@' (U) — H)

Since §d(...) =0, we have



Chapter 8

ACTION-ANGLE
VARIABLES

Periodic motions are mapped onto uniform circular motions by introducing
the action-angle variables.

For a system executing periodic motion, a quantity can be defined which
is invariant under slow changes of the system parameters. This is an “adi-
abatic invariant”.

8.1 One dimension

In this section we study the mapping of a periodic one-dimensional motion
onto a uniform circular motion.
This is realized by a canonical transformation (p,q) — (J, ¢/27), where

J=£pdq=(f&pA&q)D=A(E) (8.1)

is the action integral along the closed orbit “C” enclosing the region “D”

of the (p,g)-plane.
Since dp A dg = dJ A d(¢/27) and J is a constant of motion, we have

J= fg pdg = fe J d(g/2m) = J f; d(#/2m) (8.2)

and so it is clear that ¢ is incremented by 27 while C is covered once.
From the Hamilton equation

6 _OH _8E _ (dA(E))“ 8.3)

2  8J 8J \ dE

193
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f
2wt
&
9
¢ 21......,
~Zmi)

Figure 8.1: Ball bouncing up and down

we see that ¢ is constant, and the period T is given by

_ 2 _ dA(B)
r=3 =3 (8.4)

as we already know (see equation (1.10)).

Example 1: The mapping of a harmonic motion onto a uniform circular motion
is the inverse of the elementary construction of the harmonic motion by projecting
a uniform circular motion onto a diameter.

Substituting p = /mwJ/7 cos$ and ¢ = /J/mw= sin ¢ in the Hamiltonian
H = (p* + m*w?q®)/2m, we find E = wJ/2n. The transformation is canonical

ause
et d40p _da0m .

o9 3J B8J o

Example 2: Ball bouncing elastically up and down on floor (see figure 8.1).

The canonical transformation is

2,7\ 3% 3
- (52 (-8) 0= (27) 4o

Substituting in the Hamiltonian H = p?/2m + mgyq, one finds

_ 1 (smgr\}
T 2m ( 2 ) ’
A(E) = J = 2(2mE)} j3m?g, T = dA(E)/dE = 2vo /g, where E = mui/2.

It is natural to ask: “How did you get those canonical transformations?”
The answer is simple. One must find the generating function G2(q, J). Then
p =0G,/8q and ¢/2r = 8G2/8J.

The generating function can be obtained by solving the Hamilton-Jacobi
equation

H (q, %%3) = E(J) , (8.5)
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where we have stressed that the energy must be expressed in terms of J.

For the harmonic oscillator (Example 1), Ga(g, J) is easily obtained
from S(g2,q1, E = ka®/2) of equation (1.22) with the following changes:
E = wl/2r, a = \/J/rmw, @2 = ¢, ;@ = 0. One obtains

G,(q,J):-";—“’[q A S (q "Z“")] . (8.6)

Tmw mmw

Then

6 _0G _ 1 i [\ [T
2r ~ 8J —2ﬂ_sm J 9= ﬂmwsm¢ , ®.7)

_8Gs _ J 2_\/me
p= 90 = mwy/ —— g2 = - cos¢ . (8.8)

while

For Example 2, we show the convenience of using G4(p, J), for which
g = —8G,4/0p and ¢/2m = dG4/HJ. Substituting the former in
p?/2m + mgq = E(J), we have (p?/2m) — mgdG,/8p = E(J), and, by an
elementary integration,

6= [l ) - B -m)| .9)
Then ¢/27 = 8G4/8J = —[(p — po)/mg]dE(J)/dJ yields
2 %
p=po— (f‘%ﬂi) % . (8.10)

If we want p = pg = vV2mE = (3m2gJ/2)§ for ¢ = 0, we have

o= (220} (1-2) @11

Substituting this in ¢ = —8G4/8p = —[p?/2m — E(J)}/mg, we find the
equation for q.
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Figure 8.2: Torus for Kepler motion

8.2 Multiply periodic systems

A multiply periodic system with n degrees of freedom is one in which each
of a set of n suitably chosen ¢; (i = 1,...n) is simply periodic with period
T;.

The T;'s are in general different. If their ratios are irrational, the trajec-
tory in 2n-dimensional phase space is not closed. Remember the Lissajou
figures from General Physics!

The motion in the 2n-dimensional phase space can be mapped onto an
n-torus, on which n angular coordinates (¢, ... ¢»)mod 27 can be defined.
(For n = 1 the 1-torus is a circle.) Each coordinate changes uniformly with

time,
dgy
dt
For each ¢; one can define a conjugate momentum J;, so that

= w; (constant) . (8.12)

n n
ng,' A éq; = ZJJ. A {z(fé,'/zﬂ') . (813)
i=1 i==]

Each J; will be a constant of motion.
Example: Kepler problem in a plane with U = —(k/r) — (h/r?).
For E < 0 the flow generated by the Hamiltonian

H=F P ¢y (8.14)

is confined to the 2-torus shown in figure 8.2. Generalizing what we did in section
2.4, we first evaluate J, = § p,dr and Jy = § pedd, finding (see problem 8.4)

Jp =27 .....f_”ff_.._...ga with a= 1-~-?-f-’-:-’i (8.15)
2m|E| !
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and
Jo = 2npe = 2nl . (8.16)

Using these, we obtain
2mimk?

(Jr + /I3 — 872mh )2 .

We solve the Hamilton-Jacobi equation

|E| = (8.17)

1 (8G:\* 1 (8G:\* k _h _
2m (737) + 2mr2( Y ) Ty T E(Jy,Jo} (8.18)

finding

g 2mk Jg \ 1
Ga(r,0, Jr, Ja) = /,0 \/mE(J"’J” e (m Tw )Y

1
+§Ja(9 —80) . (8.19)

¢9_3G2_ rl( OF Jo ) , 0—8

on = 0de  J, 5\ O A" dr' + —-

O [Tdr'  J /"‘ d' 6—6, _OE ["ar
r

=mee— | — —~ =m —
"ods )., pr  dm? [, TPp, " 2Zn 8Js J,, pr

since J¢ f:odr' [ p, = 2m(0 — 00).
On the other hand

¢8G2 _ BE 8G; _ 9E ["mdr
2 8, 8G» 9E " 84, ), pr

Then

We note at once that neither ¢y nor ¢, is equal to . We also note that the

r-period is
-1 JIz = 8xmh )
T,=(9_E_) _ U+ Vs —Baimh ) (8.20)

aJ, 4m?mk? ’

while the #-period is

(8.21)

8E\ ! Ji — 8m?mh
To = [ = - »
¢ (3.]3 ) Jg T

The 1/r? force has removed the degeneracy. The periods 7, and Ty are now
different, and there is a precession with angular velocity

2r 2w 27w 8n?mh mh
wprm-ﬁ-ﬁﬁmﬁ(i— lu-ﬂtig__)_wr_p_ (8.22)

Therefore Afyy = 27wy, /w, =~ 2rmh/I?, in agreement with (2.16).
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But let us return to the pure Newtonian attraction. We are dying to
know what ¢, = ¢¢ is in this case. From ¢, /2x = (8E/0J,) f:omdr' /Drs
we see that

b _ D _9E

o 3J,- ,.,\/2(3 U(r’))/m 3J —t)

y  Artmk?
i‘ﬁ%zﬁ% )= oo (b= t0) = oot —t0) |, (823)

with n as defined by equation (2.47). Hence, for ty = 0,

¢r=u—¢€ sinu (8.24)

where u is the eccentric anomaly.
Remark: For the pure Kepler problem (“pure”= only Newtonian attraction)

some authors evaluate
Jy = 2mls, Jy = §pedd = §4/12 — 13 /5in%0 4 = 2n(l - I3),

Jr = §/2m(E + k/r) - 12/':'2 dr = 2x[(mk/\/2m|E|) - I].

J,mzw( m k~J3+J¢) ,

Hence

2|E} 2r
from which 2 s
2r°mk
|B| = 2
The calculation of J,. is presented as an interesting exercise in complex integration.
Goldstein attributes to Van Vleck the following method of evaluating Js.
Notice first that comparing H =) .pigi — L =} .pigi — K + U with H = K+ U

one has 2K = Y pigi. Expressing the kinetic energy in terms of the original
(r, 8, ¢) variables and in terms of plane-motion variables (r, ), one finds

Prt + Pofl + Py = pr + Py

Note that 1 can be identified with the Euler angle defined in problem 8.3. Using
the above equality one has

Jg = f?sd9= fp,;,d@é-—fmdqbz.h; = Jp = 2n(l — I3)

Of course, if one likes to calculate integrals, Jg can be obtained directly. Using
problem 8.3, we have

Jo = f — 12 /sin? d§ = l}-\/l — cos? /sin%4 d@ .
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One can perform two changes of variable,
first cos@ =sind siny (cos® = &} - & = sind sin¢), and then v = tanp.
One gets

2
- cos®pdy . 3 dv
Jo = ~lsin 19{ 1 —sin?d sin’yp ¢sin 0f (1 +v?)(1 +vcos?d)

dv dv
=~ [ffr- ~6082'9fm]
. ( f 4 - § dlcosd tan~ (cos tan w)l)

= (27 — 27 cosd) = 2m(l — I3)

Why f dt) = —27 rather than 42%7

Summary of action-angle variables
We limit ourselves to the statement of the important Liouville’'s theorem
on integrability !:

Let H be the time-independent Hamiltonian of a system with n degrees
of freedom (2n-dimensional phase space). If we know n functions F;(p, gq)
(f=1,...n) such that
(i) [H, P;) = 0 (the P;’s are integrals of motion),

(ii) [Py, P;] = O (the P;’s are “in involution™),

(iii) the dP; are linearly independent,

then the system is “integrable”, i.e. by algebraic manipulations the math-
ematical problem can be reduced to integrations.

For a system that satisfies the integrability conditions of Liouville’s
theorem and is “connected and compact”, Arnold has shown 2 that each
conserved P; corresponds to an angular variable ¢;, so that the subspace
{P;i = ¢;,i=1,...n} can be mapped onto (is diffeomorphic to) an n-torus
{(¢1,...¢n)mod 27}.

Although (P;,¢;) are not symplectic variables, action variables J; can
be constructed such that

Y dpi Adg =Y ddi Ad(g/2m) (8.25)
i i
A J; i8 defined as
Ji = ZPJ"J‘IJ' (8.26)
C; j

15ee section 3.3 in W, Thirring, Classical Dynamical Systems vol.1 of A Course in
Mathematical Physics (Springer).
33ee Thirring, loc. cit. p. 102.
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along a curve in our subspace such that ¢; changes from zero to 2w, while
each of the other ¢;'s (§ # 1) returns to its initial value. Subject to this
condition, c¢; is arbitrary as can be proved by Stokes’ theorem and the
vanishing of @2 in the subspace.

If the J;'s are known first, then the ¢;’s are obtained by a canonical
transformation with a generating function Ga(qi,...qn, J1,-..Jn) solution
of a Hamilton-Jacobi equation.

Since ¢;/2m = 8G,/8J;, the change of ¢; over a cycle in which ¢;
changes by 2r is

so=f 32

8¢. 8G2 “
Bge 0 = 2”% Ea 707,

ok
i) ~ aJ;
= 2T— =2 -——*2 dij - 27
o S <23 < o

8.3 Integrability, non-integrability, chaos

For a conservative system with n = 2, the “energy surface” E = constant is
a three-dimensional region embedded in the four-dimensional phase space.
A Poincaré section is the intersection of this region with a plane, for in-
stance the (p1,q1) plane.

The pattern of the points where a given phase space trajectory crosses the
plane, obtained in most cases by numerical integration, provides useful in-
formation about the system.

For bounded trajectories, the crossing can be expected to occur at an infi-
nite number of points, unless the motion is periodic.

For n = 2, a bounded trajectory for which an integral of motion other
than the energy exists, lies on a two-dimensional torus. This intersects the
Poincaré section on a closed curve. For instance, the left side of figure 8.2
shows a torus E = constant, [ = constant in the four dimensional space
(pry7,ps,8). The right side shows the intersection of the torus with the
(pr, r) plane.

There are two frequencies, w; and wy (w, and wy for figure 8.2}). If the
motion is simply periodic (w; = ws) there will be a single point on the in-
tersection curve, through which the trajectory passes every time it crosses
the Poincaré plane. If wy # wy, but wy/we rational, there will be a finite
number of points. If w;/wy is irrational, the curve will be completely cov-
ered, telling us that the trajectory on the torus is “ergodic”. In this case,
given an arbitrary point on the torus and a number ¢ > 0, the trajectory
will pass at a distance less than ¢ from that point. The pure Kepler motion
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(h = 0) is simply periodic, while the last two cases are possible for T;. # Ty
(h # 0, equation (8.21)).
Another example: For the two-dimensional harmonic oscillator with Hamil-
tonian
H = [(p +wiql) + (03 +wig:))/2
consider a trajectory with energy E passing through a point Fy, for simplicity
(1o, 0,920 = 0). Then

pao = £+/2E — p?, —wiqd, .

Thus the trajectory is completely defined by Pp up to a sign.

The trajectory will cross the (p;1,q1) plane again and again. At which points? If
as a second integral of motion besides the energy we take the energy of the “2”
oscillator, all the intersections will lie on the curve

Pt +wig? = 2(E ~ E3)
Using the solution

{ q1(t) = q:1(0) cos{wit) + (p1(0)/un) sin(unt) ,
P1(t) = p1(0) cos(w1t) — wrqu (0) sin(wnt)

we find for successive intersections the two-dimensional map

Q1i = qu,i-1 €08(2mwn Jwz) + (p1,5-1 fwn ) Sin(27mw fws)
P1i = P1,i—1Co8(2Awn Jwz) — g1 4-1wn sin(2mwr fws) .

In the (p:,w:iq1) plane, this is a rotation through 27w fwz. wnrfwz = min

(m and n integers), the rotation, repeated n times, is the identity, and the system
is multiply periodic. If the ratio of the frequencies is irrational, the intersection
curve is covered ergodically.

Keeping F fixed and varying E; one has a family of nested tori, intersecting
the (p1,q1) plane on a family of nested curves.

The Toda Hamiltonian Ht = (p2 + p2)/2 + Ur (see equation (2.58))
is integrable because of the existence of the Hénon integral of motion [
(2.59). For given E and varying I one has a family of nested tori whose
intersections with the (p;, ) plane are nested curves.

In contrast to this, the Hénon-Heiles Hamiltonian Hug = (p2 +p2)/2+
Unn (see equation (2.60), problem 2.7, and figure 2.6) is non-integrable, the
only integral of motion being the energy E. The nested tori structure of
the Toda motion is progressively destroyed with increasing energy, as shown
on the Poincaré section by the appearance of islands. A single trajectory
jumps from island to island, in much the same way as in the logistic map
for » > 3, where z,,, starting from a given zg, jumps from one branch to
another of figure 3.5 as n increases.
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It will be enough for us to state that for £ = 1/6 all but a few minute islands
have disappeared. Apart from these, a single trajectory wanders chaotically
in the three-dimensional region E = 1/6, and crosses the Poincaré section
at random (see,for instance, M, Tabor, Chaos and integrability in nonlinear
dynamics (Wiley,1989) p. 122).
We note that as E increases with consequent extension of the available
(z,y) region, the approximation Uygy =~ Ur becomes increasingly bad. We
might write Hyy = Ht + 6H, and attribute the destruction of the tori to
§H.

We must mention the KAM (Kolmogorov, Arnold, Moser) theorem. For
n = 2, part of the theorem states that if, among other technical conditions,
the Jacobian |8w;/8J;| i3 not zero, then those tori whose frequency ratio
wa fw is “sufficiently irrational” are stable under the perturbation 6 for
|6 H| very small (see, for instance, H.G. Schuster, Deterministic chaos. An
introduction (VCH, New York,1988).

At this point we rest our brief account of chaos and suggest a visit to
any moderately stocked library. The reader will find an abundant supply
of books on the subject.

8.4 Adiabatic invariants

It is widely known that the shortening (lengthening) of the string of a pen-
dulum causes the amplitude @, to increase (decrease). It may also be
known that if the length of a Galilei pendulum (small amplitude oscilla-
tions) is changed slowly, the amplitude varies according to the law

3
20)\*
Biax(t) = (?%&)l) Omax(0) . (8.28)
“Slowly” means that |d¢/d¢] is small, and that ¢t « £/]d¢/d¢|. If for t we
take ¢t = T(0) = 2%x+/£(0)/g, the initial period of the pendulum, we must
have |df/dt| T(0) « £(0).

From equation (8.28) we infer that

E(t) _ E(0)
o)~ w(0) (8.29)
with
E(t) = mgt(®)fhn(6)/2 and w(t) = Vol ,  (830)
namely

J(t) = J(O) , (8.31)
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where J(t) = 27 E(t) /w(t) is the action variable. Thus J(t) is an “adiabatic
invariant”.

Let us attempt a little theory. Differentiating J = 2r H/w with respect
to ¢, we have

- 2r (OL w
J= - (-—5&- + ;H) (8.32)

since dH/dt = —AL/8t. For the oscillator with L = m[¢* — w(t)*¢?]/2 this
gives

s "W
J = —(m?u?q® - p?) . 8.33
mwg(qu P°) (8.33)

which already shows that J is small if w is so.
Taking the average of J over a period of the motion with w(t) and w(t)
treated as constants and replaced by their values at ¢t = 0, we have

(J) = 2mw™ %0 ((mw?q?/2) — P*/2m) =0 (8.34)

since the average values of the kinetic and potential energies are equal. This
indicates that {J) is of the order of w?.

Some authors derive equation (8.29) in the case of the pendulum by consid-
ering the work done by the tension of the string when the length £ is changed by
AL. This work is AW =~ —(mg + méd® — mg#®/2)Al, and its average value is
(AW} =~ —mgAl - (E,/2£) AL, where Ey is the energy of the oscillations. The
second term of {AW) changes Ey by AEy = —(Ep/26)AL, and so A(Epv) = 0,
aw@ =constant, Fg/w =constant.

A more sophisticated approach makes use of the generating function
G1(g,¢/2m) = (mwq?/2)cotang to transform from the canonical variables
(p, g) to (J,@/2m). This is still possible although w is now a function of ¢,
but the transformed Hamiltonian is K(J, ¢,t) = H + 8G, /¢,

K= ;—: + % sing cos¢ . (8.35)
Hamilton's equations for K yield
J = —J% cos(2¢) (8.36)
and . 2
p=w+ 5 sin(2¢4) . (8.37)

In chapter 8 on pertubation theory it will be shown that if wo/wp is
small

J(t) = J(0) (1 - %"g—[sin(z(gbo + wpt)) — sin(2¢o)1) : (8.38)

Thus the value of J(t) oscillates about J(0} with a small amplitude.
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8.5 QOutline of rigorous theory

We follow sections 51 and 52 of V.1. Arnold, Mathematical Methods of Clas-
sical Mechanics (Springer,1978), but confine ourselves to one-dimensional
systems,

Definition: The quantity J(p, q; \) is an adiabatic invariant of a system
with Hamiltonian H(p, q;A) (A = €t, € constant) if for every x > 0 there is
an €y > 0 such that, if € < ¢ and 0 < ¢ < 1/¢, then

| (p(t), q(t); t) — J(p(0),q(0); 0)] < %
Averaging theorem: Consider the system of equations
$=wll) +ef(J,9) , J=eg(d,9) ,

where £(J, 6) = f(J, ¢+ 2m) and g(J, 8) = g(J, ¢ + 2m).
The gist of the theorem is the comparison of J(t) with J'(t) 3satisfying
the equation

J' = eg(J")
where .
a0 =™ [ a0 0)g
0

Assuming that in a certain region of the (J,¢) plane 0 < c < w <
and |f] < ¢1, |g| < c1, then for J(0) = J(0) and 0 < ¢t < 1/¢ one has

|7 (t) = J' ()] < coe

where ¢y depends on ¢ and ¢;, but not on e.
X K ok K ok ok ok ok ok ok
Quick proof: Define P = J + €k(.J, ¢), where

¢ no_ =
k(J,qb):-/ g(J,tzJ)g(J) i
0

and assume that this relation can be inverted, J = P + ¢h(P, ¢,¢). Then

. . 8k, Ok.
P=Jtegrd+ezsd

')_ak € ~ :
= eg(J,¢) + ¢ 259(J,¢) - m[ﬂ(-ﬂ ¢) — g{J)]l¢

= eg(0,8) + € 5594, 8) = STl 8) = INNwld) + e, )

3Qur J and J' are Arnold’s T and J.
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= e§(J) + O(€®) = e§(P) + O(¢’)
First compare .J' = ej(J') with P = g(P) + O(e?).
Starting from J'(0) = P(0), it is clear that |P(t) — J'(¢)] < ecs for 0 < t < 1/e.
On the other hand, |J(t) — P(t)] = e}k| < eca, since |g| < ¢; and so
lk| < (@rer/e) + (2mer /e) = dmer /e = c2. Then

F(t) = J' (O] S 1T(t) = P+ [P() — J'(B)] < eca + ecs = eco

for0 <t <1/e
* K K ok K Kk Kk Ok K

Let us apply this to the oscillator with w(t) = wg + A, A = et, for which
F(J,4,)) = sin(26)/2(wo + A) and g(J, $,X) = —J cos(2)/(wo + X).
Since in this case §(.J') = 0, we have J' =0, J'(t) = J'(0).

Therefore J' = 0, J'(t) = J'(0). The theorem yields

coe 2 |J(t) — J'(8)] = |J(¢) — J'(0)| = |J () - J(0)]

for 0 <t < 1fe.
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Figure 8.3: Particle in box

Figure 8.4: Kepler problem in three dimensions

8.6 Chapter 8 problems

8.1 Apply the material of section 8.1 to the simple pendulum,

2

2
- P __Ps o2
H= T + mgé(1l — cosf) = Y~ + 2mgf sin®(8/2)

8.2 A particle of energy E bounces elastically to and fro in a one-dimensional
box of size £ (see figure 8.3).

Find the expressions for the (p,q) = (J,¢/2n) canonical transformation,
and a generating function.

Which one?

8.3 Perhaps this should have been one of the chapter 7 problems. We place
it here in preparation for problem 8.5.

To treat the Kepler problem in three dimensions choose a system of
Euler angles (p,9,%) such that 1 =1 &3 and r = r &, see figure 8.4.
Denoting by [; ( = 1, 2, 3) the components of 1 with respect to the unprimed
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axes, show that (i) [, lg] = 1 (not to be confused with [¢,!3] = 1), and (ii)
[, 0] = 1.

8.4 Perform the calculation leading to equation (8.15).

8.5 For the Kepler problem in three dimensions with
= —(k/r} — (h/r?), find the periods T, Ty, and T,.

8.8 For an electron in the field of a nucleus of charge + Ze, the relativistic
Hamiltonian is H = ¢/p? + mic2 — Ze?/r . (i) Find the energy Erq of
closed orbits (0 < E,a < mpc?) as a function of Jy, Jg, and Jy.

(i) Check your result against the non-relativistic expression.
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Solutions to ch. 8 problems

$8.1 For 0 < E < 2mgé we find

= A(E) = 2/00 ¢V2m\/E — 2mgt sin®(8/2) d8
-8,

&
=4vom | /E - 2mglsin®(8/2) df
0

o [(E
fo = 2 sin ( Fmgt

dA(E _y \/‘ f"f’
sin® 80/2)——31112(9/2

The change of variables 8 = 2 sin™ ! (sin(fo/2) sin ¢) casts this expression into the

standard form p
Tﬂﬁ/_ﬂ;_
L PN 1-— k’sinzyb

= sin’(8o/2) = E/2mgl

where

The period is

with

Using the generating function

9
Ga(8, Jp) = f\/ﬁ/ \/E(Jo) — 2mglsin®(6' /2) d§’

$ % _db J/_—————
2 aJe E ~ 2mgtsin®(8'/2)

$ 1 JYay' //1 - k2sin?y/

Z I Wy

Note that the expression for ¢ might have been found more simply by noticing
that ¢ must be constant and ps = mé26. This requires that

we find

yielding

’_a#
¢= Cf m (C = constant)
1] 14

Then ¢/2m = C/2rmé® is equal to 1/T = dE/dJs for C = 2rmé* dE/dJs.

Thus
dE deg'
= 2nrmé’
¢ = 2mm d-fo[ Po(E,0)




8.6. CHAPTER 8 PROBLEMS 209

G2
£ -

f— e = -

-2m

'
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-7 0 X ¢‘.'m

Figure 8.5: Function ¢(¢), problem 8.2

in agreement with the expression previously found.
The cases £ > 2mgl and F = 2mgf are left to the reader.

S8.2 Clearly J = A(E) = 2¢v/2mE, T = dA(E)/dE = 2¢/v, where v is the
velocity. The canonical transformation is

p=J/28 , gq=L¢d/m for0<¢p<T ,
p=-J2, q=t2n - @)/ form<Pp<2r .

It is convenient to use the generating function G = —p g(¢), where

o0

_t 4 cos((2n + 1)¢)
w0 =3~ Tﬁg (2n +1)?

is the function shown in figure 8.5. Then
g = -9Gs/8p = q(¢),
J = -8G3/0(¢/2m) = 2npdg(¢)/dd , p=xJ/2¢ ,
H=p*/2m=J"[8m& |,
J=-8H/8(¢/2m) =0 ,
¢/2n = BH/BJ = J/4me* = ¢~ \/E/2m |
T =2x/p=200v .

S8.3
I =1lsing sind, lo =—1l cosp sind, lg=1 cos? .

In figure 84,11 > 0, l, < 0,8inp =L //I? =12 >0, cosp = -l //1* =12 > 0,
tan = —I /la > 0.

(i) Since ¢ = —tan~'(l1/l3), we have

[p, s} = —l__+T1]/l;)_2 (;1;[11,13] ~- %[52:13]) =1
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(ii) It is not surprising that [¢,{] = 1, since [ is the generator of infinitesimal
rotations around I, and 1 is an angle around ! in a plane normal to 1. If we want
to prove it the hard way, we can use the expression

- hwz — {231
Y =cos™! —_—— ,
/1% — I3
where z; and [; are the components of r and 1 with respect to the unprimed
system. Thus

¥, l]= bz ] - Lz, - _-—2736% +13) + ls(liz1 + bax2)
’ r sing /13 + 12 rl sinwm ’

which leads to the desired result by expressing the coordinates and the angular
momentum components in terms of the Euler angles.

S8.4 With the notation of section 2.4 we have
pr = ~1 ds/df = la(s) ~ s2)sin(af)/2 = lay/(s1 — 8)(s —52) ,

g 8
Jr=fprdr=2f prdT=2la/ —gds,

1 52

where
R=a+bs+cs2,a= —s182 <0, b=s1 +32 >0,
e=—1, A =4dac - b =—(81 —-32)2 <0.
Using eq. 2.267.2 in 1.S. Gradshtein and 1.M. Ryzhik, Table of integrals, series,
and products(Academic Press,1980) pp. 81 to 84, one finds

™ @dar:w S1 % 92 -1
52 2./%182

etc.

S8.5 J, is given by equation (8.15), J, = 27 I3, and Jy = 27 I. The Hamiltonian
is
p2 I k h 2mimk?®

The periods are

€A VRN L

aJ, 4m2mk? ’
-1} G -1
OE 1/.]3 — 87imh o8
T‘f’_'(aJ‘p) = 5 o Te=l35,) =

We expect the last since ¢ is a constant determining the position of the orbital
plane.
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S8.8 (i) c’p® = (Bvet + Ze*[r)” — (moc®)’, and, with p? = p} + P/7?,

¥

_ \/E‘fm - (moc‘Q)'2 2E;aZe? 12— (Z%e4/c?)
pPr = o2 + -

c?r r?

J. = }pr dr = =21/ 12 — Z%e4/c? + 27rE".,,12t32/t:\/(ﬂfa,oc:'z)2 -E2, |

Jr + 7/ (Jo + Jp)? —An222e4 [c? = 2m By Z€® /C\ﬂ’fﬂocz)z -E2

44'11'2Z2¢:4/(:2 ~1
2
(Jr + /(o + Jg)° — 4m2 2264 /c? )

(i) Putting Ee1 = moc® + E, we have E = p?/2m — k/r —h/r’ + ... with
k = Ze® and h = Z%e*/2moc®. Comparing with equation (8.17), we have

Egel = an()f,:2 [l +

27r2mozze4

(Jr +V (Jo + Jp)? — 4n2Z2et fc? )

E~ -

2

which agrees with the expansion of E:e found in (i).






Chapter 9

PERTURBATION
THEORY

Perturbation expansions are presented emphasizing their similarity to those
of Quantum Mechanics.

9.1 The operator Q)

Let H(p,q) be a Hamiltonian not explicitly dependent on t. Therefore
H(p(t), q(t)) = H(po,qo), where py = p(0) and go = ¢(0). As we know, the
evolution of a function f(p, ¢) is governed by the equation

df .
T =Uf=1H) . (9.1
Unfortunately, the operator
_ 0H 8 OH &8
U= - -+ 9.2
Z ( 8q: Ope ~ Op; 3q£) #32)

requires the knowledge of p(t) and g(t), i.e. the solution of the dynamical
problem.
In this section we shall express f(p, ¢) in the form

Fo®),a®)) = ¢ f(po,q0) (9.3)

where the operator  acts on the initial values (po, ).
This is reminiscent of the Schroedinger-picture formulation of Quantum
Mechanics, in which the wavefunction at time ¢ is expressed in the form

213
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¥(g,t) = exp(—itH(p, q))¢(q,0), with p and ¢ time-independent operators.
{Of course, f(p(t), g(t)) has nothing to do with the wavefunction. If we feel
the need of a quantum mechanical analogue, f(p(t),q(t}) can be said to
correspond to a Heisenberg-picture operator.) Similarly, {2 is an operator
acting on the initial values of the canonical variables and, therefore, time-
independent. To save space we shall write = for (p(t),g(t)) and xo for
(po, go). Then equation (9.1) can be written more precisely in the form

Y& _ 5y, @, (0.4)

where the Poisson bracket {t, e is understood to be in terms of p and ¢,

[ 0f(z) OH(z) _ 8f(x) BH (x)
B Z( Bg;  Op Op; Bq )

[f(x)a H]z = [f(p,q), H(p, Q)}p,q
i

(9.5)

We now use the property of the Poisson brackets [f,gl, , = [f,9]p o
where (P, Q) are canonical variables like (p, ¢). Since (po, go) a,nd (p(t), q(t))
are related by a canonical transformation (the Hamiltonian flow), we can

write 4f @)
T
2 = (@) H @)y - (9.6)
Then, since the Hamiltonian is a constant of motion, we can also write
d
Y _ (oo, ), Bzol, - 67)

where z(zq,t) stands for (p(po, g0, t), 9(po, go,t}), namely p and ¢ as func-
tions of the time and of their initial valves. Taking t{ = 0 in both sides of
(9.7), we have

() =rteo o, - 08)
v Ji=o
We define the operator {2 by the equation
o) = () = fenHol, - 9.9
t=)

A trivial extension of this formula reads

0 fa0) = (L42) = Wftoo HEl B 010

Hence

f(p(t),q(t)) = Z ! (d“f(pé:l Q(t)))twg
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= Z;}ﬂnf@mfm) =" f(po,q0) - (9.11)

n=0

Example: For H = p (a dimensional constant factor omitted) we have

_0f8po _ Of Op _ Of
If(pﬂ:qﬂ);H(pﬂqu)] - aqo apﬂ apo aqa = aqo 1 (9.12)
2% f
[[f(PO’qULPﬂ]:pO] = "'a't;g ¥ (9.13)
Hence 5 "
-9 0 _ ted
S'l—aq0 , € =g %0 . (9.14)

Example: For H = g we have Q = —8/dpo.

These two examples are reminiscent of the quantum mechanical momentum
and coordinate operators in the coordinate and in the momentum representation,
respectively.

Example: For H = (p? + m*w?q®)/2m one finds

Qpo = [po, H(po, 00)] = —mw’qo, Qgo = po/m,

o(3)(ie TI(E) e

The powers of the matrix (¢ = mw)

0 -
=( 1 7))

are
A™ =(-)" and A" =(-)"A
Hence
e =1 cos(wt) + A sin{wt) (9.16)
( p(t) ) _ ( po cos(wt) — muwge sin(wt) ) (9.17)
q(t) go cos{wt) + (1/muw)po sin(wt) ) )

In terms of J and ¢ one has H = w.J/2m, QJo = 0, Qo = [po,wJo/27] = w,
Qo =0 (n > 1), J(t) = exp(t)Jo = Jo, ¢(t) = exp(tV)do = ¢go + wt.

9.2 Perturbation expansions
Let H = H© 4+ H(1), We assume that we can solve exactly the dynamical
problem for H©® alone, while H{1} is a perturbation (JH#} <« éH ).

The Hamiltonian flow for H(® yields the functions (p{9(t), ¢ (t)) from
initial values (po = p(0), g0 = ¢/®(0)). Thus 02 such that

'@ £ (po, 90) = £ (), ¢ (8)) (9.18)
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is a known operator.

Let Q be the corresponding operator for the total Hamiltonian
H = HO 4+ HO)  Starting from the same initial values as in the unper-
turbed probiem, we write

e f(po, q0) = fp(t).a(t)) - (9.19)

We can also write

Flp(t),q(@)) = e~ f(pg g0} = SEFEO(2), ¢ () , (9.20)

where

S(t) = ete=t® (9.21)
Differentiating with respect to ¢t we have
Q%(;l = (0 — 0O~ = 5B ) (9.22)

where
0(8)

() = e (0 — QO)et (9.23)

The subscript “I” stands for “interaction” to remind the reader of the kin-

ship of this method with the “interaction picture” of Quantum Mechanics.

Note that, in contrast to Q(® (; is a function of time. The differential

equation for S(¢} and the initial condition S(0} = 1 can be embodied in the
integral equation

¢
Sity=1 +[ Sy (thdt . (9.24)
0
This can be iterated, yielding
t t t
S(t) =1+ [ dty Qg(tl) +[ dt;/ di» Ql(t‘z)ﬂI(tl) + ... (925)
0 0 0
Example: HY = (p? + m®w?¢?)/2m, HM =~1q
© — a2 4+ Lpo -2
2 =~ 05—+ Lm0y (9.26)
(@ -0 = [po,yaol ==y , (2-2g=0 . (9.27)
Therefore 8
Q-0 3o (9.28)

¢ t
(f 9""“”(9~nf°’)e'*’“‘°’dt’) p(t) = [ T e L
v 0 dpo
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= [tdt' ot 2 (—7-3-%-) [po cos(w(t ~ t')) — muwgo sin(w(t — t'))]
0

" it
- _”7/ et’n(o) cos{w(t — ¢ ))dt' = —-ey/ cos(w(t — t’))dt’
0 0

= —(vy/w)sin(wt) , (9-29)

¢
( / e ¥ (- Q@)et “‘°’dz') g0 () = ——I=(1 —cos(wt)) .  (9.30)
0 mw

Higher order terms of the perturbation expansion give zero. Therefore

( p(t) ) _ ( ' (t) = (y/w)sin(wt) )
q(t) g () — (y/mw?)(1 - cos(wt))

_ po cos(wt) — (mwgo + v/w) sin(wt) (9.31)
— \ (go +y/mw?) cos(wt) + (po/mw) sin(wt) — v/mw? .

Note that the Hamiltonian H = (p* + m*w?q?)/2m + ~q differs only by an
additional constant from the Hamiltonian

2 2 2
_L mu vy
Hp=om+73 (‘” mw") (9:32)

for a displaced harmonic oscillator, Hp = H + v°/2mw*®. Hamilton’s equations
for Hp,

. _ OHp _ 4 4 ._OHp _p
p= 30 mw (Q+mw2) y §= ap ~m (9.33)

are satisfied by our perturbation solution.

9.3 Perturbed periodic systems

In section 7.10 and elsewhere, we glibly stated that all one had to do was
to find a canonical transformation to new variables (F;, Q) with the P;’s
constants of motion. This is possible only for a small number of exactly
integrable systems.

This section deals with cases where the Hamiltonian H (p,q) differs by
a small perturbation from a Hamiltonian Hy for which exact periodic solu-
tions of Hamilton’s equations are known.

We consider a periodic system in one dimension with

H(Jo, ¢0) = Ho(Jo) + AH1(Jo,¢0) (Al <1) . (9.34)
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The “unperturbed” Hamiltonian Hy depends only on Jp. If the second
term were missing () = 0}, the frequency would be

H
wolJo) = 2n IHelJo) (9.35)
dJy
and the energy Eo(Jp) = Hy(Jo).
For the harmonic oscillator
2 3.2
_ Pt omwgg” wodo
Ho =y + ot = 2, (9.36)

wp does not depend on Jp, and p and ¢ are the well-known functions of

(JD,¢D)
\/ smd)o and p =

Our program is to ﬁnd new variables (J, ¢) such that the “perturbed”
Hamiltonian

COS t;ég

H(JO(J! ¢)3¢0(Ja ¢)) = K(J: ‘}f’) (9.37)
is a function of J only with an error O(A"),
H(Jo, ¢o) = K(J} + O(A") . (9.38)

The greater n the better is the approximation.
The perturbation Hamiltonian H,(Jo,¢0) = Hi(p(Jo, do), ¢{Jo, $o)) is
by assumption periodic in ¢ and can be expanded in Fourier series!

H (Jﬂi%) = Zhl(k: JO)eika)u » (9'39)
k
1
hy(k, Jo) = = dg’bg e~ 1 (o, do) - (9.40)
0
Note that the average of Hy over the unperturbed motion is
(HL) = M(0,Jo) . (9.41)

We now perform a canonical transformation with a generating function

of the Ga-type 2
051 (o, J1)
Oy !

1For typographical convenience we do not write k as a subscript of k1. Our notation
hy(k, Jo) does not imply that k is a continuous variable.

2Jo = 2r88(do, J1)/ 80, S(d0, 1) = ($o/2m) 1 + AS1{do, J1), where (@0 /271 is
the generating function of the identity transformation.

Jo = J1 421 (942)
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¢ =¢o+ 27r)\ég%—’?l"h-) : (9.43)
Choose S; so that
wo(ﬁ)%ll + Hy(J1,¢0) = M (0,h) (9.44)
where
Hl (leéﬂ) = [Hl(Jﬂr ¢0)]J0...;>J1 (945)
and dHo (Jo)
Ji) =2 —-1—"—] . 9.46
wﬂ( 1) TI'[ d‘](} Jomrds ( )
Then
H(Jo,go) = Ho (1 + 2maie) ) amy (5 +2ma 25 o)
~ Ho(J1) + dIQ}JI)Zm\aSI gbo, J1) + AH, (Jg, ¢o) + 0()\?)
1 do
= Ho(J1) + M (0, J1) + O(X?)
H(Jo, ¢o) = Ho(h) + MHi(Jo, ¢0)) s,z + OOV (9.47)

If we want the approximation quadratic in A we must go one step further
with the expansion in powers of A. Neglecting terms O(A®), we have

H(Jo, o) — Ho(J)) = df?}fl)zﬂasl (3?(; J)

1d&Ho (1) (,,_, 8S1(do, J1) Y’
i (21”\ o ) + AH; (J1, o)
a1"11(']15650) aSl(qu:'}l)

3.]1 2mA 6050

d?Ho(J1) (351(¢0. Jl))2 +27r3H1(Jn¢o) 351(o, 1)
s 360) 84y B0
= Mha(0,00) + oy [ F 20— a(0,) - H 00

Qﬁé‘%ﬂ(h,(o, Ji) — Hn(-h,fﬁl))] )

+

= M1 (0, 1) + A2 {'m’

+
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where
o 2m

wo(Jl) '

We now perform a second transformation (Jy,¢1) — (J2,¢2) ete. If
we are content with the approximation quadratic in A, we just rename
(J1,¢1) = (J,¢) and go no further. We then have

H(Jo,¢0) = Ho(J) + MH1(J, 8))

A [(HI(J, ) <6—H3%J—¢l> - <2%¥ﬁH“J’¢)>]

2
wo(J)

Suppose the Hamiltonian depends on several action-angle variables
(Joi, #0:) (1 =1,...n),

Ay

where

A=)

H(Jo,¢0) = Ho(Jo) + AH1(Jo, o) , (9.48)
where JQ = (Jg], . Jgn), ¢'0 = (¢0], ‘s ¢0n)a and
Hi(Jo,90) = D _hi(k,¥o) exp(ik - go) . (9.49)
Kk

Requiring
Ho(J0) + A\Hy (3o, do) = K(3) + O(2?) (9.50)

one finds
K(3) = Ho(J) + XH:i(Jo, o)) (9.51)

and that the generating function is

hy(k,J) exp(ik - ¢o)

S(¢0,d) = 5= ¢o J+iy = e , (9.52)
kA0
where _ (OHNI)  9Ho()
wold) = (55 50 (9.53)

The generating function diverges if the zero-order frequencies
woi = OHy/8J; are commensurable, i.e. there exists a relation m;wg; = 0
with m; integers. In this case, perturbation theory is unsuitable for the
integration.
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9.4 Chapter 9 problems
9.1 Do the calculation in section 9.2 {Example) using action-angle variables.
9.2 Oscillator with time-dependent frequency using action-angle variables.

9.3 In section 9.3 we only needed to assume the existence of S1(¢o,J1).
Find an explicit expression.

9.4 Let us apply the method of section 9.3 to the harmonic oscillator with
the perturbation
3
) sin3¢o

9.5 Express the Hamiltonian H = p3/2 + w?(1 — cos8) for the plane
pendulum {6 +w?sin8 = 8, w = \/g/1)) in terms of the harmonic oscillator
variables

AH, = )\qa = A(
Rmwg

pp =/ Jow/m cosdy , &=+ Jo/mw singo ,

and find the 8% correction to the period.

9.6 Expressing the coupled-oscillators Hamiltonian
H=(p +wig})/2 + (B} +w353)/2 + M

in terms of harmonic-oscillator variables, we have

widor +wadoz A /Jm Joz . .
H e iy LS n¢o 8
2r + TV wwe ' 1 8in do

Find K(J;, J2) to the second order in A.
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Solutions to ch. 9 problems

$9.1
HO =wJ/2n , HY =~/ J/mmw sin¢
JOM =do , ¢(t)= o +wt

(22 — QY gy = [y, Hé”] = —2v4/mJo/mw cos ¢o
(@ — )¢ = [go, HS"] = yy/m/mwds sin po

¢ i
( / ' - o)t dt') JO8) = f e (2 - Q) d
0

]

[ 13
= —27\/ﬂJo/MWf e cosgo dt’ = —2’}?\/11'.]0/13’2(4)/ cos(po + wt') dt’
0 0

= —2vy/mJo/mw? [sin(¢o + wt) — sin ¢)

J(t) = Jo — 2y\/mJo /s’ [sin(do + wit) — singho] + ...

t
(/ o0 ( _ qo1)g-v'a® dt’) O (t) = (.. ) (o +wt)

G

t t
- / e n(f’)[qbo +wit—t)dt = 7\/1r/meo/ e &in ¢o dt’
0 0

£
= ’y\/ﬂ/mw‘*Jo/ sin(¢o + wt') dt' = v/ 7/muwJo[cos do — cos(do + wt)]
4]

@(t) = do + v/ 7 /mJow3 [cos g — cos(Po +wt)] + ...

Check that Hamilton’s equations for J and ¢,

J = —8H[8(¢/2m) = =2y+/7J /mw cos ¢
b/2m = DH}DJ = w/2m + lv/2vamwJ ] sing,

are satisfied in the present approximation.

and
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S9.2 The Hamiltonian is
wJ
H= 5;;: + o sin ¢ cos ¢

With w =~ wo + dot, we have H = H® 4+ HO),

(0 _ wod (1y _ wo wod
HY = o= and H''/ = o t+41m0 sin(2¢) + ...
We have
(@ - Ao = [Jo, HY) = Lotocos(Ebo) [y, fo] _ _cnocosBn)
wo 2r wo
— Mgy = (N = sin(2¢0o) [g_sg } . sin(2g0)
(2 = Q%) o = [¢o, Hy '] = o (t'*‘ o 2“339 =ahp t+-——--2wo ,

¢ ¢
([ et’ﬂ{m (Q - nm} )e—i ol dt") J({n (t) = / e“" nt® (Q — ﬂ(ﬁ)).fo dt’
0 0

t . . ¢
= [ ot A% (-—-‘i’ﬂ Jocos(2¢g)) at' = 22 1 / cos(2(¢o +wot')) dt'
0 0 wo Ju

J(i)=Jp (1 -— [ cos(2(¢o + wot’)) dt) ;

J(t) = Jo (1 - -z-i%[sin(z(w + wot)) - sin(2¢o)}) +
Similarly we find

¢(t)wéo+wat+99t—+

2 " 4wl [cos(2¢0) — co8(2(do + wot))} +...

in agreement with eq. (3), solution of problem 13.9 in G.L. Kotkin and V.G.
Serbo, Collection of Problems in Classical Mechanics (Pergamon Press,1971).

S9.3
S1(¢o, 1) = —Z"‘%}—Tl% exp(ik¢o)
kw0
In fact,
wo(h)%ﬂﬂ + H1(h, ¢o)

= -9 mi(k,J1)exp(ikgo) + Y _hi(k,Jr) exp(ikso) = h (0, )
k0 k
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S59.4 We find at once that (H,) = 0, and so there is no correction to the Hamil-
tonian linear in A. Furthermore, since wp is a constant, dwo(J)/dJ = 0, and so
we have only

K = Ho(J) - »* &% <MH1(J, ¢)> +0(»%)

wo oJ
Since )
OH,(J, ¢) _ 3.J . 6
< 8.] H’ (Ji ¢) - 2(1rmwg)3 (Sln ¢>
and N
1 [T s, _ 5
P /0 =1
we have 2
_ W()J _ 2 15J 3
K(J) = 27 A 16m2m3w] +0(\%)

Let us go back to p and q. From the unperturbed solution we have
p = p(Jo, ¢o) and q = q{Jo, ¢o). In these formulae we must express Jo and ¢ in
terms of J and ¢.

For the harmonic oscillator with the perturbation AH; = Ag®, in the approx-
imation linear in A we have

_ JU . _ 1 351 . . 351
g= 1/7rmwosmqbo = J+21r,\3¢0 sin (qb 27 A 57 )

_ J . 2 1 051 . a8, 2
= wmwoSln¢+\/;rm[2ﬁ6¢osm¢ \/jaJ COS¢}+O()\)
Now 3
08 1 1 Jo ) .3
——— T H o —
Ao wo 1/, o) wy (wmwo singo
%
Sy = -1—( Jo ) (COS (,bo - lCOSS(}so) N
wo \ Tmwo 3
95, _ 3v'o (cos $o — l<1053¢0) )
dJo 2&)0(11"”%00)% 3
and so
qg= J sing + A J [—sin‘$ — 3cos®¢ + cos'd] + O(A)
Tmwy mmiw ’
_ ) AJ 2
=\ 7 sin¢ — prm—p (3 + cos(2¢)) + O(X%)

Similarly one finds

Mo
cos ¢ + —— sin(2¢) + O(\?) .

0
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Check that (p® + m2w?q®)/2m + Ag® = woJ/2m + O(A?), and, with [¢, J] = 2,
that [g,p] = 1 + O(\?).

$9.5 We have

_Jow 2 2 _ _-{9_ . _ﬁ_h_)_ Jg - 4
H= o cos“¢o +w [1 cos (‘/mu smqbo)]— o —4!7‘_2 sin"¢o +...

From action-angle perturbation theory

Jw J?
KU =57 ~6am *

Substituting J = mwé}, where 0o is the amplitude, we have

2
43:271'6—H= 2(1---0—0+...) )

aJ £ 16
2

T=2—.1r=27r £(1+92‘+...)
¢ g 16

S9.8 We have
wiJ1 + wada

27

_ A [N sin{(¢o1 + ¢o2) _ sin(¢m — $o2)
S1(¢o, ) = 27rV Wiwz ( w1 +wz wn -~ wy ’

dHy 881 | 0Ho 85\ _ 040
8J, Opnn  8Jy Bdoa | '

Ko(J) = Ho(J) =

)

K,(J) = (H)+ 21r<

6.]1 6¢01 an a¢02

raq? | OHo [ ( 85, 2 g 00Ho [ 88 85\ | &°Ho [ (85 ?
6J1’ Bqu 6J16J2 a¢01 a¢02 anz a¢02
8H, 8S: OHo 98
+2”< a5, 0o T 9 a¢02>

K»(J) =(Hz)+21r<aH1 05 | 9H 95, >

This reduces to

_ .. /0H: 88 | 8H:1 85
Ka(d) = 2"( 3: Opor |~ O a¢m>
- XZ wle -w1J2 .2 .2 _ )\2 J] J-z
- T2 w12 - wg (Sl!l quszn ¢02) - 47r(wf —wg (;T w_z)
Finally
A2

. oK
¢1—27T'6"7';—w1+

2un (w} —w}) ’
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in agreement with problem 7.5,

Q= \/wlz +w? + /(w2 —w)? +42
2

A? A2
2
~ wl + 3 5 ~ wh + —_-'i—_-'l_
\/ wy — Wy 2wy (wy — w3)



Chapter 10

RELATIVISTIC
DYNAMICS

Relativistic kinematics and dynamics of a particle, Lorentz transformations
and their connection with the SL(2) group, are presented first. The Thomas
effect is discussed

The equations of motion of a charged particle with magnetic moment in an
electromagnetic field are established.

The chapter ends with the Lagrangian and Hamiltonian equations of a
charged particle.

10.1 Lorentz transformations

Consider an inertial system S characterized by a system of axes XY Z and
by a clock C. Let 2! = z, 2% = y, 2° = z be the coordinates of a point
particle with respect to XY Z at the time £ shown by C.

We regard z° = ¢t, z', 22, and 23 as the components z# (i = 0,1,2,3)!
of a 4-vector

8

x
I
=
L o o~ O

(10.1)

] 8

Let z'* (1 = 0,1, 2, 3) be the space-time coordinates of the particle with
regpect to another inertial system S'.

THere c is the speed of light. In the following, Greek indices take the values from 0
to 3, Roman indices from 1 to 3. The sum convention will continually be used for both
kinds of indices.

227
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It is well known that z'* and =# are related by a Lorentz transformation

o# = A¥ Lo (10.2)
such that the expression (2°)® — (1) — (z?)° — (#%) is invariant,
() - ")’ = @) - (°) = )" - (")’ - &»)’ - (*)°

A transformation in which §' = S, t' = ¢, while (z*,z?,2%) and (2", 2%, 2'3)
are spatial coordinates with respect to XY Z and X'Y'Z’, the latter obtained
from XY Z by a rotation, will be regarded as a Lorentz transformation. The
group of space rotations is a subgroup of the Lorentz group.

The invariant expression can be written more concisely as

@) — @) = @) - (=) = guats’ =a*z, . (10.3)
Here g,,, are the components of the metric tensor
goo=1,gnu=ge=gn=-1,0,=0if p#v (10.4)
and
Tu = gur” , e zo=2", zy=~2' (i=1,23) . (10.5)

z, and z# are called the “covariant” and “contravariant” components of x.
The contravariant components g”* of the metric tensor can be defined
as solutions of the equations

g g =g* ,=Qifpu=v, 0if u#£v) (10.6)
These conditions make it possible to invert equation (10.5) to give
z# = g¥'z, . (10.7)

Of course, one sees at once that g#* = g,,,,, while g* ,, is defined in equation
(10.6).

In general, a 4-vector
0

(=

w
i
8.8

1
2 {10.8)
3

5]

is an object satisfying all the definitions and relations written above for the
space-time coordinates,

a'* = A* 0¥, a, = gua”, a,a% =a,a”. .. (10.9)

A tensor T has components T#* transforming according to
T#" = A% AY,T'%?. Other components are T4, = T#fg,,, T,* = g,,T*",
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10.2 Dynamics of a particle

The 4-velocity of a point particle is a 4-vector v with components

dx#
TR
v it (10.10)

Here

ds = ¢~ 1/(d20)? — (ds')* - (da?)’ - (de®)? = ¢~ \/dmpdmn  (10.11)

is an invariant representing an infinitesimal time change as measured by
an observer moving with the particle. In fact, if de* = 0 (i = 1,2,3) and
dz® > 0, ds = ¢~1dz® = dt.

¥ v = (dz/dt,dy/dt,dz/d¢t) is the familiar velocity vector, we have

dz® . dxf dr?
vO:E‘;’:’YC’v‘:-&;—: '-a-{ (1}127‘%}3,...) y (1012)
where
=L =Y u=p (10.13)
Y= m 1 - c ) .
In a frame in which the particle is at rest, one has
W=c , =0 (1=1,2,3) . (10.14)
The norm of v is v,v# = ¢ in any inertial frame.
The acceleration 4-vector is defined as
dv
= . 15
a= {(10.15)
Differentiating v,v* = c?, we find
gt =0 . (10.16)

We now want to establish the relativistic version of Newton’s second
law. We start from the experimentally established formula

—_=—(myv)=f |, (10.17)

which tells us that the relativistic momentum is given by the product
mags X velocity, but with a velocity-dependent mass

m
m(v) = my= ﬁ (m = rest mass, constant) . (10.18)
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The rest mass was previously denoted by my.
Using dt/ds = -y, we can write

d A .
a—;(m'yv} =~vf or ma*=f' (f' =~fs,...) . (10.19)

From a#v, = 0 we get

maley = —ma‘v; = —fluy = (fave +.. ) =4 v . (10.20)
Hence
ma® = gf»v , (10.21)
and so
ma=f |, (10.22)
where
clyf v
f= e 10.23
Y fy ( )
Sz

is the 4-force. In terms of a 4-momentum with components p® = mey and
Pt =mvt (p! = myv,,...), we have

dp*
@ =

The relativistic energy is
E =¢f® = mcly (E=mc* +mu?/2+ ... forv € c).
As we would expect, its rate of change equals the power,

dE_C o _
Frihe ’ra =f.v . (10.24)

Longitudinal and transversal masses:
Suppose f is parallel to the velocity v, f = fyj. Then d(m<yv)/dt = f gives

dy dv
mvtmrg = fi (10.25)

which tells us that dv/dt is parallel to v, and so dv/dt = (v/v)dv/dt.
Since 1~ 4% = 1/, —28dB/dt = —(2/~+%)dv/d¢, dy/dt = (v7?/c?)dv/dt,

we have
v dv (92

—— { =~ = N =
mea\e’ +’Y> fii s (mV)vdt fi
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vdy
mi—g =

where m is the “longitudinal mass” m; = m~®.
If f is normal to v, then

From dE/dt =f-v =f, - v =0, we have dy/dt = 0. Then

.__—_-f
Mige ~ 4

with mj = my (“transversal mass”).
Orbital angular momentum
Since p* = mdz* /ds, we see that the tensor

LHY — miupy _ xupy
satisfies the equation

dL#¥
ds

With v = dt/ds and f! = ~f, etc. , we have

= ghf¥ — g f

dLlZ

5 = ofy —vfe
where
L'? = z'p? — z%p' = my(av, — yus)
On the other hand
dz® 01 _ .1 £0
ds =f -z'f

For a free particle this gives

ctp' —zE/c=const , z = (c*p'/E)t+ const = v,t+ const

231

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)

(10.33)

. (10.34)
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10.3 Formulary of Lorentz transformations

Let a and b be two 4-vectors, and L a Lorentz transformation matrix,

A‘l"0 A‘l’1 A‘l‘.z A‘l’3
Aly AL AN AL

L= . ) . 10.35
Ny AL NG, A (10.35)
A% A% A% A%
The product
a.b* = guatb” = a'gb (10.36)
with
1 0 0 0
1o -1t 0 o0
=10 0o -1 0
0 0O 0 -1
must be invariant under Lorentz transformations,
aTgh' =aTgh . (10.37)
Substituting b = Lb' and aT = a'TLT, we find
LTgL=¢ . (10.38)
Taking the (0,0) element of both sides of LTgL = g, one finds
2 2 2.2 2
(Aoo) - (Alo) - (Azo) - (Aaa) =1 . (10.39)
From equation (10.38) and g? = |, we have gLTgL = |,
L~' =gLTg (10.40)
_AD 1 2 3
-t | Ay A AL AN (10.41)

_Ag-z Aiz Az-z A:2
=A% Ay A% A%

If the elements of L~1 are denoted by (A~)" | we have

A5 =A%, (A7H% = —Al,, (A7) = =A%, (A™Y), = A7,

¥ 13

Equation (10.39) for L~! gives

(A%)* — (A%)° = (AY)? = (A% =1 . (10.42)
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How many conditions does LTgL = g impose? Since both sides are
symmetric, just 4 + 6 = 10 conditions imposed on the 16 elements of L.
Hence a Lorentz transformation depends on 6 parameters.

Space rotations
For these A% = 1, A%, = Af; = 0. The remaining elements A*; can be
expressed in terms of three parameters. We can use the formulae of section
4.1, replacing r by x, n; by n* 2, and extending the J;’s to the 4 x 4 matrices

0l0 0 O ojJo o o0 0] 0 0 0
=000 o} ,_jofoo -1 L=|0]0 10
ol0 0 1}’ ojo 0 0 |’ 0l-1 00
0|0 -1 0 0jL 0 0 0lo0 0 0

These matrices obey the same commutation relations as their 3 x 3
counterparts, [J;,J2] = —Js and cyclic permutations. For finite rotations
we have also x = exp(—J(A)¢)x’ with J(i) = n'l;.

Pure Lorentz transformations
Pure Lorentz transformations are those for which L is symmetric
(AK, =A%), A% = A% (i = 1,2,3) are not all zero, and

A% = \ﬂ'*’ (A10)2 + (M%) + (A%)".
It follows that L depends only on the three parameters Ay, A%, and A3,
and can be expressed in the form 2

AOO l Al_D A20 A30

L= | Ae (10.43)
= Ai Aj ] ‘
A% | 64 + -Ku‘:)—_;{l
A3,
“AL
L~ = Af A 10.44)
__,,Azo 6'3 + 7\_000_;_{1 (
~A3,
From the elements A% one can construct the unit vector
i
Ao (10.45)

nt = -y = ————=
V(A%)" -1

2In chapter 4 we did not need to distinguish between covariant and contravariant
indices. Here n! = ne,n? = ny,n® = n,.
85;; is the Kronecker symbol (817 = 822 = a3 = 1, §;; = 0 if i # 7).
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and the relative velocity

(A%)" - 1
u=c (10.46)
AY
With g = u/c and v = 1/4/1 — 32, we have
Ay=v , Ay=pym' , A, =6;+@q—Un'nd . (1047)

If you are not satisfied by :+ and j not being in the same position in the
two members, write _ _
Ay =g% = (v - I)n'n; (10.48)

with g*; defined by equation (10.6).
More explicitly the matrix for a pure Lorentz transformation with ve-
locity u =(ung,uny,un,) , n; =n' etc. , is

gl fyns By Pans
L(u) = Byng |1+ (y=Dni | (y—=Dnzny | (y = Dngn,
Byny | (y=Umyn, |1+ (y=Dny| (= Lnyn,
Byny | (y—Dneny | (y=1meny | L4 (v~ ng
(10.49)
Special case: The X'Y'Z’ axes are parallel to the XY Z axes. The origin
O' of the X'Y’'Z’ axes moves with velocity u with respect to XY Z in the
positive z! direction (u > 0, n, = 1, n, = n, = 0):

vy By 0 0
L(x,0,0) = ﬂﬂ”f 7 (1] g , (10.50)
0 0 0 1

x = L(u,0,0)x" gives

g® = y(z'° + Bz") , ' =y(z" + B2°) , X =22 | ¥ = 2?,

x!(} =,.Y(z{}_ 6551) , .13" - ,.Y(xl —ﬁ:cﬂ) : xm — 11:2 , xfs - xs .
Foru<ec f«1,2°=2°2" =z —ut, 2% = 52, '* = 2% (Galilean
transformation).
It is useful to express § and « as 3 = tanha, v = cosha, A~ = sinha.
Then

A% =cosha , A%y =n'sinha, A%, = 6; + (cosha — N)nind . (10.51)
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The components a* of a 4-vector with respect to S are related to the
components a’* with respect to S’ by the formulae

a”® = cosha a® + sinh a (nja?) , (10.52)
a’* = a' — ni[sinha a® + (cosh o — 1)(n;af)] . '
Remember that nja! = —(nza! +...).
Perform two Lorentz transformations in the same direction, say
m PBm 0 0 coshay sinhe; 0 O
1 Bim m 00 sinha; coshay 0O O
Lwn0.0) =1 75" o 1 0 0 0 10
0 0 01 0 0 0 1
and L(usg,0,0). We find
cosh(ay + a2) sinh{a; +a2) 0 0
L(us, 0,0) L(uz,0,0) = sinh(a; + ap) cosh(oy +a2) 0 0
0 0 1 0
0 0 01
Yy By 00
— _| By ~» 00
= L(u,0,0) = 0 0 1 0 (10.53)
0 0 01

with
v = cosh(ar + a2) = iy (l + Bif2)
B~ = sinh(a;a3) = v v2(6r + B2)
8 = B + Bo
14515

It is easy to remember that when performing two pure Lorentz trans-
formations in the same direction one must simply sum the o’s.

A pure infinitesimal Lorentz transformation with u = i da can be
expressed in the form

L(fda) = | + n'K; da = | + (nKy +...)6a (10.54)

where the K;’s are the symmetric matrices

01 0 0 0 01 0 0 0 0 1
1 000 0 00 O 0 0 0 0
K“oooo’K2“1ooo’K3‘oooo
0 0 0 0 00 00 1 000
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Hence for a finite transformation we have

. N
L(fa) = lim (I+n‘K;%) = K(h)a (10.55)

N—ooo

with K(f) = n*K;
While two pure Lorentz transformations in the same direction give the
same result irrespective of the order in which they are performed,

L(m)L(ug) # L(uz)L(u;)

if u; and uy are not parallel.

This is similar to the fact that two successive rotations around different
axes yield a result that depends on the order in which they are performed.
However, while the product of two space rotations is a space rotation, the
product of two pure Lorentz transformations in different directions is not
a pure Lorentz transformation.

This is connected with the fact that the K;'s do not form a closed alge-

bra. One has
[Ki, Ka] = Js , [Ki, Kj] = €ijeKe (10.56)

[, Ke] = =Ka , U2, Ki] = K3, [Ji, Kj] = —eiaKie (10.57)
and the already known
[J1,J2] = —Js and cyclic permutations. (10.58)
It can be shown that
L(a;)L(ug) = L(uw)R , (10.59)

where L(u) is a pure Lorentz transformation and R is a space rotation.
In section 10.4, using the SL(2) representation of the Lorentz group, we
shall prove the approximate formula with an error of the order of {611]2

L(u + du) L(—u) ~ L(éw) R(hd¢) (10.60)

with 6w = 26wy + vdu,, where du) and du; are the components of du
parallel and normal to u, and

2
R(Adg) =1+ J. (ZI‘(:Ti) u x Ju) . (10.61)

Here is a quick check for u « ¢ (v ~ 1) by using the Hausdorff identity

eheB = oA+B+E[AB)+.. (10.62)
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We have

exp (-(1; (u* + 6u‘)K;) exp ("EuiKi) o exp (%5“% - 52—2[(”’. + 5u£)Kir“jKa“})

~ L(6u) exp (—Léui uje,rsz;> = L(du) exp (2—22(11 X Ju)lJ;)

2c?
(10.63)
Other useful relations are
L(—u) L(u + éu) = L(dw) R(—1id¢) (10.64)

and
L(u + 6u) R(dp) L(—u) = | + 42c7 'K - du+~2c72) . (u x du) (10.65)
with K = (K}, Kz, K3).

Boosts and active space rotations
The reader may have wondered why we wrote x = Lx' rather than having
the “prime” appear on the left side. With our way of writing a pure Lorentz
transformation L(u) is a “boost”. If p© = me, p't = 0 (i = 1,2, 3) (particle
at rest in S'), then, taking u in the ! direction for simplicity’s sake,

P=vyme , pl=ymu , pP=p"=0 (10.66)

is the momentum with respect to S.

The formula a = exp(—J(f)¢)a’ relating the components of a fixed
vector with respect to XY Z and X'Y’Z’ (obtained from XY Z by a coun-
terclockwise rotation through ¢ around i) can also be given an “active”
meaning. If (a!,a?,a®) are the components of a vector a with respect to
XY Z, then (a'!,a,a’®) are the components, also with respect to XY Z, of
a vector obtained by rotating a around n through ¢ clockwige.
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10.4 The spinor connection

Consider the Hermitian matrix

0 '3 11 12
x'=( S T, )=x"‘o’“ , (10.67)

:L"] + ixm T

where oy is the 2 x 2 unit matrix |, and

0 —i 10
o‘lz((l)(l)),a‘zz(i 0‘),a3=(0_1) (10.68)

are the Pauli matrices. These obey the relations
[U;,O’j]+ = 26,'3" y [a,-,aj]__ = 2i6,‘jk0'k ’ (10.69)

oo = | 5,'_,- + ie,-,jk Ok . (10.70)

The Pauli matrices are all traceless. Using this property, we find

(2 p=v
trace(o,o,) = ( 0 if u#v ) (10.71)
and
z'* = (1/2)trace(a,X') . (10.72)
Note that
det(X') = (z°)” - (s")" = (z'3)" = (=°)" = =,z (10.73)
Let the matrix
M = ( T Tz ) (10.74)
ma1 M2

with complex elements have an inverse (det(M) # 0). Then M is an element
of L(2), the group of linear transformations in two dimensions.

If we restrict M by requiring that det M = 1, m;ma2—myamq; = 1, then
M is an element of SL(2), the group of the special linear transformations
in two dimensions.

Consider the matrix

X = MX'Mt (10.75)

where M is an element of SL(2) and Mt is the Hermitian conjugate of M,

Mt = ( My M2 ) . (10.76)

myy Mg
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The bar denotes complex conjugation.
X is Hermitian like X’. In fact Xt = MIXtMt = MX'Mt = X. The
quantities
z* = (1/2)trace(o,X) (10.77)

are real. In fact,
2 = (1/2)trace(X'al) = (1/2)trace(Xo,) = (1/2)trace(o,X) = =¥

Therefore X can be expressed in the form

0, .3 .1 _3:2
x=("’ rro2 “"3) . (10.78)

z! +ig? 20 -2

But now
det(X) = det(M) - det(X') - det M = | det(M)|* - det(X’) = det(X")
and so
@) ~ ")’ = @?)’ - () = 7’ - (")’ - ()" - (=7’

This shows that z'# and z# are related by a Lorentz transformation

¢ = AME, g™ . (10.79)
From
a* = (1/2)trace(o,X) = (1/2)trace(s,MX'M) = (1/2)trace(o, Mo, M!)z"
we see that

A(M)% = (1/2)trace(o Mo, MT) . (10.80)
The following formulae for the traces of products of Pauli matrices will be used:
trace(o,) = 0, trace(oq.0p) = 284b , trace(ogaopoe) = 2i€qpe

trace(os000:04) = 2(8ab0ca — 8acdba + Gaadbe)

It is easy to verify the correspondence
L(u) = @) _, M(u) = cosh(a/2) + n’s; sinh(a/2) (10.81)

between the pure Lorentz transformation matrix L(u) and the Hermitian
matrix M(u). In problem 10.2 it will be shown that

A(M)% = cosha , A(M)%, = A(M)', = n'sinha, (10.82)
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A(M)'; = 6;; + n'nf(cosha — 1) . (10.83)

For a space rotation must be . .
z0 = g, A(M) , A(M)", = A(M)‘0 =0.
Since
A(M)®, = (1/2)trace(MM*) |

we see that space rotations correspond to SL(2) matrices satisfying the
additional condition Mt = M™!, namely to SU(2) matrices. The special
unitary group SU(2) is a subgroup of SL(2), as the group of space rotations
is a subgroup of the Lorentz group.

We have

R(n, @) — M(n, @) = cos(¢/2) —in - osin(¢/2) . (10.84)
In section 10.3 the product L(u + du)L(—u) with |du| < |u] was ex-

pressed in the form of equation (10.60). Here we prove that result by using
the SL(2) correspondence:

M(ll) = COSh(a/2)l +'n"or,- smh(a/2) = 4 f X ;- 1 I + - 2(?;—*- 1) 'UaiO’i ,

w) = M(u &y _ I . SR
M{u+ du) = M( )+2m cm 8[2?+1)]§6’}"‘u i
M(-u) = /221 - = (M(u))™!

T

Since (“T” for Thomas)
L{u 4 du)L{—~u) = M(u + du)M{~u) = Mt ,

a simple calculation yields

2
. d . ,
Mrp =~ { |+ i———gye; 0 0" 9 st 4 Lo
T ( +12c2(1+1)061ku ou ) (l+ 26(T+1)mu + 2c0’,5‘u,

Comparing the first factor with
| —in‘oidg/2 = | —n’lidg |

we recognize a rotation around the unit vector in the direction of u x du with
angle 8¢ = —[v* /(v + 1)c?]|u x 8u|.
On the other hand, the second factor can be written as

X Loidul |

[ + :}I‘-G’.J’Uu + %0

2¢
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where duy and du; are the components of Ju parallel and normal to u. Hence

2
Yoed o Ysi 1 i
L‘J’ a; (-2—-561:}} -+ -2':5611,_;_) - b4 EKiﬁw
with
dw = 'yeéu;l +yduy

10.5 The spin

A point particle with an intrinsic angular momentum (spin) is in non-
uniform motion with respect to the (inertial) laboratory system K 4. At the
time ¢t (lab clock) the particle has velocity u with respect to K. At that time
there will be an inertial system K’ in which the particle is instantaneously
at rest.

If C(XY Z) is a system of Cartesian axes in K, let C'(X'Y’Z’) be the
system in K' obtained from C by a boost with velocity u. The axes of C’
are parallel to those of C.

At the time ¢4 6t, the particle has velocity u+du with respect to K, and
will be instantaneously at rest in a system K. What system of Cartesian
axes are we going to use in K7

We can either use the system C"(X"Y''Z") obtained from C of K
by a boost with velocity u + du, or a system C"'(X"'Y"Z"™) obtained
from C’ of K' by a boost with velocity dw = 20wy + ydu , where duy
and du, are the components of du parallel and normal to u, respectively,
and v = 1/4/1 —u?/c?. We propose as an exercise to use the formula
for addition of velocities to verify that K" (moving with velocity dw with
respect to K'), moves with velocity u + du with respect to K.

Let a be a 4-vector. Its components with respect to K(C), K'(C'),
K"{C"), and K"(C""} are related as follows:

a=Lm)a', a=L(u+du)a’, a' =L({dw)a" . (10.85)
By equation (10.64), L(—u)L{u + 6u) = L(§w)R(—76¢), we have also
a’ = L(—u)L(u + du)a" = L{ow)R(—nd¢p)a" (10.86)

and . . :
a= L(u+ du)R(fidg)a"" . (10.87)

1We are obliged to denote inertial systems by K rather than the more usual S. In
this section there are too many S’s meaning “spin”, and there might be confusion.
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Using this last equation, we find
a” = L(—u—du)a = L(—u—-du)L(u+du)R(iid¢)a"’ = R(iidg)a"" . (10.88)

Postulated properties of the spin:

(i) The spin S is a 4-vector such that its time component in the rest
frame of the particle is zero (see problem 10.8).

(ii) Consider a particle subject to forces and, therefore, in non-uniform
motion, carrying a free spin, namely a spin subject to no torques. Construct
a sequence of inertial systems, such that at any time the particle is at rest
in one of them. Assume that each of these inertial systems, say that at time
t + Jt, is obtained from that at time ¢ by a pure Lorentz transformation (no
space rotation).

Then the components of the free spin with respect to the Cartesian
system at the time ¢ + &t are equal to those with respect to the Cartesian
system at the time t.

Let S# (S, = 8! = —S; etc.) be the spin components in a generic
system. Property (i) can be cast into the invariant form

ubS, =0 (10.89)

which reduces to Sp = 0 if the system is the rest system. Note that with
respect to K'(C'), K"(C"), and K"(C")

0
S, (8)
Sy |
Sy (t)

S'(t) = (10.90)

0
Sy (t + 6t)
Sy (t + ot) !
Sy (t + ot)

0
S"(t + 6t)
Sy (t + 6t)
S (t + 6t)
The last two are consistent, since K"(C") and K"(C"") differ by a space
rotation.

In the lab system, u#S, = 0 reduces to
u®Sp — u' S, — u?S, — 43S, =0, y(cSp —u-8) =0,

SQ =u- S/C . (1&93)

S"(t + ot) = (10.91)

S"(t + 6t) = (10.92)
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Property (ii) implies that?
S (t + ot) = S'(t)

Thus S"(t + §t) = S'8(t).
Rate of change of free spin components in lab system:

S(t + 6t) = L(u + du)R(né¢)S"' (t + 6t) = L(u + du)R(1d¢)S'(t)
' 2
= L(u + du)R(1d¢)L(—u)5(t) = (I + 7—:K < du+ %J (a x du)) S(¢) ,
having used equation (10.65). This gives
Solt +6t) = So(t) + (v2/c) S(t) - u ,

dSe(t) _ +° du
ol -1 (S(t) "&?) , (10.94)

and .
2 2
S(t + dt) = S(t) + %—Soéu + zTS(t) x (u x du)

= S(t) + %j—(u - S(t))du + :—:[(S(t) -du)u — {u- S(¢))dy] ,

2 u
Q%ii). =% (s(t) . Sld—t) - (10.95)

Equations (10.94,95) can be combined in the covariant equation for the
free spin (see problem 10.9)

ds# 1 du”
-as— = —EE’U,“ (S,, ds ) . (1096)

Multiplying this equation by u#, since u,u* = ¢ we have

'(%‘;(Uusu) =0 s (10.97)

the 4-spin remains normal to the 4-velocity during the motion.
Note also that d

-J;(Sﬂsu) =0 )

ag is easily shown multiplying equation (10.96) by S, and remembering
that S,u# = 0. The magnitude of S is not constant during the motion.

5Not in contradiction with a3’ = L(—dw)a’, since $’” and &' are at different times in
the two members of the equation.
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10.6 Thomas precession

If each of the sequence of inertial systems in which the particle is instan-
taneously at rest uses Cartesian axes resulting from those of the lab by a
pure Lorentz transformation, then the spin appears to precess,

dSl ,Y‘Z

o = 201D S'x(uxa) , (10.98)

where a = du/dt is the particle acceleration with respect to the lab system.
In contrast to 8, 8' has constant magnitude during the accelerated motion.
Define §5' = S”(t + §t) — §'(t). Then from

S"(t +dt) = R(1dp)S" (t + 5t) = R(0adg)S' (1)

and (10.61) we have 68’ = —-J . ndg &,

2

§5' = -S' x fidp = —2L——5' x (u x fu)

c2{y+1)
Let us consider the spin precession for a particle moving on a circular orbit,
u=wxr, a=—w’r, ux (du/df) = v*w = [(v* — 1)c? /¥*|w,
!
§§. = —(y~Dwx§ . (10.99)

By definition, the motion of the particle around w is counterclockwise. That
of the spin is also counterclockwise. In one period of the orbital motion, the spin
precesses by an angle

1
Ap = 2n(y~1) = -2x -1 . 10.100
¢ = 2xlr=1) (\/r:—w/— ) (10-100)
If rw < ¢,
2,2 3,2
’ Triw 47°r
Ay ~ — = T apr (10.101)

For simplicity’s sake we assume that 8’ lies in the plane of the orbit (zy plane).
Then equation (10.99) gives

’ ds;
ddstx — (?}, - 1)&)3; , _‘EE = -.(fY — l)ws; . (10.102)

It is easy to verify that S' = /8?2 + S}? is a constant of motion.
The solution

Sy =8 cos{(y— wt) , 8§, =5 sin((y—1)wt) (10.103)
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Figure 10.1: Spin precession along circular orbit

in conjunction with £ = r cos{wt), y = rsin{wt}, corresponds to the initial condi-
tion at ¢ = 0 with the particle on the z axis and the spin along the x axis pointing
in the positive direction.
Fort =T, S, = S cos(2n(y — 1)), Sy = —8"sin(2x(y — 1)). In agreement
with (10.100)
tan(Ag') = S, /Sy = —tan(2n(y — 1)).
What is S doing while S’ precesses? Notice first that using (10.52) and $° =0

one has
2

o Y ‘¢
S=8'+ oy (8w . (10.104)

Then from the above solution for S’ one finds

{ Sy = §'[cos(wt) cos{ywt) + ysin(wt) sin(ywt)] , (10.105)

Sy, = §'[sin(wt) cos(ywt) — ycos{wt) sin(ywt)] ,

IS|? = §%[cos® (ywt) + 7*sin® (ywt))]

For t =T, S, = 8 cos(2n(y ~ 1)), (Sy = =78 sin(27(y — 1)).
With respect to the lab system, the spin has rotated through an angle Ay,
tan(Ayp) = 8y /S: = —ytan(2x(y — 1)), and its magnitude has also changed.
Figure 10.1a shows what happens for v = 2, u = v/3c/2. Figure 10.1b is for
~=11, u =042
Note that K’ (C') is in motion with velocity u = (0,u) with respect to K(C)
(lab) both at ¢ = 0 and t = T. One has S; = S, because u is normal to the =
axis. Since Sp =0, S, = .5,
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10.7 Charged particle in static em field

We study the motion of a point particle with a charge ¢ in a static electro-
magnetic field of 4-potential

Ag=V A=A, 6 A®=4,, A3 =4, , (10.106)
. _0A, B84,
B Bgu - Jzv
bor = Ep,...,Fo3 =~By , F33 =By, Fiu = -B; , (10.107)
F% = —Fy (i =1,2,3), F¥ = Fj; (i,5=1,2,3)

0 -E, -E, -E,
E, 0 -B, B,

we z
FHY = E, B, 0 -B, (10.108)
£, -B, B, 0
The covariant equations
d’z* ¢ dz¥ ¢ dz”
== F#F — = 2 gk .
T ds? c v ds ¢Y Faw ds (10.109)
are easily seen to be equivalent to
d( u) E+1uxB (10.110)
m-—— = - :
A 7 c
and d
T _9g.
me— = CE 1 (10.111)
The former gives
du 1 1
my—> = (E - ;;(E -uju+ “ux B) , (10.112)

the latter dE/dt = gE - u.
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10.8 Magnetic moment in static em field
The magnetic moment is expressed as

99
= — . 10.11
H= ome S (10.113)

A first form of its covariant equations of motion is

dS* _ 99 [pwe o Louig ooy y| - Loy (g 3¢
o = 9a F S.,+czu (S, FPuy) i S, < . (10.114)

Multiplying by u, and using u,u# = c?, we have

%(U#S”) = é%c [, F**S, + S, F* u,]

= -y, S, (F* + F*#) = 0
2mcuﬁ ( )

Using du*/ds = (g/mc)F%u”, equation (10.114) can be cast in a second
form

dS;"‘ - g9 By (9-2)q por "
o = omal St g (SeF P usjut (10.115)

For g = 2 the last equation gives in the lab system

d8/dt = (g/mey)[S x B +(1/¢)(S - w)E] , dSo/dt = (¢/men) (8 E)
(10.116)
Here are some calculations described by one author as “somewhat lengthy”
and by another as “some tedious algebra”
By the equation 8’ = 8§ ~ [y/c(y + 1)}Sou we find for g =2

as’

=4 ls. ]
e [st+c(s wE

1 d ~yu
_____mcz(’y-i— T (S-E)u-— (S -u T (—-—)

Using S =S’ + [y*/c?(v + 1)(S' - u)u, we find

v+1

ds’ q o qy ,

T = ey XB oy (8 u)(ux B)
4 (. _— (g,
+mc'2(s wE me?(y +1)(S E)u

g WE. wu~ 2 yu
mc4(7+1)2(s )(E - u)u——5(8" )dt( )
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Since d(yu)/dt = (g/m)(E + (u x B)/c) and

d 1 q
—_ —— = _-——— E-
dt («y+1) mc2(7+1)‘( o

we find 4s’
@ __9 g -—22 _ (E.g
dt mc"ys xB mc(y + 1)(E S)u
ay ! q '
Y (s wqE+4+ L8 .
mc2(7+1)(8 u) +mc'2(s wE
]
a8’ 9 g, (B_ T _uxE) (10.117)
dt mcy c(y + 1)

a formula valid for g = 2.
For g = 0 (only for computational convenience, since we do not know of
a charged particle with spin and no magnetic moment) equation (10.115)
gives
ds’ qy

— ! -1
T m62(7+1)S X (ux (E+c'uxB)) . (10.118)

I _g(15) a2 (d)
dt 2\at /., 2 \dt]_,

——gi—s’x[B— 7 uxE] _9=2)0Y 1 (yx(E+cuxB)) .

Now for any g

~ 2mey e(y+1) T 2mc(y + 1)
(10.119)
10.9 Lagrangian and Hamiltonian
The equation for a charged particle in an em field
d®z* g ., dz¥
= =gt F .
m—_= 9 B (10.120)

can be derived from the Lagrangian

m dz# dz g dz”
[ = ——— 8 2 '
7 dr dr + = A, (z) , (10.121)

where the parameter 7 is not necessarily the proper time.

In fact
A (8L \_o8L _.
dr \ 8(dz*/dT) dx+
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gives

d ( dr, g g 04,(z) da _
ar ( ar A“("’)) ¢ Bzn dr 0
d’z, g (84, 84, dz¥ _4q F dz¥
drz 8z¢  Bx¥ ) dr ¢ " dr
Multiplying this equation by dz* /dr, we find
d (dx, dz* dz, dz* _
. ( I dr) T ks constant , (10.122)

We normalize r 50 that constant = ¢2. Thus 7 = s, the proper time.
In the following, differentiation with respect to s will be denoted by a dot.
Therefore &,i* = .

Some people are disturbed by the fact that the first term in the Lagrangian
turns out to be a constant. A cure for this is to use the method of the Lagrangian
with constraints presented in problems 6.10 and 6.11.

For the Lagrangian

L =mc® + (q/c)i* A, with §,8" = {10.123)
we obtain
i q g.uaAu i[_l_( 2,49 v _g.u )]_
ds(cA“) e 82:“+d3 c? me +c$Ay czAv Tu| =0,
LYY B
c(am"x ¥ Bar +tmdu =0,

mé, = (g/c)Fuui”
Returning to L = (m/2)£,4# + (g/c)i* A, we have

L .
Pu= 5 = Mty + %A,, : (10.124)
. 1 q q
— B = _ 1 T Y )

H=pu* - L= (P T Au) (» 1A ) (10.125)

2
H= 1"2— B, M = ’_”22. . (10.126)

Hamilton’s equations read

. O0H 1 q

b= o = (pu - ZAM) , (10.127)

(10.128)
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Hence

. q ., (ﬁA., 8A,,)
mi, = - & -

c dxh  Bzv

Poisson brackets:
[} =0 , [*p]=0 , [e*p]=g" . (10.129)

Hence 1
[ 8] = — ¢, (10.130)

but

R q 7,1_ 4 ,
[:En, .’l:,,] = "T;z' [Pu - ZA;“PV - EAU] = ;n‘z_c (_[pua A,,] - [Au,p,,])

="q_(aAu[x'\aPu]“%[x’\’Pv])= 1 (aAu 314;;)_ g Fy .

m2c \ Hz? Dz m2c \ Bzt Bzv /] T m2c

The above formulation is based on the canonical form

&* = dp, Adz* | (10.131)

in which p, is not a gauge invariant quantity.
The Hamiltonian is invariant under the combined transformations

AA q OA
Ag—-)Au-i-g;: , pp—)pg+'g-aﬁ : (10.132)

In fact
q

A0 94 22y, _ 24
p"+cBa:“ c(”+8ml‘) Pu= o

The transformation p, — p, + (g/c) 8A/8z* is canonical. In fact

+2_3_A_ +25A _q oA + SA
Put e P T o | T e \ PR B dgn ' P

q 62A 62A A
? (evaar w1+ g 0]

O S ) S W
¢ \ BzvBz+  Oxkbzv | ’

while the invariance of the other Poisson brackets is trivial.
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Intermezzo:
F.J. Dyson, (Am. J. Phys., 58(1990)209) reminisced about the discovery by
Feynman that the homogeneous Maxwell equations can be “derived” from Me-
chanics.

It amounts to the following:

giving
9°H 1 ,
Opvop, m?"
This requires the Hamiltonian to be of the form

H=(2m)" (0" + a*)(pu + au) + b(z)

where the scalar field b(z) has been added to Feynman’s formula.
Therefore

OH . Oa" ob

Potan) o Be= =g = "o " B

OH _ 1
dp*  m

Ty, =

., . _ . 0d" Oay., Ob _ (Bay Oav\,, Ob
Ty = Py + Oy = — 8 ozxH + 6:::"3 Ok (3:1:" 6:1:“) e Ox#

For a function f(p,q) we have
d f p“ f ﬂ_ _OH 8f  6H of

T ogn Oz, dp*  Op, Oz

o 20) ()8t
with
S B T

One may prefer a formulation using the gauge-invariant kinetic momen-
tum

Pl = méy = py — %A,‘ . (10.134)
For this purpose we start with the Hamiltonian
1
H = .
o p,p* (10.135)

and the canonical form

5 = dp), A do* — 5By, d2* Ads” (10.136)
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This latter changes the definition of Poisson brackets.
Note that the condition di = 0 gives

Fuu,)\djw'\ Adz* Adz =0 ,
(1/3)(F#UoA +FuA,p+F)\u,u)d'$A AJSB“Ad.:Bu =0 R
Fyu,)‘ <+ Fu)‘,p + FAy,u =0

Compare this with Feynman’s derivation of the homogeneous Maxwell equa-
tions.

If
. OH' 8 _ p'» B
Uyr = o, Ban = B (10.137)
and of & Of 8
Us = 9L 5ar ™ 5 B (10.138)
we have

df o5 5 _5f_P_'“_ q praf pva
s ¢ (Un,Uyp) = Bzt m 2cF"" ! m Op

—— — —

m ozt mec PP ap', Oxh oz

PUOf 9 p wOf _ .0 . 0f (10.139)
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10.10 Chapter 10 problems

10.1 A photon of 4-momentum p = (v,vn) (¢ = 1,h = 1) is scattered
by a particle at rest, which acquires a kinetic energy K in the collision.
Calculate the angle # formed by the momentum of the struck particle with
the momentum of the incident photon.

10.2 (i) Show that equations (10.82,83) follow from (10.81) and (10.80).
(i) From (10.84) derive the matrix elements for a space rotation.

10.3 (i) Using the SU(2) representation of space rotations, find the rotation
which is the product of two space rotations. (ii) Check your result against
the product R;(7/2)Ry(r/2) calculated by using equations (4.5,6).

10.4 Using the SL(2) representation of the Lorentz group, verify that
L(u1) L(uz) = L(n)R3(¢), where uy = ug8y, ug = upéy, u = u; + us/7
(Y6 =1/4/1 —ui, c=1), and tan ¢ = —ulv/2.

10.5 (i) Find the generators 4G of infinitesimal space-time translations,
space rotations, and Lorentz transformations (Poincaré group).
(ii) Find the Poisson brackets of the above (algebra of the Poincaré group).

10.8 (i) The 4-potential for a constant electromagnetic field F,, is
A, = (1/2)z° F,, up to a gauge transformation. For a particle of rest-mass
m and charge ¢ in this constant em field, verify that the quantities

Cp=pu+ (¢/0)Ap =py — (9/20)Fpuz”

are constants of motion, dC), /ds = 0.

Caution: The expressions p, — (g/c)A,, occurring in the Hamiltonian
(10.125), differ by a sign from the C,'s.

(i) What is the physical meaning of the C,’s if the particle is in the elec-
trostatic field E = (0,0, E) ?

(iii) Using the C,’s in the expression (10.126) for the Hamiltonian, by anal-
ogy with problem 7.1 show that

C,C* + (2q/c)CHF,,x"(s) + (g /c)a? (8)x® (8) F,u F = m*c?

10.7 (i) In the inertial frame (z',y', 2',t') a particle of rest-mass m and
charge g > 0 moves in a uniform magnetic field B’ = (0,0, B').

Show that if 2’ = ¢’ = 2/ =0, ds' /dt' = —v' (v’ > 0), dy'/dt! =dz'/dt’ =
0 at ¢ = 0, the particle is in uniform circular motion, clockwise, with
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& T,
»

xX

Figure 10.2: Spin under sudden acceleration

angular frequency o' = ¢B'/mey’ (v = 1/+4/1 = v'2/c?) and that the orbit
equation is

.:I:"‘Z+(:l,r'—:r')2='r2 , 2'=0 ,
with r = mey'v' /qB'.
(ii) Perform t}'le Lorentz transformation &' = (z — v't)y', ¢y’ =y, 2’ = z,
t'=(t—v'z/c?).
Show that the orbit equation in the {z,y, z,t) frame is

-0t +@—r)/y? =1y | 2=0 ,

where ‘

_ mc*E

= B (- E7[BY)

and E = 4'v'B'/c, B = B'y' are the magnitudes of the electric field

E = (0, E,0) and the magnetic field B = (0,0, B) in the (z,y, z,t) frame.

r

10.8 Show that

_ —~1l v_p o

has the properties of a spin. Here ¢,,,, is skewsymmetric with

€g123 = 1, u” are the components of the 4-velocity, r; and ry are 4-vectors
with components (0,1,0,0) and (0,0, 1,0) in the rest system. In particular
show that this S, satisfies equations (10.89,90), (10.93), and (10.104).

10.9 Show that equation (10.96) reduces to equations (10.94,95) in the lab
frame.

10.10 Assume that the spin and the velocity are as shown in figure 10.2 (lab
system). Show that due to the sudden change of direction of the velocity,
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the angle ¢ formed by the spin with the z-axis changes by
bp = —y*3% sin a cos?p with 8 = |u]/c.

10.11 Derive equation (10.98) from equations (10.95) and (10.104).

10,12 What is dS'/dt in the following cases?
(i) B=0,E| u, (i) E=0,B|| u, (iii) E =0, B L u (B uniform)

10.13 For an electron {g = —e) in an atom (E = —VV (r} = ={(dV/dr)(x/r})),
equation (10.119) gives

dS* e dV (g 2 , _
dt — 2m2c?r dr (;—m)s x1 (I=myrxu)

Show that for v ~ 1 this corresponds to the spin-orbit coupling interaction

energy av
e

2m2e2r dr

(g— 1.8
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Solutions to ch. 10 problems

S10.1 Let p' = (V,v'#&'), ¢ = (m,0), ¢ = (E' = K + m,q') denote the 4-
momenta of the photon after the collision and of the particle before and after the
collision.
We have p' +¢ =p+4q, p —q = p—q'. Squaring the last equation, and using
p?=p* =0, ¢* = ¢* = m?, we have mv' = E'v — v|q| cos ¥,
cos b = (E'v — m/')Jviq| = (B'v — m(m +v — EN)/v/E? —m?
= (v +m)(E' — m)/v/ET i,

osf = LE™ E-m v+m K
cosv=—7 E+m v K +2m

§10.2 (i) With M = M(u), we have

2 AM)’, = tr(MM1) = tr(M?) = tr((cosh®(a/2)+sinh®(a/2)}1) = tr(coshal) = 2cosha |

2 A(M)°, = tr(Ma; M) = tr(oiM?) = tr(g;[2n’ o; sinh(a/2) cosh(a/2)))
= sinh o # tr(oi0;) = 2n' sinh o |
2 A(MY'; = tr(osMMY) = tr(asM?) = 2 A(M)",
2 A(M)’; = tr(a:Ma;M")

)

= tr(cosh®(a/2)e;0;+sinh afo;(n’as)o; +ai0; (n 7a)]/24+7" n?sinh? (a/2)0i0s0504)
x*E6ro
e’ etr———
= 20;5 coshz(a/2)+i sinh a(nbéibj + nde,*jd)-i—? sinhg(a/2)nbnd (Oindja—0dis0ba+0idads0)
= 24&;; + 4 sinh*(a/2)n'n =2 8;; + 2n*n’ (cosha — 1) .

(i) .
2 A(MY; = tr(o;Ma;M*)

= tr(cos?(¢/2)aia; —(i/2) sin ¢los (n®ay)aj —oio; (n° o, )| +sin’ (¢/2)n R aiovaio.)
= 28;;c08°($/2) + 2 sin ¢ ein;n’ + 2 sin®(¢/2)n"n® (Bivdjc — 8i; Bbc + Bicdsn)

=28 cosgp +2(1 —cosp)n'n’ — 2 sing €ijkn”

$10.3 (i) We have
[cos($1/2) ~if - osin(¢p1/2)][cos(d2/2) — i tiz - o sin(¢2/2}]
= cos(¢p/2) —if - osin(¢/2)

cos(¢/2) = cos(¢1/2) cos(p2/2) — m1 - nz sin(¢y /2) sin(g2/2)
i sin(¢/2) = f; sin(@1/2) cos(¢2/2) + 0z sin{¢2/2) cos(¢: /2)
+(ﬁ1 x ﬁz) sin(¢1/2) Sin(¢2/2) .
(i) For fi; = (1,0,0), fiy = (0,1,0), ¢ = ¢2 = 7/2, (i) gives cos{¢/2) = 1/2,
¢ = 271’/3, ﬁ = (é1 +é2 +é3)/\/§. Hence Rij = (—65_;‘ +1 et E,'jk)/2 (k # i and

where
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k # 3), Ri1 = Riz2 = Ra2 = Raz = R3; = R33 = 0, Ri3 = Ra1 = Rz = 1. This
agrees with

1 0 0 0 0 1 0 0 1
Ri(m/2) Re(m/2)=] 0 0 -1 0 1 0)=(1 0 0)
01 0 -1 0 0 01 0

(x=R{: z'=y,9 =22 =z).

S10.4

. /’Yo+1 [y0—1 Yo + 1 Yo — 1
Left srde-—)( — + o — = + o2 5

= [(yo + 1) + (01 + 02)4/75 = 1 +ios(y0 — 1)]/2
2 2
o +1 Yo 1 7 — 1
+ |0 + === | {/ B
2 [\/1 +77 1+ ] 2

1 .
—2-(;'3:—13[(10 + 1) +ics(vo — 1)]

= (o + 1) + (o1 + 02)V/ 78 — L +iga(vyo — 1)}/2

Right side — (

S10.5 The generator for £* — z* + dz* is G = p,dz". In fact,
[z#,8G] = [z*,p.]0z" = g%, dz" = dz*.
If Ly, = z,Ppv — T,py, the generators of space rotations are
Ji= (1/2)€gjijk, Jiy = Lo etc.
In fact,
8z' = [z', J3|8¢ = —x28¢ = 3289, 8z° = [2?, Js)6¢ = 218¢ = —z'8¢,
ops = [p1, J3]0¢ = p28¢, dp2 = [p2, J3]0¢ = —p18¢.
The generators of Lorentz transformations are K; = Lo; = zopi — zipo. For
instance, for an infinitesimal Lorentz transformation along the 1-axis,
2% = 2° + §2° = 2% + [2%, K1]e = 2° + ez,
g =g + 8" = z' + [z}, Ki]e = z* + ez
(ii) The Poisson brackets are
[pu:pv] =0, [po, 5] =0, [pi, 5} = —e€jucpi,
[po, Ki} = —pi, [ps, K;] = —podij, [J1, Jo} = —Js ete.,
[, K;] = —€i50 K, [Ki, K] = €350 Tk
Verify that this algebra is realized by putting p, = —8/8z* in all the above
generators and replacing Poisson brackets by commutators.
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S10.6 (i) dC./ds = p. —(q/2¢)F,.2" = d[md, +(q/2c)x" F,,)/ds —(q/2c)F,. 2"
= miy, — (g/c)F, 2" =0

(ii) Co = po — (q/2¢)Fovz” = mct — (q/c)Ez = (ymc? — qEz)/c (total energy
divided by ¢), Cs = p3 ~ (¢/2¢)Fauz” = —mz + qEt = (—mi),y, C1 = p1,
C; = p2

(iii) Since H = mc?/2, we have

m?c® = (Pu — qAL/)(P* — A" [c) = (Cu — 2qA, [c)(C* — 2gA* [c) etc.

S10.7 (i) The equations

md (42 _ aB'dy' L (3 _ _gB de
ar \Tar )T e ar T \Taw e at

imply ' =constant. A first integration gives

dz’ B’ dy’ gB’
oYY mi =
satisfying the initial condition for the velocity components. These can be written
in the form dz'/dt' = W'y’ — ¥/, dy//dt’ = —w'z’, with W’ = ¢B'/mcY, from

which &' = r cos(w't’), ¥’ = r[l —sin(w't')] with r = v’ /w’ = mcy'v' /gB'.
(i) 2 + (¢ ~ )’ = r* becomes (z — v't)’ + (y — r)2/+'* = r* /4%, Since
v =cE/B,1/4* =1-v?/c? =1 - E*/B?,
we have
r = meyv' /gB’ = mc* E/qB*(1 — E*/B?).

S10.8 In the rest system u” = (c,0,0,0), and so Sy = 0 because €gope = 0. Only
the spatial component Sj is different from zero: S5 = S'eso12 = -5, 2 = §'.
In the lab system, u’ = ve, u' = yuo, ete., r} = yu. /e, r} = yu, /e,
r =1+ (y— Dud/u®, v} = (7 — Dugue /2%, 1§ = (v — Dupus /2,
ry = (v — Duguy/u?, 73 = 1+ (v — Dud/u?, rd = (v — Duyuy fu.
Using these, one finds So = vS'u. /e, §' = ¥*(S'w,)uz /e* (7 + 1),
2 = 72 (S"us Yuy [Py + 1), 8% = §' + 7*(S'us s e (y + 1),
Some authors, for instance J.L.. Anderson, Principles of Relativity Physics
(Academic Press,1967) p. 250, define the “polarization vector”
wy = (1/2)€4up08"°D7
where p” is a component of the momentum, and s*? is a skewsymmetric spin
tensor with the property s,,u"” = 0. Therefore in the rest system only the space
components s;; are different from zero. But for trivial factors, w, is equal to our
S, if
st = (rkry — rirs)/2.
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S10.9 Expressing S,du”/ds in terms of lab quantities, we have

du” dvy dyu

S ds Socds Y
zero

N Ay du

—(L‘So S-u)a-;—"yS-E;

The rest is trivial.

S10.10 S and u in plane of motion,
S = ({S| cos ¢, |S|sin ), u = (0, |u]), fu = (—|ufsina, —|u)(1 — cos a)).
From section 10.5, regarding o as small, we have
8S = (v/c)*(S - su)u, 85, = 0, 88, = —(v/c)’|S|[ul’sina cos .
From § tan ¢ = §(5,/S,) we find ¢ = —(v/c)’|uj sina cos®p. This gives
dp = —~*B%sina for ¢ =0, and dp = 0 for p = *7/2.
Repeating the work for ¢' one finds §¢' = ~(y — 1)sina.

S10.11 Multiply (10.104) by u, finding S-u = v(S8'-u). Express 8’ in terms of S
and u, obtain dS’/dt in terms of dS/dt, u, and du/dt, use (10.95) and (10.104).

S10.12 (i)
ds'/dt =0
(i)
d{(m~yu)/dt = 0, dS'/dt = (gq/2mcy)S x B
(iii) d(m~yu)/dt = (g/c)u x B gives du/dt = u X wy, the particle moves on a circle
in a plane normal to B with the Larmor angular velocity wy = ¢B/mcy. Since
S' x (ux (ux B)) =—[c*(v* —1)/7%]8’ x B, we have

dS’_ q g—2 '
—dt——mc'y(1+ 2 )SXB

This equation is important for the measument of the g—2 anomaly. For g = 2

u and §’ are in phase, du/df = u x wr, and dS'/dt =S’ x wr.

S10.18 The correct result is obtained from dS’/dt = [S’, H] and the Poisson
brackets [S;, S;] = S, etc. Can you justify these latter?






Chapter 11

CONTINUOUS
SYSTEMS

To illustrate the application of analytical mechanics to continuous systems,
we present two case studies, the uniform string and the ideal non-viscous
fluid.

11.1 Uniform string

We assume the reader is familiar with the equation

Py 10y

Oz v B2
for small transversal displacements y(z,t) from the equilibrium configura-
tion (the z-axis). The phase velocity is v = /7 /u, where 7 and p are the

tension and the linear density, both constant.
The general solution is

(11.1)

y=f(&)+9n) . (11.2)

where £ = ¢ — vt and n = =+ vt, while f and g are twice differentiable, but
otherwise arbitrary.

If f and g are simple-harmonic, the wave number & and the angular
frequency w are related by w = vk, and there is no dispersion.

The vibrating string provides a one-dimensional model for the propagation of
light in vacuum. Later on we will write equation {11.1) in the form

@ —-dy=0 , (11.3)

261
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where 8y = 8/92°, 0, = 8/8z", 2° = vt, and 2’ = z. More concisely
9,8y =0 | (11.4)

where & = g#*8, (g° =1, ¢'' = -1, g% =¢"' = ().
Note at once the invariance under z° and z! translations and the Lorentz-like
transformation

¥ s 1 71 . 0
z'® =cosha £ —sinha ' , 2" = cosha g’ —sinha ° |

8o = cosha 8) — sinha 8, , &1 = cosha 3} —sinha

In all these cases, y transforms as a scalar, 3/ (z'°, 2"!) = y(2°(z"), =’ (z')).

With 8; = 8/t and 8, = 8/8z, define the quantities

Ty = [p(B)" +7(8:9)°)/2, Toa =Tu (115)
Tt = —T 8oy Byy s Teo = —p Byy oy = v 2Ty

Using the wave equation, we find
Ty = p Oy Ouy + 7 Ozy Bry

= 7(8sYy Opaly + 02y Oray) = Oz (78,y Opy) = — 0, T
O Ty + 0, Tey =0 . (11.6)

This is a continuity equation describing energy conservation. Ty is the
energy density of transversal motion.
Integrating equation (11.6) with respect to x, we have

d

dt Tgt dr = n(a) xt(é) , (117)

Thus Tz:(a) and T,,(b) can be interpreted as the rates of energy flow into
and out of the interval (a, b). Of course, they may be negative.
For a wave propagating in the positive z direction, y = f(£), we have

e (D) e s

while for one propagating in the negative x direction, y = g(n), we have

dg dg dg\?
Tet = —1 — = - . .
“ (dn) (“dn) “’(dn) <0 (11.9)

Tr¢ is the work per unit time done by the portion of the string left of x on the
portion right of z. In fact (see figure 1.1 ) Ty = (—7 O,y)0y = F,v,, where
Fy=-7sin8 ~—7 tanb = —7 9y, v, = Ouy.
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%

xXx
Figure 11.1: Interpreting Ty,

Consider now T;,.. We have
BTy = —pb By Bry — 1 Oy Brzy = —pv*0s2y B2y — 11 Ory Oty

== Z[T(azy)2 + ﬂ(aty)Q]/z = -0, Tz |,
atth + aa:sz =0 . (11-10)

The quantity 7y, = —p 0,y O,y is interpreted as a longitudinal momentum
density. It is positive/negative for propagation in the positive/negative z
direction.

Integration of equation (11.10) over an interval (a,b) gives

b
& [ Tiado = Tua(a) - T ) (11.11)
Lagrangian
Consider the action
ta b
A= at / dz £(y, By, Bry) = v~ f dz°dz' L (11.12)
t1 a D
where
L = [u(y)” — T(8:4)"]/2 = T(Buy)(8"y) /2 (11.13)

is a Lagrangian density.

Assume that 64 =0 under y — y + 6y with dy = 0for t = ¢1, t = ¢
(any z) and ¢ = a, z = b (any t), or, more briefly, on the boundary of D.
From this assumption follows the Lagrange equation

oL ac oL

Oy + Oy = ——
“0(By) T "B(0.y) By

(11.14)
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or, more concisely,

oL _@g_
0 (Quy) Oy

It i3 easy to see that this equation reduces to {11.4)

B, (11.15)

10 (Bey) — T 8,(82y) =0, Buy — (1/14)82,y =0, 0*8,y =0

Invariance properties of £ and conservation laws
Consider a Lagrangian density of the form L(y,8,y), where y = y(2°,2%).
Assume that £ is invariant under z'# = z# + éz# (dz* infinitesimal) up to
terms of the second order in da*. This means

6L = L(y',8,y") — L(y,0,y) =0 , (11.16)

where y'(z, ') = y(z°(2'), ' (2')).

For the string, £ = (7/2)8,y 8"y is invariant under finite z° and z’
translations, and under finite Lorentz-like transformations. We are inter-
ested only in the respective infinitesimal cases, (z'® = z° — ¢,2'' = z}),
(0 = 2%, 2" = 2! —€), and (2"° = 2° — ex!, 2! = ! — exP).

Now dy = y'(z') — y(x) = oy + (8.y)dz#, where

oy = y'(z') — y(a') > y'(z) — y(=)
is the change in form of y. Of course, dy = 0 in the present case in which
the “field” is a scalar field. Equation (11.16) (6L = 0) gives

aaﬁy 1

%(Jy + (Byy)oz) + 00,y + (0.0,y)0z") =

aL 2L
3B,y)
Since in the first order 48,y = 8,3y, we have

oL

51:4—-5;-62: =0 ,
where or ar
0L = 3_ 6 3(3 ) ¢} Jy 0

By Lagrange’s equation (11.15) this can be expressed in the form

0. [ ] + @ucr50 =
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Assuming 8, 6z# = 0, which is trivially true for z° and z* translations and
for Lorentz-hke transformations, we have

8L s
3, [6(6 )6y+C6:c]-0 : (11.17)

For z° translations z© = z° — ¢ (62° = —¢), /(2°,2") = y(2°, =),
y'(2° - ¢, w‘)"y(:v z!), y'(2%, ') = y(2° + €, 21), 5y = € dyy.
Similarly for z! translatxons Sy = € Oy y.
Equation (11.17) gives

0, T =0 (11.18)

where ar
TH = —m——8"y - Lg"¥ . 11.19
6(6#3}) y g ( )

For the string Lagrangian (11.13) this formula yields
TOO - nt s Tu = Tzz =Tu,

T = oTy , T =0~ 1T, ,

where the quantities Ty, Tey, Tiz, and Ty are given by equations (11.5).
Note that 7% = 7% while Ty # Tys.
The equation 86T + 6, T'° = 0 is equivalent to equation (11.6)
(8¢ Ty + 8, Ty = 0), and T + 8, T!! = 0 is equivalent to equation (11.10)
(atth + aszz = 0)-
For the Lorentz-like transformation 6z° = —ez!, dz! = —ex”,
by = y(z° + ex!, z! + ex%) — y(2, ') = e(z! Goy + 2°A1y),
we find o
0o [y (e" oy + 2%0u0) + (e}

+8 [a(aafy) e(:claoy +2%9y) + ("62:0)[:} =0 ,

O[T + 2 T 4 8, [x1T1° — 2T ) =0 . (11.20)

Since 8,70 = 8,T2! = 0, this gives T'® — 70! = (. Thus invariance of £
under z° and z! translations, combined with invariance under Lorentz-like
transformations, implies T#¥ = T¥¥,

Integrating (11.20) and assuming that T#” vanishes for x = *oo0, we
have d

a./(—vzti'}w + :L'Ttg)dx =0
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/Tttm dzr = ﬂuzt/Ttm dz + constant = t/th dz + constant ,

where the integrals are over the whole = axis.
Since [Tydz = constant, we find for the “energy center”

JTuzx dz (fT,,t dz

(x> = tht d:l: - tht dzx

P
)t+const=-§t+ const ,

where P is the total longitudinal momentum.

Hamiltonian
Define ar
1) = ——m——— .
and the Hamiltonian density
H(m, y,02y) = w(z, 1)0uy(z,t) — Ly, Oy, Ory) - (11.22)

Hamilton’s equations can be derived from the invariance of the action
A= /ﬁ dtdz = /(mﬂty -~ H) dtdz (11.23)

under variations of ¥ and 7 vanishing on the boundary of the integration
region. In fact, 64 = 0 gives

0= / (&y or + 7 6Oy — %%Jvr g?; oy — 8((?9% ) 653!/) dtdz
3

Using 68,y = 8;dy, 68,y = 8,0y, and integrating by parts, we have

OH IH OH
/ [(&y - a) om + (-—ﬁm a + O, a(azy)) 6’y} dtdz = 0

Assuming the independence of ér and 4y, we find Hamilton’s equations

oH OH oH

8ty - aﬂ_ » atﬂ’ - ay + aﬁ 6(3'3!,‘)

(11.24)

For the string, we have
T=4n 3y

= (@) + T@:v) )2 = 7" /2 4+ T(Ba9) /2
and Hamilton’s equations

Sy=rlp , Or =10y , uOuy =710y
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Poisson brackets etc.
Let A and B be two functionals of 7(z,t) and y(z,t). Define the Poisson
bracket of A and B as

_ §A 6B 5A 6B
(4,8 = [ds [ayw,t) 57D n(a,1) bula, e)] o (1129)

where the integral is over the whole z axis and §dA/6y(z,t) etc. denote a
“functional derivative” as defined below.

Let F[f|t] be a functional of f(x,t), namely a correspondence between the
function f(z,t) of x and ¢ and the function F[f}{] of ¢t alone. The Lagrangian
L = [L(y, &y, bey) dz is a functional of y(z,?).

Assume that for y(z,t) = y(x,t) + dy(z) (not dy(z,1))

SFIflt] = [ Aw, ) Sy(s) de

We then say that the functional derivative of F is

SFIflY
dy(m,t) Al 1)

For the above Lagrangian
s 8L _ 38 aL
dy(z,t) ~ Aylz,t)  8(3:y(z, 1))
and the Lagrange equation (11.15) can be written in the form

g 0L 4L
*8(Bey(z,t)) ~ dy(a,t)

Similarly
Byl £) = oH__ _ _SH
! on{x,t) dn(z,t) ’
. on_____¢H
dem(z,t) = -5y + 0 B(B.y(z, b)) du(z,t) '
where

H“—"-"/'H.d:ﬂ

Writing y(z',t) = [y(z,1)6(z — z')dz, we find at once that

] (27’»2) '
e ~ )

Similarly ,
on(z',t)

dn{z,t) 5(z - ')
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Thus we obtain the Poisson brackets
[y(z,t), w(', 1)) = /dx"{&(x —z'")o(z' —z") —zero] = d(z —x') , (11.26)

ly(z,t),y(=,t)] =0 , [r(z,t), (@, t))=0 . (11.27)

Since

_ , f 6y(z,t) OH oy(x,t) OH
ly(=:0), H] = /dx (6y(:c’,t) or(z',t)  bm(z,t) 6y(a:*',t)) ’

d0H
Wizt Hl =505
we have
Buy(z,t) = [y(z,2), H] | (11.28)
Similarly
Oym(z,t) = [n(z,t), H] . (11.29)

In general, if F' is a functional of y(z,t) and = (x,t), possibly explicitly
dependent on t, we have

dF _ oF
o =5 tIRH] (11.30)

For the Hamiltonian
dH 6H

——
ey

dt ot

11.2 Ideal fluids

One-dimensional incompressible ideal fluid
In the absence of external forces, the velocity v(z,t) of the fluid at
position z and time ¢t obeys the equation

+o 842y | (11.31)
I

where p = constant is the linear density and p is the “pressure” (with the
dimensions of a force).

We refer the reader to intermediate mechanics textbooks for the three-dimensional
Euler equation

av 1 1
—é}u-p(v-V)v—k—pVP—;f ; (11.32)
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where f is the force per unit volume and f/p the force per unit mass.
Using this together with the continuity equation

Op

% v (=0 (11.33)
one finds P
fi = (g;") + 8; (pviv; + pbi;) . (11.34)

Within the limited scope of this book, we wish to discuss the Lagrangian
formulation of this problem. We follow in part D.E. Soper, Classical Field
Theory (Wiley, 1976) ch.4, where we learned the existence of the original
work by G. Herglotz, Ann. Phys.,36(1911)493.

We must switch from Euler’s description (observation of fluid at a given
position) to Lagrange’s description (follow fluid particles in their motion).

If Euler observes a particle at z at time ¢, let X (, ) be the position the
particle had at ¢ = 0. Therefore X (z,0) = z. Let M(X)dX be the total
mass of particles with coordinates between X and X +dX at t = 0. At time
t, these particles will be in the interval (z,z +dz). Since dX = (0.X/0r)dxz,
the linear density at z at time t is

8X
p(z,t) = M(X) - (11.35)

Note now that a particle at  at time ¢ will be at x + v(z,t) dt at time
t + dt. When it was at = its X was X(z,t), when it is at z + v dt its X is
X (x + v dt). The corresponding dX is

0X 0X
dX = -é;_- v dt + —5{' dt
Since X is just a label for the particle, must be dX =0, and so !
oX /ot

= ~5%/5s (11.36)

and the current is
8X 8X /0t ax
= =M t = - as - .
J = [ (X)B:c] [ BX/ax] M(X) 5 (11.37)

The continuity equation is automatically satisfied:
u 8J _dM (8X 93X O0XHX M 32X_62X —0
ot 8z Oz Ot otox  Bzot)

5t + fr ~ dX
Y For uniform motion we would have £ = X 4vt, X = z—ut, 8X/0z =1, 8X/0t = —v,
v = —(8X/8t)/(6X/0x).
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Equation (11.31) can be derived from the Lagrangian density
L=L(X,0X,8,X)=pw?/2-pUQ) , {11.38)

where XA = 1/u (“volume” of the unit mass) and we assume that the
“equation of state” is p = —dU(A\)/dA.
Remembering that

L= M(X) [-21—%:——’%» (B, X) U (m)} , (11.39)

a fairly long calculation using the continuity equation yields
oL oL aLc
0 = L e ———— o —
% (3@ *+* (s60) ~ 7%

= -M(X) (851)4—1}8,,1}% % azp)

The following is another proof of the one-dimensional version of Euler’s
equation (11.31),

1
83U+v83v+;83p=0

Using (11.19) with y replaced by X, and the Lagrangian (11.38,39), we find
(o =2 =t,z! =0 = —3)

T = /2 +pU), T =po, T =o(TP +p) , T = p® +p.

Then (11.18) for v = 0 (§e7% + 8, T'® = 0) using the continuity equation
A + B, (puv) = 0, gives

po(Byv + v0,v + p~ ' 8,p) = 0
and for v = 1 (8,7°! + §;T! =0)
(0w + w0, v + p10,p) =0 .

Two-dimensional incompressible fluid
With x = (z!,2?) and X = (X', X?) and a natural extension from the
one-dimensional case, we express the density in the form

8(X)

plx,t) = WM Xy (11.40)
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where
A(X) |ax'/ozt OX'/dx? (11.41)
(x) | 0X%/ox' OX?/0x? '
Then
p(x,t) 2z = M(X) d®°X . (11.42)
The analogue of the one-dimensional equation (11.36) (v8; X +8; X = 0) is
(01 X! + (B X )? = -8,X} (11.43)
(B X2)v! + (B X202 = -8, X2, '
where 8; = 8/0z* (i = 1,2) and 8, = 8/6t.
Solving for ! and v? we find v* = J*/p (i = 1,2), where
J' = —MX)[(B: X)) (02 X2) — (8: X2} (B2 X)) (11.44)
J? = —M(X)[(6: X2 )(6;X1) (Be X1 (01 X)) . :

Continuity equation
Let €*%7 be skewsymmetric in all indices which take the values (0, 1, 2), and
€12 = 1. The density and the current components can be written

{ p= M5 (0, X1)(B5X°) (11.45)

Jt = Me*P (8, X1) (85 X3) .
These satisfy the continuity equation. In fact

Bep + B I + B J? = 8,(Met*P (8, X1) (5 X?))

2
= 3 (OM/IX )8 (8, X*) (00 X ") (Bp X?)+MB, (8 (9. X") (95X %) = 040 =0 .
=1
Lagrangian
From the Lagrangian density

= (p/2[@")" + (%)) - PU(N) (11.46)

(A = 1/p) one might try to derive the two-dimensional version of (11.32)
with f = 0. However one can proceed more simply as follows.
From
2. ac
T# = —_— Y X™ — Lg"* 11.47

>, 58, %) Ly (11.47)

m=1
we have ,

T = gy} | T = p(u)? +p, THpv'v?
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0= 89T01 + 61T“ + 82Tm = p(8tv1 +?)161’U1 4 ?}262111 + p_Ialp) .

Note that from
50T°° + aij + 82T2° =0

with
© = (0/2)[(") + @21+ U , TO = o}(T® + ) ,
we would find
p(v Byv + v v+ p~idp) = 0.

Circulation theorem
We derive the theorem in two dimensions from the assumption that the
Lagrangian density £(X*,8,X?) is invariant under an infinitesimal trans-
formation X! - X 4+ €£*(X) defined below. Then

C (O g, OL
0= (e + 7%)

and, using Lagrange’s equations,

aL
0=29, (8(3 X,)f) ) (11.48)
Therefore ar
2 i_
/d ma(atX‘.)ﬁ = constant . (11.49)

The Lagrangian density (11.46) is invariant under a transformation X — X'

such that .
a(X1, X?)

a(Xll, XIZ) ’

where M(X') is obtained from M (X) by replacing X* by X" (i = 1,2).
In fact p, J!, and J? are invariant:

A(X') &(X)

M(X') = M(X) (11.50)

O(X) (X'

P08 = B M) = T gy M%) = g M XD
~ a(Xi,X2) _ ' 3(X'1,X'2) 3(X1,X2)
Jl(x,t)m—M(x)—““““a(t,xz) = M5, %) o)
- _px)2E LX)

a(t,z?) '
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and similarly for J2.
For infinitesimal transformations X" = X' 4 ¢ ¢*(X) the condition
(11.50) gives M (X)(1 — e 8¢*/0X*) = M(X) + (M (X)/8X )¢,

AMX)E) _
axXi

This is satisfied by
1 i r
MO €0 =- [ ar TFL Px-0) L 21 =90

(see D.E. Soper, loc. cit., p.51, but this is a little more general, M(X) is
not regarded as constant).
The conserved quantity is

i
Q) = /dr/d2 a(atxa dT M(x) 52 (X — Q(r))

/d dﬂ‘[a(x) 1 ac ]
a(x M(X) a(an‘) x=x(X=0(1))

8x?  dQF aX)]~' ac ;
/ a7 5X* dr [M (x )B(x)] aa.xs X

where X = Q(7) and x = x(£2). By this rearrangement we have

(8x? [8Q%)(dQ* /dr) = dzf/dT, while (8L/8(8,X%))8; X* = —pv?, as can

be shown by a little calculation. Therefore

Q) = - fda’ - (~p') = v dx

Three-dimensional ideal fluids
Rather than extending the two-dimensional Lagrangian calculations, we
summarize the standard treatment of the three-dimensional fluid.

Define the “vorticity” £ = V x v. The Euler equation for a non-viscous
fluid acted upon by conservative forces (f = —pV®) can be expressed in
the form v

1
= t3 Vu? —vxﬂ+1Vp+V‘I’ 0
ot p

Note that for steady irrotational flow of an incompressible non-viscous fluid
(2 = 0, p = constant) this equation reduces to

d
Pt (Bv +p+ p‘b) =0 (Bernoulli equation)
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For a non-viscous fluid the substantial derivative of the vorticity,

D 0N
i A

obeys the equation

1
P&z(ﬂ-V)v—ﬂ(Vvv)-FFVprp

In fact, taking the rotation of the Euler equation we have

of} 1
%-{—Vx(vxﬁ)wp—z?prpd-O

Since V - 2 = (, we have
Ux(vx )= -V - v)+ (8- V)v - (v V)T

If the fluid is incompressible (p = constant, V - v = 0) this equation
reduces to
D2

S =@ Vv . (1L.51)

Let dA be the area of an infinitesimal surface element, f a unit vector
normal to it, and dS = fi dA. In problem 11.6 we shall prove that

Bgf‘ = (V. v)dS; - v ds; - (11.52)

Ozt
Using equations (11.51,52) one finds that

D@ -d8) _ |

= (11.53)

From equation (11.53) one infers the Helmoltz theorem for a non-viscous
fluid D
— {2-dS=0 . 11.
2 fs (11.54)

If S is a surface having the curve C as a boundary, since 2 = V x v
one obtains the Thomson (Kelvin} theorem

D
i Cv de=0 . (11.55)
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11.3 Chapter 11 problems

11.1 (i) Show that the continuity equation (11.33) can be expressed in the
form

2 (pi®) + dpa* (7)) =0,
ot
where ©3(e,0,0) =dz AdyAdz, V = = v,0/0% + v,0/0y + v,0/8z, and

D3 (V) = @3(V, e, 0) = p(vzdy A dz — vydz A dz + v,dz A dy.
(ii) Show also that the continuity equation can be expressed in terms of Lie
derivatives as

(8/0¢ + Ly)(pi®) = 0

11.2 Using problem 11.1 (i) derive the continuity equation in curvilinear

coordinates,
3p 19 :
fa Bzt (ev/g V') =0

11.3 (i) Show that the Euler equation

68: + (v V)v+ Vp=-Vd

can be expressed in the form

v

T B
S+ 3 AN+ @) + 2 dprde=0

where V = v,8/8z + v,8/8y + v,8/8z and V = v,dz + v,dy + v.dz.

We are using Cartesian coordinates (v! = v; = v.,...).
(i) Show that the Euler equation can also be expressed as

d 1 - 1
(6t+LV)+;dp+d(‘I>—-2-v) 0

11.4 From the equation 8V /8t 4 (1/2)d(v?) + dV (V) + (1/p)dp + d® =0
derive Euler’s equation in curvilinear coordinates

f YA . 1 ;
p[av__( tg_axxf)vj] 3P+p_i(_2.1,3.w+4>)=

at dzt  Oxi Ozt Oz
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11.5 Show that under a general coordinate transformation
VIW" = V;W* and

oV, % Vi = Oz OV _ OV ym
8z Bz Ozt |\ Oz™  Oz*

11.6 Show that the continuity equation

ap 1
\/_a,p\/_

is invariant under general coordinate transformations in 3-space.

11.7 (i) Consider an infinitesimal dr = (dz',dz?,dz3) and the particles of
fluid that are on it at the time t. Show that at the time ¢ + dt the same
particles will be found on dr' = (dz'?, dz'2, dz'),

dz" = da* + %E; dz?

(i) Show that the substantial derivative of the oriented-area vector
dS = dWr x dPr, dS; = €;;,dM27dP) 2k, is

DdS; _ v? o’ g
Dt Oxi ds; - St dS;

11.8 Derive the equation 82/8t — V x (v x 2) — (1/p%)Vp x Vp = 0 from
the form version of Euler’s equation,

17 ~ 1 < 1

— + L ~dp+d(®-=v:)=

(Bt+ V)V+p D+ ( 2v) ]
11.9 In three dimensions define

J#(x,t) = M(X)e** " (8. X ")(85 X% (8, X°)

where X = (X!, X2, X3) and the Greek indices run from zero to three.
Verify that

X)) . _ It
8(x) ' p

and that the continuity equation is satisfied,

p=J"=M(X) 7

¥

OuJ* =0
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11.10 (i) A massless scalar field (scalar photons) is described by the La-
grangian
L= (1/2) f aﬁ*’a“fp dsms
yielding the wave equation 8,0 = 0.
Show that the energy-momentum tensor

TH = 540" — g (Oap0*p) 2

satisfies ,T#* = 0, and derive energy and momentum conservation.
(ii) Let

A= [ Bz de[(1/2)8,00%p + (M/DX? 6(x — X(2)) + fou(x — X(1))]
be the action for the above field interacting with a particle of mass M,

position X(t). Write the Lagrange equations.
(iii) Show that the energy

E=/2) [ [0/ + (Vo)1 + (M/9%° - f [ outx-%) &%

and the momentum

P=-c? [ Bp Vi d¥z + MX

are conserved.
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Solutions to ch. 11 problems

S11.1 (i)
d[po®(V)] = 8(pv.)/0z dz Ady Adz — d(pvy) /0y dy Adz A dz
+8(pv:)/ 0z dz A dx A dy
=V-(pv)?
(ii) Using the general formula L 40 = d[w(A)] + (do)(A) we have
Ly (p&r®) = dlpa® (V)] + (d(p®))(V). The second term is zero since there cannot
be forms of order greater than 3 in 3-dimensional space.
Using (i) we have V - (pv) = d[po®(V)] = Ly (p0%).

S11.2 oc o O
.3 3 : s Oz Oy Oz
W =drAhdyhdz= 5a% Dol Bak dg* Adz’ Adz*
= Jdz' Ade® Adz®
where

_ ... 0x'ox’ ax*
~ Wk 9zl 9z? Bz’
Let g = det(g), where g is the matrix with elements
0z Or oy Oy 0z 0z
~ Bz 03i | Oz 0%1 | 0% Oz

J (X'=z,X’=y, X*=2) .

If J is the matrix with elements 8X*/dz’, we have
= 17T, g =det(J) detJT = J2
Hence &° = \/'d:c A da: Adz®. Now with V = V*8/da’, we have
dlp\/g dz* A dz® A dz3 (V)] = (8(p/7 V*)/0z*) dz' A dz? A dz®
The final result follows at once.

S11.3 (i) ] )
o d(v’) = (9v*/dst)ds’, o
(@V)(V) = [(V x v) x v],dz’ = —(1/2)(0v?/0z")dz* + v;(Bv; /O )dx®
(if) The general formula L s = dl0(4)] + (di)(A) gives
LyV = d[V(V)] 4 (dV)(V) = d(v?) + dV)(V).
Thus (i) reduces to (ii).

S11.4 With V = V;dz’, we have

dV(V, W) = (d[V;d2’)(V, W) = (?@ dz’ A dz’ )( vV, W)
= av, S viwI - viw) = (%‘a% - g:}) Vi ete,

Note that one can also start from dv/0t + (v - V)v + (1/p)Vp = —V® using
the formula (v - V)v = (1/2)Vv? — v x (V x v). Then in Cartesian coordinates



11.3. CHAPTER 11 PROBLEMS 279

for which v; = v*, one finds the proposed equation with V; — v; and V* o o*.
The transition to curvilinear coordinates is then made by using the results of the
following problem.

S11.5 dz" = (82" 0z’ )da?, V' = (82" /027 )V7, 882" = (02 /82")8/,
= (33:’/69:"')1/,',

oz’ 8z"

VW = Vgl o W = Ve W = W)

Since the second term in

av; @ (axkv) _ 9z™ 9z* 9w . O%a*

8z — 8z \ az" ')~ 8z' 8z dz™ Ba:’?'az"‘%

is symmetric in ¢ and j, it cancels out when we interchange ¢ and j and subtract.
The required result follows at once.

S11.6 We must show that
\/_] axu(p\/— V“)— \/— 8 ,(p\/-

From eq. (4.4.2) of S. Weinberg, Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity (Wiley, 1972), we have

,  Oz™ oz"
9ij = 33-:'_"9"‘"5;’? )

from which one finds at once that ¢ = J2g, where J is the Jacobian determinant.
A brief calculation gives

Hy __ § pV'} amk 3 6.’6“
\/_'3:1:" p\/—V )= \/_6 ‘( ViV + J 8z dzxk \ Ozi J

We must show that the second term vanishes. We have
1 8z o8 (8" 7) = dlnJ + ot 8 (8"
J 8z’ Ozk \ Bxi = Bai Bz’ Ok \ Bxi

_8mJ dz* 8 [ a"
T Qi Ox'i Ox3 \ Ozx*

_ OlndetJ + trace JBJ'I _ aindetJ (J"" a) )
Y dzi |~ Bz’ oxi ’

where J is the matrix with elements 8z*/3z"*. This is zero by virtue of Weinberg’s
equation (4.7.5),

BM(:c) _ Olndet M(x)
- i

trace (M (=)
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S11.7 (i) During the time dt, the end points a and b of a vector b — a will be
transported by the fluid motion to a’ = a + v(a)dt and b’ = b + v(b)dt, and
the vector b — a will be transported to b’ —a’ = b — a 4 (v(b) — v(a))dt. For
a=r,b=r+dr,a =r', b’ =r' +dr’, we have dr’ = dr + (v(r+dr) — v(r))dt,
yielding at once the required formula. Thus the substantial derivative of dz* is

Ddz’ o’
D= = 37 9%

(i)

Dds; _ _ (Dd% o & a0 Dd(?)z*
T Dt Dt

, i
, (dm mq(@gk _ qgkq@gmy _ Ec;igm £ 4,

J
= (6'!‘63111 - J,mJJr)%J; dSr etc.

S11.8 Acting with the operator d, we find

ddv

W"*‘dLVV— -p—dp/\dp-O

Since dV = (1/2)e;jx'dz? A da*, dLyV = dldV (V)] = d[(@ x v), do]

= (1/2)ex [V x (2 x v)]*dz? Adz* dp/\dp = (1/2)5,Jk(Vp x Vp)'de’ Adz*, we
only have to take the coefficients of ¢;; dz? A dz*.

511.10 (i) Proving that 8,T*" = 0 is straightforward using the wave equation.
Space integration gives

1d

Ov 13 v 33,
P Td:lt-i—/a.T d’z=0 .

Assuming that ¢ vanishes at infinity, we find

d "
5 T3z =0 ,

E = /Toodar = (1/2) f[(attp)2/62 + (V)?|d®z = constant |

= (1/c) /TOidsm S [&goagtp d*z = constant® .

(ii)
oL oL or
o + 3 = e—
“8(Bop) | ' 0(Bip) O
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gives
@ - V)= fux—-X) ,
whereas
d oL oL
dtax: 9X*
gives

MX =vx /fgp u(x ~ X)d3z

= —ffwvxu(x -X)d3¢ = f/u(x - X)Vxp d’s .
(iil) The field energy-momentum tensor T»* (see (i}) now obeys the equation
0, T = (8,0"p)8 ¢ = f u(x-X)8¢ .
Therefore

% T*4%z = f/ u(x — X)8,p Bz
= g{/u(x-—xw d3z+f/()'(.vxu)go Bz ="'-x'(fqux§0 &) = . —MRX

_Q‘_«_ 0§43 _ _ — Q‘f_ 3., xayrs
dt/T d°z = /f'u,(x X)am’.dm— MX* .
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Index

acceleration, relativity 229
action-angle variables 193
action

- integral 8

- integral, invariance 120

- least a. principle 12

- variable, cyclic 7

adiabatic invariants 202
angles, Euler 82

angular momentum, relativity 231
anomaly, eccentric a. 30, 198
attractor, spiral 43

axes, principal a. of inertia 79

Bernoulli equation 273
bifurcation 53

Bloch’s theorem 49
boost 237
brachistochrone 15, 19
bracket

- Lagrange 166

- Poisson 149, 158, 267

canonical

- transformations 148

- variables 148, 162, 170
Cartan

- Lie-C. 175

- Poincaré - C. 178

- vectors and forms 156
central force 23

centrifugal force 72

chaos 54, 200
characteristic function,
Hamilton’s 8, 168, 172
charged particle in em field
104, 153, 246

circulation theorem 272, 274

commutator 69, 177
complementary Lagrangian
123, 182

components, covariant,
contravariant 228

cone, lab and space 80
constants of motion 115, 151, 166
constraints 110, 113, 114
continuous systems 261
contravariant (see components)
coordinate systems 67

Coriolis force 72

coupled oscillators 183, 221
covariant (see componets)
cycle, limit c. 53

cyclic action variable 7

damped oscillator 18
delta map 58

derivative, functional 267
discrete maps 52

disk, rolling 91, 94, 127
double pendulum 44

eccentric anomaly 30, 198
effective potential energy 24
equation

- Bernoulli 273

- Hamilton-Jacobi 9, 168, 171
- iconal 16

- Lagrange, string 263

- Schrédinger 17

equations

- Euler’s, rigid body 79

- Euler’s, fluids 268

- Hamilton 1, 146

- Lagrange 102, 108
equivalent Lagrangians 105



284

Euler angles 82

Euler’s equations

- rigid body 79

- fluids 268

expansions, perturbation 215
exterior forms 158

Fermat’s principle 16

flow

- Hamiltonian, as Lie-Cartan group
175

- in phase space 5

fluid

- Euler’s equation 268

- one-dimensional 268
force

- centrifugal, Coriolis 72

- relativity 230

forces, fictitious 71

forms, Cartan’s 156
function

- generating 150, 163, 170
- Hamilton’s, characteristic
8, 168, 172

- Hamilton’s, principal 172
functional derivative 267

Galilean group 128

gauge transformation 105
generalized momenta 102
generating function 150, 163, 170
- infinitesimal rotations 165

- infinitesimal transformations 165
generators

- of infinitesinal rotations 69

- of Poincaré group 253

group

- Galilean 128

- Lie-Cartan 175

- Poincaré 253

gyrocompass 89

INDEX

Hamilton-Jacobi equation
9, 168, 171

Hamiltonian 1

- bilinear 146

- damped oscillator 18

- flow as Lie-Cartan group
175

- relativity 249

- string 266

- vector field 157
Hamilton's

- equations 1, 146

- characteristic function

8, 168, 172

- principal function 172
Hamilton-Jacobi equation
9, 168, 171

harmonic oscillator, isotropic 26
holonomic constraint 110, 113
Hopf bifurcation 53
hyperbolic point 56

iconal, surfaces, equation 16
identity, Jacobi 151, 177
inertia

- matrix 78

- principal axes 79
infinitesimal rotations

- generating function 165

- generator 69

integrability 34, 200
integral invariant, Poincaré-Cartan
178

integral, Jacobi 117
invariance

- of Lagrange equations 106
- of Lagrangian up to time
derivative 118

- of action integral 120
invariants

- adiabatic 202

- Poincaré 181



INDEX

irregular precession of top 87
isotropic harmonic oscillator 26

Jacobi

- Hamilton-J. equation
9, 168, 171

- identity 151, 177

- integral 117

Kronig-Penney model 51

lab cone 80

Lagrange

- brackets 166

- equation, string 263

- equations 102, 108

- equations, invariance 106

- multipliers 114

Lagrangian

-complementary 123, 182

- fluid 270, 271

- invariance and constants

of motion 115

- invariance up to time derivative
118

- relativity 248

- Toda 127

Lagrangians 101

- equivalent 105
Laplace-Runge-Lenz

vector 31, 127

Larmor’s theorem 106

least action principle 12
Legendre transformation 152
Lie-Cartan group, Hamiltonian

flow as 175

limit cycle 53

Liouville’s theorem 6, 154, 181

Lorentz transformations 227

magnetic moment in static
em field 247

285

map, delta, tent 58

maps 52

mass, longitudinal, transversal
230

Maupertuis principle 12
metric tensor 228

momenta, generalized 102
multiply periodic system 196

nested tori 201

Noether’s theorem 119
non-holonomic constraints 114
non-integrability 35, 200

operator d 160

operator (1 214

orbital angular momentum,
relativity 231

oscillations, small 44
oscillator

- damped 18

- harmonic isotropic 26

- periodically jerked 50
oscillators, coupled 183, 221

parametric resonance 47
particle motion, 1-dim 2-4
pendulum

- double 44

- spherical 111

period of closed orbit 4
perturbation theory 213
perturbed periodic systems 217
phase space 2-5

photons, scalar 277
Poincaré-Cartan integral
invariant 178

Poincaré

- group, generators 253

- invariants 181

- section 200
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point

- fixed 41

- hyperbolic, saddle 56
Poisson

- brackets 149, 158

- brackets, continuous
systems 267

potential energy, effective 24
precession

- of pericenter 25

- of top, irregular 87

- of top, regular 85

- Thomas 244

principal inertia axes 79
principle

- Fermat's 16

- least action, Maupertuis 12

regular precession, top 85
relativistic

- Hamiltonian 249

- Lagrangian 248
repellor, spiral 43
resonance, parametric 47
rolling disk 91, 94, 127
rotations 67, 233

- product of 253

saddle point 56

scalar photons 277
Schrédinger equation 17
section, Poincaré 200
skating top 93

sleeping top 86

space

- cone 80

- phase s. 5

- rotations 67, 233, 253
spin 241

spinning top 84

spinor connection (SL(2), SU(2))
238

INDEX

spiral attractor, repellor 43
Stokes’ theorem 173

string 261

- Lagrangian, Hamiltonian
263, 266

tautochrone 15, 19
tensor, metric 228

tent map 58

theorem, Liouville’s 6, 154, 181
Thomas precession 244
thumbtack 94, 122
Toda Lagrangian 127
top

- spinning 84

- irregular precession 87
- regular precession 85

- skating 93

- sleeping 86

tori, nested 201
transformation

- gauge 1056

- canonical 148

- infinitesimal canonical 165
- Legendre 152

- Lorentz 227
translations 67

variables, canonical 148, 162, 170
vector field, Hamiltonian 157
vectors

- Cartan 156

- relativity 228



