Basic Biomechanics

... the body as a living machine for locomotion...

• The study of forces and motions produced by their actions

Biomechanics

- Mechanical principles applied to
 - Human body
 - Structure
 - Function

• Static

 Forces associated with non-moving or nearly moving systems

Dynamics-moving systems

Kinetics-

examines the forces acting on the bodyduring movement and the motion withrespect to time and forces

• Kinematics-

 A branch of biomechanics that describes the motion of a body without regard to the forces that produce the motion

Kinetics

• Forces causing movement in a system

• Gravity

• Kinematics-

Translation-When all parts of a "body" move in the same direction as every other part

- Rectilinear motion = straight line motions (sliding surfaces)
- Curvilinear motion = curved line of motion (the motion of a ball when tossed)
- Rotation-the arc of motion around a fixed axis of rotation or a "pivot point"
 - Joints have "pivot points" which are used as reference points from which to measure the range of motion (ROM) of that joint

Kinematics of Walking

 The hips are moving forward and marked to indicate the curvilinear path that they take in the translatory motion of walking.

Kinematics of Motion

- Movement of the body = translation of the translation of the body's center of mass
 - Center of Mass/Center of Gravity

Kinematics of Motion: Active versus Passive

• Active-

- Generated by muscle contraction
- Passive-
 - Occur due to stresses placed on the tissue other than muscle contraction
 - Gravity
 - Resistance
 - An applied stretch from someone or something else

Terminology

- Required to describe:
 - Movement
 - Position
 - Location of anatomic features

Terminology

- Deep-
 - toward the inside of the body
- Origin-
 - the proximal attachment of a muscle or ligament
- Insertion-
 - the distal attachment of a muscle or ligament
- Prone-
 - lying face down
- Supine-
 - lying face up

Osteokinematics-

- Motion of bones through a range of motion relative to the 3 cardinal planes of the body and around the axis in that joint
- Planes:
 - Saggital or Median
 - Flexion & extension
 - Frontal or Coronal
 - ABD & ADD
 - Horizontal or Transverse
 - Rotational motions

Anatomic Position

- Standard Reference Point
 - Axis of rotation
 - Planes of motion
 - Actions of muscles are referenced from anatomic position

Osteokinematics

- Axis of Rotation = "pivot point"
 - It's ALWAYS perpendicular to the plane of motion!
- Degrees of Freedom
 - The number of planes of motion allowed to a joint
 - The shoulder and hip have 3
 - The elbow and knee have just 1
 - The wrist has 2

- Flexion and Extension:
 - Occur in the saggital plane around a medial/lateral axis
 - Flexion = motion of one bone approaching the anterior aspect of another bone
 - Extension = opposite of flexion

- ABDuction & ADDuction
 - ABD = movement away from midline
 - ADD = movement toward midline

Rotation

- Internal Rotation = anterior surface moving toward midline
- External Rotation = anterior surface moving away from midline

Circumduction

- Circular motion through 2 planes
 - If a joint can draw a circle in the air, it can circumduct
- Protraction & Retraction
 - Protraction
 - Translation of bone away from midline in a plane parallel to the ground
 - Retraction
 - Translation of bone toward midline in a plane parallel to the ground

- Horizontal ABD & ADD
 - Shoulder flexed to 90°
- Pronation & Supination

• Takes place in the forearm with pronation turning the palm down and supination turning the palm up

• Radial & Ulnar Deviation

Takes place at the wrist with movement toward either the radius or ulna

Dorsiflexion & Plantar Flexion

Takes place at the ankle with dorsiflexion bringing the foot upward and plantar flexion pushing the foot down

Inversion & Eversion

 The sole of the foot faces medially in inversion and laterally in eversion

(b) Inversion and eversion Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Arthrokinematics

- Manner in which adjoining joint surfaces move in relation to each other or how they fit together
 - helps to improve the movement of the joint
 - Parts may move in
 - o the same direction
 - o the opposite direction

Fundamental Movements: Joint Surfaces

• Roll

- Multiple points maintain contact throughout the motion
- Slide
 - A single point on one surface contacts multiple points throughout the motion
- Spin
 - A single point on one surface rotates on a single point on the other surface

Roll & Slide Mechanics

• Convex on Concave

- When a convex joint surface moves on a concave joint surface
 - The roll and slide occur in opposite directions

• Concave on Convex

- When a concave joint surface moves about a stationary convex joint surface
 - the roll and slide occur in the same direction

Kinetics

- The effect of forces on the body
 - Force
 - Any action or influence that moves a body or influences the movement of a body
 - Forces "control" movement of the body
 - Internal
 - Muscle contraction
 - o Tension from ligaments
 - o Muscle lengthening
 - External
 - o Gravity
 - An external load
 - A therapist applying resistance or a
 - o free-weight for resistance training

• Force

- Any action or influence that moves an object
- Vector
 - A quantity having both force and direction

Kinetics

• Torque

- The rotational equivalent of force
 - Force = Distance between the force exerted and the axis of rotation (moment arm)
 - Torque = moment arm x force (resistance)

• Mass

• Amount of matter that a body contains

• Inertia

• Property of matter that causes it to resist any change of its motion in either speed or direction

- Mass is a measure of inertia
 - Resistance to a change in motion

Friction

• A force that is developed by two surfaces

Friction

- Tends to prevent motion of one surface across the other
 - The coefficient of friction must be overcome for movement to occur

Friction

• It is easier to move across something once the coefficient of friction has been met.

Mechanical Advantage

• Ratio between the

- force arm
 - Distance between the force and the axis
- and the
 - resistance arm
 - Distance between the resistance and the axis

Resistance arm

Mechanical Advantage (MA)

• To determine

- Length of force arm
- Length of resistance arm

= MA

Mechanical Advantage (MA)

- When the FA is greater than the RA
 - The MA is greater than 1
 - The force arm has more force than the RA

Mechanical Advantage

 It takes less force on your part if you apply resistance distally rather than proximally.

Pulleys

- A Pulley
 - A grooved wheel that turns on an axel with a rope or cable riding in the groove

Pulley

• Function

- To change the direction of a force
- To increase or decrease the magnitude of a force

Light Cam

Neutral Cam

Heavy Cam

Pulley

• Function

- To increase or decrease the magnitude of a force
 - The load is supported on both segments on either side of the pulley, decreasing effort

- Interaction of internal and external forces control movement and posture through a system of levers within the body.
- The body has Three Classes of Levers
 - First
 - Similar to a "see saw"
 - Second
 - The axis is located at one end to provide "good leverage"
 - Third
 - The axis is also at one end but gravity has more "leverage" than muscle meaning that more muscle force is needed to lift a small load

First Class Lever
F - A - R
Force, Axis, Resistance
Designed for balance
The head sitting on the cervical vertebrae

Second Class Lever

$\Box \mathbf{A} - \mathbf{R} - \mathbf{F}$

- Designed for power
 - Ankle plantar flexors are the perfect example of a second class lever.
 - There is excellent leverage so that the body is easily elevated with relatively little force generated by the plantar flexors of the calf.

- Third Class lever
 - $\Box A F R$
 - Designed for motion
 - The most common lever in the body because they favor large ranges of motion
 - * Favor speed and distance

Line of Pull

- A muscle's line of pull describes the direction of muscular force which can be represented in a vector. (*the motions that are possible*)
- Before a muscle can act upon a joint, it must first cross that joint.
- If a muscle crosses a joint, it acts on that joint.

Kinesiology: Form & Function

Left Hand Ventral Aspect

