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Hence the integral over S in Stokes· s theorem equals - 28 times the area 47T of the disk S. This yields the answer 
-28' 47T = -1127T = -352. Confirm this by direct calculation, which involves somewhat more work. • 

E X AMP L E 4 Physical Meaning of the Curl in Fluid Motion. Circulation 

Fig. 254. Example 4 

Let ST
O 

be a circular disk of radius "0 and center P bounded by the circle CTo (Fig. 254), and let 
F(Q) == F(x, y, :::) be a continuously differentiable vector function in a domain containing ST

O
• Then by Stokes's 

theorem and the mean value theorem for sUiface integrab (see Sec. 10.6), 

where ATo is the area of S'o and P~ is a ~uitable point of S"o. This may be written in the form 

In the case of a fluid motion with velocity vector F = v, the integral 

is called the circulation of the t10w around Cro. It measures the extent to which the corresponding fluid motion 
is a rotation around the circle C

TO
• If we now let ro approach zero, we find 

(8) 

that is. the component of the curl in the positive normal direction can be regarded a~ the specific circulation 
(circulation per unit area) of the flow in the sUiface at the corresponding point. • 

E X AMP L E 5 Work Done in the Displacement around a Closed Curve 

Find the work done by the force F = 2ry3 sin::: i + 3x\2 sin::: j + x2.l cos::: k in the displacement around the 
curve of intersection of the paraboloid z = x2 + y2 and the cylinder (r - 1)2 + y2 = l. 

Solutioll. This work is given by the line integml in Stokes's theorem. Now F = grad f, where f = X
2y3 sin::: 

and curl(grad f) = 0 (see (2) in Sec. 9.9). so that (cur! F)-n = 0 and the work is 0 by Stokes's theorem. This 
agrees with the fact that the present field is conservative (definition in Sec. 9.7). • 

Stokes's Theorem Applied to Path Independence 
We emphasized in Sec. 10.2 that the value of a line integral generally depends not only 
on the function to be integrated and on the two endpoints A and B of the path of integration 
C, but also on the particular choice of a path from A to B. In Theorem 3 of Sec. 10.2 we 
proved that if a line integral 

(9) I F(r)odr = I (FI dx + F2 dy + F3 d;:;) 
C c 

(involving continuous F], F2 , F3 that have continuous first partial derivatives) is path 
independent in a domain D, then curl F = 0 in D. And we claimed in Sec. 10.2 that. 
conversely. curl F = 0 everywhere in D implies path independence of (9) in D provided 
D is simply connected. A proof of this needs Stokes's theorem and can now be given as 
follows. 

Let C be any closed path in D. Since D is simply connected. we can find a surface S 
in D bounded by C. Stokes's theorem applies and gives 

f (Fl dx + F2 dy + F3 d;:;) = f For' ds = J J(curl F)on dA 
c c s 
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for proper direction on C and nonnal vector n on S. Since curl F = 0 in D, the surface 

integral and hence the line integral are zero. This and Theorem 2 of Sec. 10.2 imply that 

the integral (9) is path independent in D. This completes the proof. • 

-.-. .. -
11-81 DIRECT INTEGRATION OF THE SURFACE 

INTEGRALS 

Evaluate the integral II (curl F) 0 n dA directly for the given 
F and S. S 

1. F = [4Z2, 16x, 0], s: Z = Y (0 ~ x ~ 1, 0 ~ y ~ I) 

2. F = [0, 0, 5x cos z], 

s: x 2 + y2 = 4, Y ~ 0, 0 ~ z ~ ~7T 
3. F = [-e Y , eZ, eX], 

s: Z = x + y (0 ~ x ~ 1, 0 ~ y ~ 1) 

4. F = [3 cos y, cosh z, x], 
S the square 0 ~ x ~ 2, 0 ~ y ~ 2, z = 4 

S. F = [e2Z
, eZ sin y, eZ cos y], 

S: Z = y2 (0 ~ X ~ 4, 0 ~ y ~ I) 

6 F = [_2 2 v2] S' 7
2 = x2 + ),2 ,,2: 0 0 ~ 7 ~ ? • .(., X-, _ , ..... ,] _ , _ .... __ 

7. F = [Z2. ~x, 0], 
S the square 0 ~ x ~ a, 0 ~ y ~ a, Z = 1 

8. F = [y3. -x3, 0], S: x 2 + y2 ~ I. Z = 0 

9. Verify Stokes's theorem for F and S in Prob. 7. 

10. Verify Stokes's theorem for F and S in Prob. 8. 

111-181 EVALUATION OF f For' ds 
c 

Calculate this line integral by Stokes's theorem, clockwise 
as seen by a person standing at the origin, for the following 
F and C. Assume the Cartesian coordinates to be right
handed. (Show the details.) 

:- -_11" .. 
1. List the kinds of integrals in this chapter and how the 

integral theorems relate some of them. 

2. How can work of a variable force be expressed by an 
integral? 

3. State from memory how you can evaluate a line integral. 
A double integral. 

4. What do you remember about path independence? Why 
is it important? 

5. How did we Use Stokes's theorem in connection with 
path independence? 

6. State the definition of curl. Why is it important in this 
chapter? 

7. How can you transform a double integral or a surface 
integral into a line integral? 

11. F = [-3y. 3x. z], C the circle x2 + y2 = 4. z = 1 

12. F = [4z, -2x, 2x], 
C the intersection of x2 + )'2 = I and z = y + 1 

13. F = [y2, x2, -x + z], around the triangle with 
vertices (0, 0, I). (I. O. I), (1, 1, I) 

14. F = [y, xy3, - Zy3], 

C the circle x 2 + y2 = a2, Z = b (> 0) 

IS. F = [y, Z2, x 3 ], C as in Prob. 12 

16. F = [x2, y2, Z2], 

C the intersection of x2 + y2 + Z2 = 4 and z = y2 

17. F = [cos 7T)" sin 7TX, 0], around the rectangle with 
vertices (0, 1,0), (0, 0, I), (1, 0, I), (1, 1. 0) 

18. F = [z, x, y]. C as in Prob. 13 

19. (Stokes's theorem not applicable) Evaluate f Fo r' ds, 
c 

F = (x2 + y2)-1[ -y,x], C: x 2 + y2 = I, z = 0, oriented 
clockwise. Why can Stokes's theorem not be applied? 
What (false) result would it give? 

20. WRITING PROJECT. Grad, Div, Curl in 
Connection with Integrals. Make a list of ideas and 
results on this topic in this chapter. See whether you 
can rearrange or combine parts of your material. Then 
subdivide the material into 3-5 portions and work out 
the details of each portion. Include no proofs but simple 
typical examples of your own that lead to a better 
understanding of the material. 

AND PROBLEMS 

8. What is orientation of a surface? What is its role in 
connection with surface integrals? 

9. State the divergence theorem and its applications from 
memory. 

10. State Laplace's equation. Where in physics is it 
important? What properties of its solutions did we 
discuss? 

111-201 LINE INTEGRALS I F(r)odr 
(WORK INTEGRALS) C 

Evaluate. with F and C as given, by the method that seems 
most suitable. Recall that if F is a force, the integral gives 
the work done in a displacement along C. (Show the details.) 

11. F = [x2• y2, Z2], 

C the straight-line segment from (4, I, 8) to (0, 2, 3) 
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12. F = [cos;::, -sin z, -x sin;:: - y cos ;::]. C the 
straight-line segment from (-2. 0, ~'iT) to (4. 3. 0) 

13. F = [x - y, 0, eZ
], 

C: y = 3x2
, Z = 2x for x from 0 to 2 

14. F = [yz, 2;::x, xy], 

C the circle x2 + y2 = 9, Z = l, counterclockwise 

15.F=[-3v3
, 3x3 +cosy. 0]. 

C the circle x2 + )'2 = 16. z = 0, counterclockwise 

16. F = [sin 10', cos m:, sin 17X]. 

C the boundary of 0 ~ x ~ 112, 0 ~ y ~ 2, z = 2x 

17. F = [9z, 5x, 3.\'], 
C the ellipse x 2 + )'2 = 9. z = x + 2 

18. F = [cosh x, e4y, tan z], C: x 2 + )'2 = -1-, Z = x 2. 

(Sketch C.) 

19. F = [Z2. x3• y2], C: x2 + )'2 = 4, x + Y + Z = 0 

20. F = [x2• y2, )'2X], C the helix 
r = [2 cos I. 2 sin I, 61] from (2. O. 0) to (0. 2, 317) 

~ ... 1-251 DOUBLE INTEGRALS, 
CENTER OF GRAVITY 

Find the coordinmes .i. y of the center of gravity of a mass 
of density I(x. y) in the region R. (Sketch R. Shmv the 
details.) 

21. I = 2x)" R the triangle with vertices (0, 0), (1, 0), 
(1, I) 

22. I = I, R: 0 ~ y ~ I - x2 

23. I = 1. R: x 2 + y2 ~ a 2, y ~ 0 

. ...... .:..:... :. . . ..... 1ft .... - .. _\I... 

24. I = x 2 + )'2, R: x2 + )'2 ~ I, x ~ 0, y ~ 0 

25. I = 2x2, R the region below y = x + 2 and above 
)' = x 2 

126-35 1 SURFACE INTEGRALS f f Fon dA 
5 

Evaluate this integral directly or. if pos~ible. by the 
divergence theorem. (Show the details.) 

26. F = [2X2, 4.", 0], 
S: x + y + z = 1, x ~ 0, y ~ 0, z ~ 0 

27. F = [yo -x. 0]. 
S: 3 t' + 2 Y + z = 6, x ~ 0, y ~ 0, z ~ 0 

28. F = [x - y, y - z, z - x], 
S the sphere of radius 5 and center 0 

29. F = [y2, x2, Z2]. 
S the surface of x 2 + y2 ~ 4, 0 ~ Z ~ 5 

30. F = [-,,3, x3 , 3z2], 

S the portion of the paraboloid z = x2 + y2, z ~ 4 

31. F = [sin2 x, -y sin 2x, 5;::]. 
S the sul1'ace of the box Ixl ~ a, Iyl ~ b, Izl ~ c 

32. F = [1, I, a]. S: x 2 + )'2 + 4;::2 = 4, z ~ 0 

33. F = [x, xy, z], S: x 2 + y2 = I, 0 ~ z ~ h 

34. F as in Prob. 33, S the complete boundary of 
x2 + )'2 ~ I, 0 ~ z ~ II 

35. F = leY, 0, zeX
]. Sthe rectangle with vertices (0, O. 0). 

(1.2,0), (0, O. 5), (1, 2, 5) 

Vector Integral Calculus. Integral Theorems 

Chapter 9 extended differential calculus to vectors, that is, to vector functions 
vex, y, z) or vet). Similarly. Chapter 10 extends integral calculus to vector functions. 
This involves line integrals (Sec. 10.1), double integrals (Sec. 10.3), swface 
integrals (Sec. 10.6), and triple integrals (Sec. 10.7) and the three "big" theorems 
for transforming these integrals into one another, the theorems of Green (Sec. 10.4), 
Gauss (Sec. 10.7), and Stokes (Sec. lO.9). 

The analog of the definite integral of calculus is the line integral (Sec. 10.1) 

(1) 

where C: r(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k (a ~ t ~ b) is a curve in 

space (or in the plane). Physically. (I) may represent the work done by a (variable) 
force in a displacement. Other kinds of line integrals and their applications are also 
discussed in Sec. 10.1. 
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Independence of path of a line integral in a domain D means that the integral 
of a given function over any path C with endpoints P and Q has the same value for 
all paths from P to Q that lie in D; here P and Q are fixed. An integral (1) is 
independent of path in D if and only if the differential form Fl dx + F2 dy + F3 dz 
with continuous FI , F2• F3 is exact in D (Sec. LO.2). Also, if curl F = 0, where 
F = [Fl' F2 , F3]' has continuous first partial derivatives in a simp/" connected 
domain D, then the integral (1) is independent of path in D (Sec. 10.2). 

Integral Theorems. The formula of Green's theorem in the plane (Sec. 10.4) 

(2) II( iJF2 iJFl ) T - - - dr: dy = (F dx + F dy) 
R ax ay . c I 2 . 

transforms double integrals over a region R in the xy-plane into line integrals over 
the boundary curve C of R and conversely. For other forms of (2) see Sec. lOA. 

Similarly, the formula of the divergence theorem of Gauss (Sec. 10.7) 

(3) I I I div F dV = I I F- n dA 
T S 

transforms triple integrals over a region T in space into surface integrals over the 
boundary surface S of T. and conversely. Formula (3) implies Green's formulas 

(4) III (f'\Pg + Vf-Vg)dV= IIf ~g dA, 
T S an 

(5) 

Finally, the formula of Stokes's theorem (Sec. 10.9) 

(6) I I (curl F)-n dA = T F-r' (s) ds 
s c 

transforms surface integrals over a surface S into line integrals over the boundary 
curve C of S and conversely. 





PA RT c 
••• 

Fourier Analysis. 
Partial 
Differential 
Equations 

C HAP T E R 11 Fourier Series, Integrals, and Transforms 

C HAP T E R 1 2 Partial Differential Equations (PDEs) 

Fourier analysis concerns periodic phenomena, as they occur quite frequently in 
engineering and elsewhere-think of rotating parts of machines, alternating electric 
currents, or the motion of planets. Related periodic functions may be complicated. This 
situation poses the important practical task of representing these complicated functions in 
terms of simple periodic functions. namely. cosines and sines. These representations will 
be infinite series, called Fourier series. l 

The creation of these series was one of the most path-breaking events in applied 
mathematics, and we mention that it also had considerable influence on matl1ematics as 
a whole, on the concept of a function. on integration theory, on convergence tl1eory for 
series. and so on (see Ref. [OR7] in App. 1). 

Chapter II is concerned mainly with Fourier series. However, the underlying ideas can 
also be extended to nonperiodic phenomena. This leads to Fourier integrals and 
fransjonl1s. A common name for the whole area is Fourier analysis. 

Chapter 12 deals witl1 the most important partial differential equations (PDEs) of physics 
and engineering. This is the area in which Fourier analysis has its most basic applications, 
related to boundary and initial value problems of mechanics, heat flow, electrostatics, and 
other fields. 

IJEAN-BAPTISTE JOSEPH FOURIER (1768-1830). French physicist and mathematician, lived and taught 
in Paris. accompanied Napoleon in the Egyptian War. and was later made prefect of Grenoble. The beginnings 
on Fourier series can be found in works by Euler and by Daniel Bernoulli, but it was Fourier who employed 
them in a systematic and general manner in his main work, Theorie allalyflque de la chaleur (Analytic Theory 
of Heat. Paris, 1822). in which he developed the theory of heat conduction (heat equation; see Sec. 12.5), making 
these series a most important tool in applied mathematics. -

477 
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CHAPTER 1 1 

Fourier Series, Integrals, 
and Transforms 

Fourier series (Sec. 11.1) are infinite series designed to represent general periodic 
functions in terms of simple ones, namely. cosines and sines. They constitute a very 
important tool, in particular in solving problems that involve ODEs and PDEs. 

In this chapter we discuss Fourier series and their engineering use from a practical point 
of view, in connection with ODEs and with the approximation of periodic functions. 
Application to PDEs follows in Chap. 12. 

The theory of Fourier series is complicated. but we shall see that the application of these 
series is rather simple. Fourier series are in a certain sense more universal than the familiar 
Tay lor series in calculus because many discontinuous periodic functions of practical interest 
can be developed in Fourier series but, of course, do not have Taylor series representations. 

In the last sections (11.7-11.9) we consider Fourier integrals and Fourier transforms, 
which extend the ideas dnd techniques of Fourier series to nonperiodic functions and have 
basic applications to PDEs (to be shown in the next chapter). 

Prerequisite: Elementary integral calculus (needed for Fourier coefficients) 
Sections that lIlay be nmitted in a shorter course: 11.4-11.9 
References alld Answers to Problems: App. 1 Part C. App. 2. 

11.1 Fourier Series 

478 

Fourier series are the basic tool for representing periodic functions, which play an 
important role in applications. A function f(x) is called a periodic function if f(x) is 
defined for all real x (perhaps except at some points, such as x = ±7T!2, ±37T/2, ... for 
tan x) and if there is some positive number p. called a period of f(x). such that 

(1) f(x + p) = f(x) for all x. 

The graph of such a function is obtained by periodic repetition of its graph in any interval 
of length p (Fig. 255). 

Familiar periodic functions are the cosine and sine functions. Examples of functions 
that are not periodic are x, x 2

, x 3
, eX, cosh x, and In x, to mention just a few. 

If f(x) has period p, it also has the period 2p because (I) implies 
f(x + 2p) = f([x + p] + p) = f(x + p) = f(x), etc.; thus for any integer 11 = 1,2,3, .. " 

(2) f(x + np) = f(x) for all x. 
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{(x) 

x 

Fig. 255. Periodic function 

Furthermore if f(x) and g(x) have period p, then af(x) + bg(x) with any constants a and 
b also has the period p. 

Our problem in the first few sections of this chapter will be the representation of various 
functions f(x) of period 217 in terms of the simple functions 

(3) I, cos x, sin x, cos 2x, sin 2x, ... , cos In:, sin /lX, . • • . 

All these functions have the period 27T. They form the so-called trigonometric system. Figure 
256 shows the fIrst few of them (except for the constant 1, which is periodic with any period). 

The series to be obtained will be a trigonometric series, that is, a series of the form 

(4) 

ao + a1 cos x + b i sin x + a2 cos 2\'" + b2 sin 2x + 

= ao + .L (an cos IlX + bn sin nx). 
n~I 

ao, Lib b l . a2, b2, ... are constants, called the coefficients of the series. We see that each 
term has the period 27T. Hence if the coefficients are such that the series converges, its 
sum will be a function of period 27T. 

It can be shown that if the series on the left side of (4) converges, then inserting 
parentheses on the right gives a series that converges and has the same sum as the series 
on the left. This justifIes the equality in (4). 

Now suppose that f(x) is a given function of period 27T and is such that it can be 
represented by a series (4), that is, (4) converges and, moreover, has the sum f(x). Then, 
using the equality sign, we write 

(5) 

cos x 

sin x 

f(x) = ao + .L (an cos nx + bn sin nx) 
n~I 

:\ /:\ L 
o vnv 2n 

:\ f\,!\ (, 

cos 2x 

V\ 1f!\. 2n 

V V 
sin 2x 

Fig. 256. Cosine and sine functions having the period 2IT 

cos 3x 

Sin 3x 
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and call (5) the Fourier series of f(x). We shall prove that in this case the coefficients 
of (5) are the so-called Fourier coefficients of f(x), given by the Euler formulas 

I 71" 

(a) ao = - f f(x) dx 
27T -71" 

I 7T 

(6) (b) a = - f f(x) cos I1X dx n = 1.2.··· n 
7T -71" 

I 7T 

(c) bn = - f f(x) sin 11-1: dx 11 = 1,2, .... 
7T -7T 

The name "Fourier series" is sometimes also used in the exceptional case that (5) with 
coefficients (6) does not converge or does not have the sum f(x)-this may happen but 
is merely of theoretical interest. (For Euler see footnote 4 in Sec. 2.5.) 

A Basic Example 
Before we derive the Euler formulas (6). let us become familiar with the application of 
(5) and (6) in the case of an important example. Since your work for other functions will 
be quite similar, try to fully understand every detail of the integrations, which because of 
the 11 involved differ somewhat from what you have practiced in calculus. Do not just 
routinely use your software, but make observations: How are continuous functions (cosines 
and sines) able to represent a given discontinuous function? How does the quality of the 
approximation increase if you take more and more terms of the series? Why are the 
approximating functions, called the partial sums of the series, always zero at 0 and 7T? 
Why is the factor lin (obtained in the integration) important'? 

E X AMP L E 1 Periodic Rectangular Wave (Fig. 257a) 

Find the Fourier coefficients of the periodic function f(x) in Fig. 257a. The formula is 

(7) {

-k 
f(x) = k 

if -71"<X<O 
and f(x + 271") = f(x). 

if O<X<71" 

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric 
circuits, etc. (The value of f(x) at a single point does not affect the integral: hence we can leave f(x) undefined 
at x = 0 and x = 2:71".) 

Solution. From (6a) we obtain ao = O. This can also be seen without integration, since the area under the 
curve of f(x) between -71" and 71" is zero. From (6bl. 

I f'" I [ 0 'IT ] 
an = - f(x) cos nxdx = - f (-k)COSI1Xdx+f kcosl1xdx 

7r -'iT 7T -'iT 0 

[
sin nx 1

0 
sin nx I"'] -k -- +k-- cO 

7r n -7T n 0 

because sin nx = 0 at -71", 0, and 71" for all n = 1, 2, .... Similarly, from (6cl we obtain 

bn = ~ f'" f(x) sin nx dx = 
71" _'" [fO (-k) sin nx dx + f'" k sin 17X dX] 

7r _" 0 

1 [ cos nx /0 cos n.r /"'] k-- -k-- . 
'IT n -'iT n 0 
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-n 0 n 2n x 

L -----l-k 1- J 

(a) The gIven function {(x) (Periodic rectangular wave) 

" / 

'~< 
4k sin 3x 
3" 

'-, ...... _/ 

4k sin 5x 
5" 

n 

n 

(b) The first three partial sums of the corresponding Fourier series 

Fig. 257. Eample 1 

Since cos ( -a) = cos a and cos 0 = 1, this yields 

k U 
b = n [cos 0 - cos (-n7T) - cos n7T + cos 0] = ~ (1 - cos n7T). 

nn nn 

Now, cos 71" = -1, cos 271" = 1, cos 371" = -1, etc.; in general, 

x 

x 

x 

{

-I for odd n, 
I - cosn71" = e for odd n, 

cos n71" = I and thus 
for even n, for cven n. 

Hence the Fourier coefficients hn of our function are 

4k 4k 
h5 = 571" ' 

481 
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Since the an are 7ero, the Fourier series of f(x) is 

(8) 4k (Sin x + ..!.. sin 3x + ..!.. sin 5x + ... ) 
7T 3 5 . 

The partial sums are 

4k 
Sl = ~sinx, S = 4k (sin x + ..!.. sin 3X) 

2 7T 3 ' etc., 

Their graphs in Fig. 257 ,eem to indicate that the series is convergent and has the sum f(x), the given function. 
We notice that at x = 0 and x = 7T, the points of discontinuity of f(x), all partial sums have the value zero, the 
arithmetic mean of the limits -k and k of our function, at these points. 

Furthermore, assuming that f(x) is the sum of the series and setting x = 7TI2, we have 

thus 
1 1 1 7T 

1--+---+-···=-. 
3 5 7 4 

This is a famous result obtained by Leibniz in 1673 from geometric considerations. It illustrates that the value, 
of various series with constant terms can be obtained by evaluating Fourier series at specific points. • 

Derivation of the Euler Formulas (6) 
The key to the Euler formulas (6) is the orthogonality of (3), a concept of basic importance, 
as follows. 

THEOREM 1 Orthogonality of the Trigonometric System (3) 

The trigonometric system (3) is orthogonal on the interval -7T ~ X ~ 7T (hence also 
on 0 ~ x ~ 27T or any other interval of length 27T because of periodicity): that is, 
the integral of the product of any two functions in (3) over that interval is 0, so that 
for any integers nand nz, 

(a) J7T cos nx cos nIX dx = 0 (n =/=- m) 
-7T 

(9) (b) J" sin nx sin mx dx = 0 (n =/=- m) 
-7T 

(e) J7T sin nx cos mx dx = 0 (n =/=- m or n = m). 
-7T 

PROOF This follows simply by transfonning the integrands trigonometrically from product'> into 
sums. In (9a) and (9b), by (11) in App. A3.I, 

7T 1"" 17T I cos nx cos nIX dx = - J cos (n + m)x dx + - J cos (n - m)x dx 
-7T 2 -7T 2 _.". 

1 7T J 7T - J cos (n - m)x dx - - J cos (n + m)x dx. 
2 -7T 2 -7T 

J"" sin nx sin nzx dx = 
-7T 
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Since m * n (integer!), the integrals on the right are all O. Similarly, in (9c), for all integer 
m and n (without exception; do you see why?) 

~ I ~ ~ 

J sin nx cos mx dx = - J sin (n + m)x dr: + J sin (n - lIl)x dr: = 0 + O. • 
_~ 2 _~ 2 _~ 

Application of Theorem 1 to the Fourier Series (5) 
We prove (6a). Integrating on both sides of (5) from -7T to 7T, we get 

~ ~ [ 00 ] L}(X) dx = L~ ao + ~l (an cos rue + bn sin Itt) dx. 

We now assume that termwise integration is allowed. (We shall say in the proof of 
Theorem 2 when this is true.) Then we obtain 

The first tenn on the right equals 27Tao. Integration shows that all the other integrals are 
O. Hence division by 27T gives (6a). 

We prove (6b). Multiplying (5) on both sides by cos 11/X with any fixed positive integer 
m and integrating from - 7T to 7T, we have 

(10) 
~ ~ [ YO ] J_~f(X) cos mx dx = J_~ ao + ~1 (an cos nx + hn sin nx) cos mx dx. 

We now integrate term by term. Then on the right we obtain an integral of ao cos mx. 
which is 0; an integral of an cos nx cos 17U, which is am 7T for n = 11/ and 0 for n =/=- 111 by 
(9a); and an integral of bn sin In cos 111X, which is 0 for all nand 111 by (9c). Hence the 
right side of (10) equals am 7T. Division by 7T gives (6b) (with 111 instead of n). 

We finally prove (6c). Multiplying (5) on both sides by sin my with any fixed positive 
integer 111 and integrating from - 7T to 7T, we get 

(II) ~ ~ [ = ] L}(X) sin mx dx = LTi ao + ~l (an cos nx + hn sin nx) sin mx dr:. 

Integrating term by term, we obtain on the right an integral of ao sin mx, which is 0; an 
integral of an cos nx sin mx, which is 0 by (9c); and an integral of hn sin 11.)( sin llU", which 
is hm 7T if n = 1ll and 0 if 17 =/=- m, by (9b). This implies (6c) (with n denoted by m). This 
completes the proof of the Euler formulas (6) for the Fourier coefficients. • 
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Convergence and Sum of a Fourier Series 
The class of functions that can be represented by Fourier series is surprisingly large and 
general. Sufficient conditions valid in most applications are as follows. 

THEOREM 2 Representation by a Fourier Series 

f(x) 

Let f(x) he periodic with period 271" and pieceJ,vise cOlltinuous (see Sec. 6.1) in the 
interval -71" ~ X ~ 71". Furthermore, let f(x) have a left-hand derivative and a 
right-hand derivative at each point of that interval. Then the Fourier series (5) of 
f(x) [with coefficients (6)] conver!!es. Its sum is f(x), except at points Xo where f(x) 
is discontinuous. There the slim of the series is the average of the left- and 
right-hand limits2 of f(x) at Xo. 

PROOF We prove convergence in Theorem 2. We prove convergence for a continuous function 
f(x} having continuous first and second derivatives. Integrating (6b) by parts, we obtain. 

f(l- 0) 

j~ 

1 I71" f(x) sin IlX 17T I I71" , 
an = - f(x) cos nx dr: = - - f (x) sin nx dt. 

71" -71" n71" -7T n71"_7T 

The first teml on the right is zero. Another integration by parts gives 

t' (.x) cos nx 171" I I7T " 
an = 2 - -2- f (x) cos nx dx. 

n 71" -7T n 71" -7r 

The firs I term on the right is zero because of the periodicity and continuity of f' (x). Since 
f" is continuous in the interval of integration, we have 

If"(x)1 < M 

for an appropriate constant M. Furthermore, Icos nxl ~ 1. It follows that 

lanl = -i-II 7T {'ex) cos nx dxl < -i- I7T M dx = 2M 
n 71" -7T n 71" -7T n2 

. 

2The left-hand limit of f(x) at Xo is defined as the limit of f(x) as x approaches Xo from the left 
and is commonly denoted by f(xo - 0). Thus 

f(xo - 0) = lim f(xo - Iz) as h ~ 0 through positive values. 
h~O o x 

Fig. 258. Left- and 
right-hand limits 

The right-hand limit is denoted by f(xo + 0) and 

f(xo + 0) = lim f(xo + h) as h ---> 0 through positive values. 
11._0 

1(1 - O} = 1, 

1(1 + 0) =i 
of the function 

{ 

X2 

I(x) = 
x/2 

if x < 1 

The left- and right-hand derivatives of f(x) at xo are defined as the limits of 

f(xo - Iz) - f(xo - 0) 

-Iz 
and 

f(xo + Iz) - f(xo + 0) 

It 

respectively, as Iz ---> 0 through positive values. Of course if f(x) is continuous at X()o the last tenn in 
both numerators is simply flxo). 
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Similarly, Ibnl < 2 Mln 2 for alln. Hence the absolute value of each teml of the Fourier 
series of f(x) is at most equal to the corresponding term of the series 

( 
1 III ) 

la I + 2M 1 + 1 + - + - + - + - + ... 
o 22 22 32 32 

which is convergent. Hence that Fourier series converges and the proof is complete. 
(Readers already familiar with uniform convergence will see that, by the Weierstrass test 
in Sec. 15.5, under our present assumptions the Fourier series converges uniformly, and 
our derivation of (6) by integrating term by term is then justified by Theorem 3 of 
Sec. 15.5.) 

The proof of convergence in the case of a piecewise continuous function f(x) and the 
proof that under the assumptions in the theorem the Fourier series (5) with coefficients 
(6) represents f(x) are substantially more complicated; see, for instance, Ref. [C121. • 

E X AMP L E 2 Convergence at a Jump as Indicated in Theorem 2 

The rectangular wave in Example I has a jump at x = O. Its left-hand limit there is -k and its right-hand limit 
is k (Fig. 257). Hence the average of these limits is O. The Fourier series (8) of the wave does indeed converge 
to this value when x = 0 because then all its terms are O. Similarly for the other jumps. This is in agreement 
with Theorem 2. • 

Summary. A Fourier series of a given function f(x) of period 271' is a series of the form 
(5) with coefficients given by the Euler formulas (6). Theorem 2 gives conditions that are 
sufficient for this series to converge and at each x to have the value f(x), except at 
discontinuities of f(x), where the series equals the arithmetic mean of the left-hand and 
right-hand limits of f(x) at that point. 

.. =J~ 

1. (Calculus review) Review integration techniques for 
integrals as they are likely to arise from the Euler 
formulas, for instance, definite integrals of x cos /lX, 

x 2 sin I1X, e-2x cos I1X, etc. 

@-iJ FUNDAMENTAL PERIOD 
Theful1damental period is the smallest positive period. Find 
it for 

2. 

3. 

cos x, sinx. cos 2x. sin 2x, 
cos 27TX, sin 27TX 

27TX 
cos I1X. sin nx. cos -k-

27TI1X 
cos -k- , 

27TI1X 
sin -

k 

cos 7TX, sin 7TX. 

27TX 
sin --

k ' 

4. Show that f = COl1st is periodic with any period but 
has no fundamental period. 

S. If f(x) and g(x) have period p, show that 
hex) = af(x) + bg(x) (a, b, constant) has the period p. 
Thus all functions of period 17 form a vector space. 

6. (Change of scale) If f(x) has period 17, show that f(ax), 
a *- O. and f(x/b) , b *- O. are periodic functions of x 
of periods pia and bp, respectively. Give examples. 

17-121 GRAPHS OF 21T"PERIODIC FUNCTIONS 

Sketch or graph f(x), of period 27T, which for -7T < X < 7T 

is given as follows. 

7. f(x) =x 8. f(x) = e- lxl 

9. f(x) 7T - Ixl 10. f(x) Isin 2xI 

{-X
3 if -7T < x < 0 

11. f(x) 
x 3 if O<X<7T 

Losl ~x 
if-7T<x<O 

12. f(x) 
if O<x< 7T 

113-241 FOURIER SERIES 

Showing the details of your work, find the Fourier series 
of the given f(x)' which is assumed to have the period 27T. 

Sketch or graph the pattial sums up to that including 
cos 5x and sin 5x. 
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13. lIn 
l _ 

-IT 0 lIT 
2 

14. II 
-IT 0 IT 

15. 

/~ 
-Tr 0 IT 

16. 

~ -Tr 2 ~ 1 Tr 

"2Tr 

17. Tr 

-Tr 0 Tr 

18. 

"" '/ "-
'. 

-Tr 0 IT 

19. 

20. 

21. f(x) = x 2 
(- 7T < X < 7T) 

22. f(x) = x 2 (0 < X < 27T) 

23. f{x) 

{

-4X 
24. f{x) = 

4x 

if -7T < x < 0 

if 0 < x < 7T 

25. (Discontinuities) Verify the last statement in Theorem 
2 for the discontinuities of f(x) in Prob. 13. 

26. CAS EXPERIMENT. Graphing. Write a program for 
graphing partial sums of the following series. Guess 
from the graph what f(x) the series may represent. 
Confirm or disprove your guess by using the Euler 
formula~. 

(a) 2{sinx + ~ sin 3x + ! sin 5x + ... ) 

- 2( i sin 2x + i sin 4x + i sin 6x ... ) 

141 (b) 2 + ----z (cos x + 9 cos 3x + :l5 cos Sx + ... ) 
7T 

(c) ~~ + 4(cos x - i cos 2x + i cos 3x - -h cos 4x 
+ - ... ) 

27. CAS EXPERIMENT. Order of Fourier Coefficients. 
The order seems to be lin if f is discontinous. and 11112 

if f is continuous but f' = dfldx is discontinuous. 1In3 

if f and J' are continuous but fff is discontinuous, etc. 
Try to verify this for examples. Try to prove it by 
integrating the Euler formulas by parIs. Whal is the 
practical significance of this? 

28. PROJECT. Euler Formulas in Terms of Jumps 
Without Integration. Show that for a function whose 
third derivative is identically zero, 

a = n 
1l'iT 

n7T 

I .ff. ] + n 2 L is Sill nxs 

1 - Lj~ sinnxs 
n 

I ~ _ff ] 
- 2 L..J is cos nxs 

11 

where n = I, 2, ... and we sum over all the jumps js, 
j~,j; of f, J', J'. respectively. located atxs' 

29. Apply the formulas in Project 28 to the function in 
Prob. 21 and compare the results. 

30. CAS EXPERIMENT. Orthogonality. Integrate and 
graph the integral of the product cos mx cos nx (with 
various integer m and IJ of your choice) from -a to a 
as a function of a and conclude orthogonality of cos 
mx and cos nx (m *- Il) for a = 7T from the graph. For 
what m and n will you get orthogonality for a = 7T/2, 
rr/3, 7T14? Other a? Extend the experiment to cos mx 
sin Il\: and sin 111 ,. sin l1X. 
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11.2 Functions of Any Period p = 2L 
The functions considered so far had period l7T, for the simplicity of the formulas. Of 
course, periodi.c function~ in applications will generally have other periods. However, we 
now show that the transition from period p = 27T to a period 2L is quite simple. The 
notation p = 2L is practical because L will be the length of a violin string (Sec. 12.2) or 
the length of a rod in heat conduction (Sec. 12.5), and so on. 

The idea is simply to find and use a cha1lge of scale that gives from a function g(v) of 
period 27T a function of period 2L. Now from (5) and (6) in the last section with g(v) 

instead of I(x) we have the Fourier series 

(1) 

with coefficients 

(2) 

"" 
g(v) = ao + 2: (an cos flV + bn sin llv) 

n=l 

1 7T 

ao = - J g(v) dv 
27T -71" 

1 7T 

lin = - J g(v) cos flV dv 
7T -7T 

1 7T 

bn = - J g(v) sin llV dv. 
7T -7T 

We can now write the change of scale as v = kx with k such that the old period v = 27T 
gives for the new variable x the new period x = 2L. Thus, 27T = k2L. Hence k = 7TIL and 

(3) v = kx = 7TXIL. 

This implies dv = (7TIL) dx. which upon substitution into (2) cancels 1I27T and 1I7T and 
gives instead the factors 1I2L and IlL. Writing 

(4) g(v) = I(x), 

we thus obtain from (1) the Fourier series of the function f(x) of period 2L 

(5) 00 ( ) 

1l7T 1l7T 
f(x) = ao + ~l an cos L x + bn sin L x 

with the Fourier coefficients of f(x) given by the Euler formulas 

(a) 

(6) (b) 

(C) 

1 L 

ao = -;;- J f(x) dx 
... L -L 

1 JL ll7TX 
an = - f(x) cos -- dx 

L -L L 

1 JL ll7TX 
bn = L I(x) sin -- dx 

-L L 

11 = 1,2, ... 

n = 1,2, ... 
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Just as in Sec. 11.1, we continue to call (5) with any coefficients a trigonometric series. 
And we can integrate from 0 to 2L or over any other interval of length p = 2L. 

E X AMP L E 1 Periodic Rectangular Wave 

Find the Fourier series of the function (Fig. 259) 

{

o if -2 < x < -1 

f(x) = Ok if -1 < x < 1 p = 2L = 4. L = 2. 

if 1<..1.'< 2 

Solution. From (6a) we obtain ao = kl2 (verify!). From (6h) we ohtain 

an = I {/(X) cos 11;' dx = I f/ cos 11;..1.' dx = ,~: sin 1127T . 

Thus an = 0 if 11 is even and 

an = 2kln7T if n = 1, 5, 9, .... an = -2kll17T if n = 3,7, 11, .... 

From (6c) we find that bn = 0 for 11 = 1,2 ..... Hence the Fourier series is 

k 2k ( 7T 1 37T I 57T ) 
f(x) = - + - cos - x - - cos - x + - cos -..I. - + ... 

2 7T . 2 3 2 5' 2 . 

~b I 
-2 -1 0 1'-----:!~:---' 

Fig. 259. Example 1 

E X AMP L E 2 Periodic Rectangular Wave 

Find the Fourier serie~ of the function (Fig. 260) 

{

-k if -2 < x < 0 
f(x) = 

kif 0<..1.'<2 

Solution. ao = 0 from (6a). From (6bt with IlL = 112, 

p = 2L = 4, 

x 

L = 2. 

a = n [f a Il1iX {2 n7TX ] 
2 _2(-k) cos -2- dt: + 0 k cos -2- dx 

[
_ 2k sin 117TX 1

0 

+ 2k sin 1l7TX 1
2J = O. 

2 n7T 2 -2 1l7T 2 0 

so that the Fourier series has no cosine terms. From (6c). 

I [2k fl7TX 1
0 

2k 1l7TX 1
2J bn = - - cos -- - - cos --

2 1l7T 2 -2 1l7T 2 0 

k {4klll7T if Il = L 3 •... 
= 117T (I - cos n7T - cos 1l7T + 1) = 0 if II = 2, 4, .... 

• 
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EXAMPLE 3 

Hence the Fourier series of f(.1:) is 

f(x) ~ 4k (Sin ~ x + ~ sin 37T x + ~ sin 57T x + ... ) 
7T 2 3 2 5 2 . 

It is interesting that we could have derived this from (8) in Sec. 11.1, namely, by the scale change (3). Indeed. 
writing v instead of x, we have in (8), Sec. 11.1, 

: (sin v + ~ sin 3v + + sin 5v + ... ) . 

Since the period 27T in v corresponds to 2L = 4, we have k = 7TIL = 7T12 and v = kx = TTXI2 in (3); hence we 
obtain the Fourier series of f(x), as before. • 

{(x) 

k 

'-------j-k 

2 x 
L-

Fig. 260. Example 2 

Half-Wave Rectifier 

~, ""'6 
-rr/m o rr/m 

Fig. 261. Half-wave rectifier 

A sinusoidal voltage E sin WT. where T is time. is passed through a half-wave rectifier that clips the negative 
portion of the wave (Fig. 261). Find the Fourier series of the resulting periodic function 

u(t) = { 0 
E sin wi if 

if -L < t < O. 7T 
p = 2L ~ L= 

0< r < L W W 

Solution. Since u = 0 when -L < t < 0, we obtain from (6a), with t instead of x, 

W f7C/W E 
ao = - E sin wt dt = -

27T 0 7T 

and from (6b), by using formula (11) in App. A3.1 with x = wt and y = I1wt, 

an = !:'!... f7C/W E sin WT cos I1WT dt = ~E f",IW[Sin (1 + 111M + sin (1 - I1)M] dt. 
7T 0 _7T 0 

If 11 = I, the integral on the right is zero, and if 11 = 2, 3, ... , we readily obtain 

a = n 
wE [_ cos (1 + Il)wt 

27T (1 + I1)W 

2: (-cos (~ : ~7T + 

If 11 is odd, thi, is equal to zero, and for even 11 we have 

cos <I - I1)Wt ] 7C/w 

(I - l1)w 0 

+ _-_c_o_s_<_I_-_")_7T_+_1 ) . 
1 - 11 

2E 

(11 - 1)(11 + 1)7T 
(Il = 2,4, .. '). 

In a similar fashion we find from (tiC) that b i = E12 and bn = 0 for 11 = 2,3, .... Consequently, 

u(t) = ~ + f sin wt - z: (1 ~ 3 cos 2mt + 3 ~ 5 cos 4wt + .. -) . • 
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11-111 FOURIER SERIES FOR PERIOD P = lL 

Fmd the Fourier series of the function f(x), of pedol! p = 2L, 
and sketch or graph the first three partial sums. (Show the 
details of your work.) 

1. f(x) = -1 (-2 < x < 0). f(x) = 1 (0 < x < 2). p = 4 

2. f(x) = 0 (-2 < x < 0). f(x) = 4 (0 < x < 2). p = 4 

3. f(x) = x 2 
(- I < x < 1), p = 2 

4. f(x) 7Tx 312 (-I < x < I), p = 2 

5. f(x) sin TTX (0 < X < I), P = 1 

6. f(x) cos TTX (-4 < x < ~), p = 1 

7.f(x) Ixl (-l<x<l). p=2 

{
I + x if - I < x < 0 

8. f(x) = 1 _ x if 0 < x < 1. p = 2 

9. f(x) = I - ~2 (-1 < x < I), P = 2 

10. f(x) = 0 (-2 < x < 0), f(x) = x (0 < x < 2), p = 4 

ll.f(x)=-x (-I<x<O), f(x)=x (O<x<I). 
f(x) = 1 tl < x < 3), p = 4 

12. (Rectifier) Find the Fourier series of the function 
obtained by passing the voltage v(t) = Vo cos 100m 
through a half-wave rectifier. 

13. Show that the familiar identities 
cos3 x =! cos x + ~ cos 3x and 

sin3 x = ~ sin x - ! sin 3x can be interpreted as 
Fourier series expansions. Develop cos4 x. 

14. Obtain the series in Prob. 7 from that in Prob. 8. 

15. Obtain the series in Prob. 6 from that in Prob. 5. 

16. Obtain the series in Prob. 3 from that in Prob. 21 of 
Problem Set 11.1. 

17. Using Prob. 3, show that 
I - ! + ~ - k + - . . . = fz7T

2 

18. Show that I +! + ~ + k + ... = ~7T2. 

19. CAS PROJECT. Fourier Series of 2L-Periodic 
Functions. (a) Write a program for obtaining partial 
sums of a Fourier series (1). 

(b) Apply the program to Probs. 2-5. graphing the first 
few partial sums of each of the four series on common 
axes. Choose the first five or more partial sums until 
they approximate the given function reasonably well. 
Compare and comment. 

20. CAS EXPERIMENT. Gibbs Phenomenon. The 
partial sums ,1'n(X) of a Fourier series show oscillations 
near a discontinuity point. These oscillations do not 
disappear as 1l increases but instead become sharp 
"spikes." They were explained mathematically by 
1. W. Gibbs3

• Grdph sn(x) in Prob. 10. When 11 = 50. 
"ay. you will see those oscillations quite distinctly. 
Consider other Fourier series of your choice in a similar 
way. Compare. 

11.3 Even and Odd Functions. 
Half-Range Expansions 

The function in Example 1, Sec. 11.2, is even, and its Fourier series has only cosine 
terms. The function in Example 2, Sec. 11.2, is odd, and its Fourier series has only sine 
terms. 

Recall that g is even if g( - x) = g(x), so that its graph is symmetric with respect to the 

vertical axis (Fig. 262). A function h is odd if h( - x) = - hex) (Fig. 263). 
Now the cosine terms in the Fourier series (5), Sec. I L.2. are even and the sine terms 

are odd. So it should not be a surprise that an even function is given by a series of 

cosine terms and an odd function by a series of sine terms. Indeed, the following holds. 

3JOSIAH WILLARD GIBBS (1839-1903). American mathematician. professor of mathematical physics at 
Yale from 1871 on. one of the founders of vector calculus [another being O. Heaviside (see Sec. 6.1)], 
mathematical thermodynamics. and statistical mechanics. His work was of great importance to the development 
of mathematical physics. 
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THEOREM 1 

y 
y 

x 

Fig. 262. Even function Fig. 263. Odd function 

Fourier Cosine Series, Fourier Sine Series 

The Fourier series of an even function of period 2L is a "Fourier cosine series" 

ro 
117T 

f(x) = £/0 + 2: an cos L X 

n=l 

(1) 

with coefficients (note: integration from 0 to L only!) 

1 L 

(2) ao = - J f(x) dx, 
L 0 

2 JL tl7TX 
an = - f(x) cos -- dx, 

L 0 L 

(f even) 

n = 1,2, .. '. 

The Fourier series of an odd function of period 2L is a "Fourier sine series" 

ro n7T 
f(x) = 2: bn sin L x 

n=l 

(f odd) (3) 

with coefficients 

(4) 
2 JL n7TX 

bn = - f(x) sin -- (h. 
L 0 L 

PROOF Since the definite integral of a function gives the area under the curve of the function 
between the limits of integration. we have 

L L J g(x) d>:: = 2 J g(x) dx 
-L 0 

L J hex) dx = 0 
-L 

for even g 

for odd h 

as is obvious from the graphs of g and h. (Give a formal proof.) Now let f be even. Then 
(6a), Sec. 11.2, gives ao in (2). Also, the integrand in (6b), Sec. 11.2, is even (a product 
of even functions is even), so that (6b) gives an in (2). Furthermore, the integrand in (6c), 
Sec. 11.2, is the even f times the odd sine, so that the integrand (the product) is odd, the 
integral is zero, and there are no sine terms in (1). 
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THEOREM 2 
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Similarly, if f is odd. the integrals for ao and an in (6a) and (6b). Sec. 11.2. are zero, 
f times the sine in (6c) is even. (6c) implies (4), and there are no cosine terms in (3) .• 

oc 

The Case of Period 27T. If L = 7f, then f(x) = ao + ~ an cos nx (f even) with 
coefficients n~l 

(2*) 

co 

I 'iT 

ao = - f f(x) dx, 
7f 0 

2 'iT 

an = - f f(x) cos nx dx, 
7f 0 

and f(x) = ~ bn sin nx (f odd) with coefficients 
n=l 

(4*) 
2 'iT 

bn = - f f(x) sin nx dx, 
7f 0 

n = 1,2, ... 

n = 1,2,···. 

For instance, f(x) in Example I, Sec. ILl, is odd and is represented by a Fourier sine 
series. 

Further simplifications result from the following property, whose very simple proof is 
left to the student. 

Sum and Scalar Multiple 

The Fourier coefficients of a sum h + f2 are the sums of the corresponding Fourier 
coefficients of f 1 and f 2· 

The Fourier coefficients of cf are c times the corresponding Fourier coefficiencs 
off· 

E X AMP L E 1 Rectangular Pulse 

The function f"(x) in Fig. 264 is the sum of the function f(x) in Example I of Sec 11.1 and the constant k. 
Hence. from that example and Theorem 2 we conclude that 

4k ( 1 1 ) f*(x) = k + -:; sin x + "3 sin 3x + 5" sin 5x + . .. . • 
E X AMP L E 2 Half-Wave Rectifier 

The function u(t) in Example 3 of Sec. 11.2 has a Fourier cosine series plus a single term vCr) = (E/2) sin wi. 

We conclude from this and Theorem 2 that U(l) - Vel) must be an even function. Verify this graphically. (See 
Fig. 265.) • 

-1r 

[*(x) 

2k 

o 

y 

Fig. 264. Example 1 Fig. 265. u(t) - v(t) with E = 1, W = 1 



SEC. 11.3 Even and Odd Functions. Half-Range Expansions 

EXAM PLE 3 Sawtooth Wave 

Find the Fourier series of the function (Fig. 266) 

f(x) = x + 7T if -7T < x < 7T and 

(a) The functionf(x) 

(b) Partial sums 81> 8 2, 8 3, 8 20 

Fig. 266. Example 3 

493 

l(x + 27T) = f(x). 

Solution. We have f = iI + f2' where h = x and f2 = 7T. The Fourier coefficients at f2 are zero, except 
for the first one (the constant term). which is 7T. Hence, by Theorem 2. the Fourier coefficients an' bn are those 
of iI, except for ao, which is 7T. Since iI is odd, an = 0 for n = 1,2, ... , and 

bn = 2. ('iIlX)sin ny dx = 2. ("x sinllx cL--.:. 
7T Jo 7T Jo 

Integrating by parts, we obtain 

2 
b =-

n 7T [
-XCOSIlX I'" 1 f'" ] 2 - + - cosl1xcL>: = - - COSl17T. 

11 0 11 0 11 

Hence b i = 2, b2 = - 2/2, bs = 2/3, b4 = -214, ... , and the Fourier series of f(x) is 

f(x) = 7T + 2 (Sin x - ~ sin 2x + ~ sin 3x - + ... ) . 

Half-Range Expansions 

• 

Half-range expansions are Fourier series. The idea is simple and useful. Figure 267 
explains it. We want to represent f(x) in Fig. 267a by a Fourier series. where f(x) may 
be the shape of a distorted violin string or the temperature in a metal bar of length L, for 
example. (Corresponding problems will be discussed in Chap. 12.) Now comes the idea. 
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[(x)~ 

L x 

(a) The given function [(x) 

-L L x 

(b) [(x) extended as an even periodic function of period 2L 

(e) [(x) extended as an odd periodic function of period 2L 

Fig. 267. (a) Function fIx) given on an interval 0 ~ x ~ L 

(b) Even extension to the full "range" (interval) -L ~ x ~ L (heavy curve) 
and the periodic extension of period 2L to the x-axis 

(c) Odd extension to -L ~ x ~ L (heavy curve) and the periodic extension 
of period 2L to the x-axis 

We could extend I(x) as a function of period L and develop the extended function into a 
Fourier series. But this series would in general contain both cosine and sine terms. We 
can do better and get simpler series. Indeed, for our given I we can calculate Fourier 
coefficients from (2) or from (4) in Theorem l. And we have a choice and can take what 
seems more practicaL If we use (2). we get (1). This is the even periodic extension II 
of f in Fig. 267b. If we choose (4) instead. we get (3), the odd periodic extension I2 of 
I in Fig. 267c. 

Both extensions have period 2L. This motivates the name half-range expansions: I is 
given (and of physical interest) only on half the range, half the interval of periodicity of 
length 2L. 

Let us illustrate these ideas with an example that we shall also need in Chap. 12. 

E X AMP L E 4 "Triangle" and Its Half-Range Expansions 

o Ll2 L x 

Fig. 268. The given 
function in Example 4 

Find the two half-range expansions of the function (Fig. 268) 

Solution. 

{

2k 

T X 

f(x) = 
2k 
T(L - X} 

L 
if O<x<2" 

L 
if 2"<x<L. 

(a) E,'en periodic extell.~ion. From (2) we obtain 

2 [2k rUz 
1l7T 2k fL 117T ] 

an = L T J
o 

xcosT xdx + T uz(L-x)cosT xdx . 
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We cunsider an' For the first integral we obtain by integration by parts 

r l2

X cos nTT x (iT = ~ sin nTT x I L/2 J 0 L nTT L 0 

L fL/

2

S1I1 nTT x dx 
nTT 0 L 

L2 sin nTT + 2L22 (cos 112TT _ 1) . 
211TT 2 n TT 

Similarly, for the second integral we obtain 

fL nTT L 11TT IL L 
(L - x) cos - x dx = - (L - x) sin - x + 

L/2 L nTT L L/2 11TT f
L nTT 

sin -xdx 
L/2 L 

We insert these two results into the formula for an' The sine terms cancel and so does a factor L2. This gives 

Thus, 

4k (2 cos 112TT - cos n TT - 1) . 
n2 TT2 

and a" = 0 if n * 2.6. 10. 14 ..... Hence the first half-range expansion of f(x) is (Fig. 269a) 

f(x) = ~ - ~ (~ cos 2TT X + ~ cos 6TT X + ... ) . 
2 TT2 22 L 62 L 

This Fourier cosine series represents the even periodic extension of the given function f(x), of period 2L. 

(b) Odd periodic exte11sio11. Sunilarly, from (4) we obtain 

8k 11TT 
(5) bn = 22 sin -. 

n 1T 2 

Hence the other half-range expansion of f(x) is (Fig. 269b) 

8k ( 1 TT 1 3TT 5TT 
f(X) = TT2 12 sin LX - 32 sin LX + 52 sin L X -

This series represents the odd periodic extension of f(x), of period 2L. 
Basic applications of these results will be shown in Sees. 12.3 and 12.5. 

-L o L x 

(a) Even extension 

x 

(b) Odd extension 

Fig. 269. Periodic extensions of [(xl in Example 4 

• 
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S£E?H:r-~--

[I~ EVEN AND ODD FUNCTIONS 

Are the following functions even. odd. or neither even nor 
odd? 

1. lxi, x 2 sin IIX, x + x 2
• e-1xl , In x, x cosh x 

2. sin (X2), sin2 x, x sinh x, Ix3 1, e=-, xex
, tan 2x, xlO + x2) 

Are the following functions, which are assumed to be 
periodic of period 27T. even. odd, or neither even nor odd? 

3. lex) = x 3 
( - 7T < X < 7T) 

4. lex) = x 2 (-7T/2 < x < 37T12) 

5. f(x) = e-4x (-7T < x < 7T) 

6. lex) = x 3 sin x (-7T < X < 17) 

7. lex) = xlxl - x3 (-17 < X < 7T) 

8. lex) = I - x + x 3 
- x 5 (-7T < X < 7T) 

9. f(x) = 1/(1 + \"2) if -17 < x < o. f(x) = -1/(1 + x2
) 

ifO<x<7T 

10. PROJECT. Even and Odd Functions. (a) Are the 
following expressions even or odd? Sums and products 
of even functions and of odd functions. Products of 
even times odd functions. Absolute values of odd 
functions. f(x) + f( -xl and f(x) - f( -x) for arbitrary 
f(x). 

(b) Write ekx
, lI(l - x). sin (x + k), cosh (x + k) as 

sums of an even and an odd function. 

(c) Find all functions that are both even and odd. 

(d) Is cos3 
\" even or odd? sin3 x? Find the Fourier 

series of these functions. Do you recognize familiar 
identities? 

111-161 FOURIER SERIES OF EVEN AND ODD 
FUNCTIONS 

Is the given function even or odd? Find its Fourier series. 
Sketch or graph the function and some partial sums. (Show 
the details of your work.) 

11. lex) = 17 - Ixl (-7T < x < 7T) 

12. fIx) = 2xlxl (-I<x<l) 

{

X if -1712 < x < 1712 
13. f(x) = 

17-X if 7T12 < x < 31712 

if-17<x<O 
14. lex) 

if 0 <X<17 

e if -2 <x<O 
15. f(x) 

if 0 <x<2 

=c 
- !Ixl if -2 < x < 2 

16. lex) (p = 8) 
0 if 2<x<6 

117-251 HALF-RANGE EXPANSIONS 

Find (a) the Fourier cosine series, (b) the Fourier sine serie~. 
Sketch J(x) and its two periodic extensions. (Show the 
details of your work.) 

17. f(x) = I (0 < x < 2) 

18. f(x) = x (0 < x < ~) 
19. lex) = 2 - x (0 < x < 2) 

{
o (0 < x < 2) 

20. lex) = 1 
(2 < x < 4) 

21. f(x) -- {2
1 

22. f(x) = { x 
7T/2 

(0 < x < I) 

(I < x < 2) 

(0 < x < 7T12) 

(1712 < x < 7T) 

23. f(x) = x (0 < x < L) 

24. f(x) = x 2 (0 < \. < L) 

25. f(x) = 7T - X (0 < x < 17) 

26. Illustrate the formulas in the proof of Theorem I with 
examples. Prove the formulas. 

11.4 Complex Fourier Series. Optional 
In this optional section we show that the Fourier series 

(1) f(x) = ao + ~ (an cos IIX + bn sin I1X) 

n~l 

can be written in complex form, which sometimes simplifies calculations (see Example 1, 
on page 498). This complex form can be obtained because in complex, the exponential 

function eit and cos t and sin t are related by the basic Euler formula (see (11) in Sec. 2.2) 

(2) eit = cos t + i sin T. Thus e-it = cos t - i sin t. 
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Conversely, by adding and subtracting these two fonnulas, we obtain 

(3) (b) 
1. . 

sin t = _(e't - e-lt). 
2i 

From (3), using 1Ii = -i in sin t and setting t = nx in both formulas, we get 

1 . I . -'nx - (an - ib.,o}e1nx + (a + lb )e • 2 . "2 n n . 

We insert this into (1). Writing ao = Co' !(an - ibn) = Cn' and !(an + ibn) = kn, 
we get from (l) 

00 

(4) f(x) = Co + ~ (cneinx + kne-inx). 
n=1 

The coefficients Cl' C2, •••• and klo k2 • •.• are obtained from (6b), (6c) in Sec. 11.1 and 
then (2) above with t = nx. 

1 1 7T 1 7T • 

C = -2 (an - ibn) = - f f(x)(cos nx - i sin llX) dx = - f f(x)e-mx dx 
n 27T _" 27T -TT 

(5) 

1 1 7T 1 7T _ 

kn = - (an + ibn) = - f f(x)(cos llX + i sin 1LX) dx = - f f(x)e1nx dx. 
2 27T -7T 27T -7T 

Finally, we can combine (5) into a single formula by the trick of writing kn = en' Then 
(4). (5), and Co = ao in (6a) of Sec. ll.l give (summation from -cx::!) 

00 

f(x) = ~ cnein.r, 
n=-co 

(6) 
1 7T 

C = - f f(x)e- tnx dx, 
11. 27T_-rr 

11 = O. ±1, ±2, .. '. 

This is the so-called complex fOl"l/l of the Fourier series or, more briefly, the complex 
Fourier series, of f(x). The Cn are called the complex Fourier coefficients of f(x). 

For a function of period 2L our reasoning gives the complex Fourier series 

00 

f(x) = ~ Cnein7rxlL, 

(7) 
n=-x 

11 = 0, ±l, ±2,···. 
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E X AMP L E 1 Complex Fourier Series 

Find the complex Fourier series of fex) = eX if -7T < x < 7T and f(x + 27T) = f(x) and obtain from it the usual 
Fourier series. 

Solution. Since sin n7T = 0 for integer n, we have 

e"'in7T = cos n7T ::':: i sin n7T = cos n7T = (-I)n. 

With this we obtain from (6) by integration 

en = ITT' eXe-inx dx = __ 1_ eX-inxl"" 
27T -7T 27T 1 - in X~-7T 

On the right, 

I + in 

I - in (I - in)(I + in) 

I + in 

I + n2 and e7T - e-7T = 2 sinh 7T. 

Hence the complex Fourier ,erie, is 

(8) 
7T 

00 I + in . L (_l)n ---2- e1nx 

n~-oo I + n 
( - 7T < X < 7T). 

sinh 7T 

From this let us derive the real Fourier series. Using (2) with t = l1X and i 2 = -1, we have in (8) 

(I + il1)inx = (I + ill)(cos IU: + i sin In) = (cos nx - n sin l1x) + ;(n cos nx + sin l1x). 

Now (8) also has a corresponding term with -II instead of n. Since cos (-nx) = cos IU: and 
sin (-In) = -sin IIX, we obtain in this term 

(I - in)e-inx = (I - ;n)(cos nx - i sin nx) = (cos l1X - n sin IU:) - i(n cos nx + sin nx). 

If we add these two expressions, the imaginary parts cancel. Hence their sum is 

2(cos nx - n sin nx), n = 1,2,···. 

For II = 0 we get I (not 2) because there is only one term. Hence the real Fourier series is 

(9) 
2sinh7T[1 I I 

eX = --- - - --- (cos x - sin x) + --- (cos il - 2 sin il) -
7T 2 I + 12 1 + 22 

+ .. J 
In Fig. 270 the poor approximation near the jumps at ::'::7T is a case of the Gibbs phenomenon (see CAS 

Experiment 20 in Problem Set 11.2). • 

-lC, 

y 

25 

20 

15 

10· / 

5/ 
o 

~ 

lC X 

Fig. 270. Partial sum of (9), terms from n = 0 to 50 
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1. (Calculus review) Review complex numbers. 

2. (Even and odd functions) Show that the complex 
Fourier coefficients of an even function are real and 
those of an odd function are pure imaginary. 

3. (Fourier coefficients) Show that 
ao = Co, an = Cn + C-n , bn = i(cn - c-n)· 

4. Verify the calculations in Example 1. 

S. Find further temlS in (9) and graph partial sums with 
your CAS. 

6. Obtain the real series in Example 1 directly from the 
Euler formulas in Sec. II. 

[7-131 COMPLEX FOURIER SERIES 

Find the complex Fourier series of the following functions. 
(Show the details of your work.) 
7. f(x) = -1 if - 7r < X < 0, f(x) = 1 if 0 < x < 7r 

8. Convert the series in Prob. 7 to real form. 
9. f(x) = x (-7r < X < 7r) 

11.5 Forced Oscillations 

499 

10. Convert the series in Prob. 9 to real form. 

11. f(x) = x 2 (-7r < X < 7r) 

12. Convert the series in Prob. II to real form. 

13. f(x) = x (0 < x < 27r) 

14. PROJECT. Complex Fourier Coefficients. It is very 
interesting that the Cn in (6) can be derived directly by 
a method sinlllar to that for an and bn in Sec. 11.1. For 
this, mUltiply the series in (6) by e-imx with fixed 
integer m, and integrate term wise from -7r to 7r on 
both sides (allowed, for instance, in the case of uniform 
convergence) to get 

I7T f(x)e- imx dx = ~ cn I7T ei(n-m)x dx. 
-7r n=-OO-71" 

Show that the integral on the right equals 27r when 
n = m and 0 when n =1= m [use (3b)], so that you get 
the coefficient formula in (6). 

Fourier series have important applications in connection with ODEs and PDEs. We show 
this for a basic problem modeled by an ODE. Various applications to PDEs will follow 
in Chap. 12. This will show the enormous usefulness of Euler's and Fourier's ingenious 
idea of splitting up periodic functions into the simplest ones possible. 

From Sec. 2.8 we know that forced oscillations of a body of mass m on a spring of 
modulus k are governed by the ODE 

(1) my" + cy' + f....), = ret) 

where y = yet) is the displacement from rest, c the damping constant, k the spring constant 
(spring modulus), and r(t) the external force depending on time t. Figure 271 shows the 
model and Fig. 272 its electrical analog, an RLC-circuit governed by 

Fig.271. Vibrating system under 
consideration 

c 

R L 

E(t) 

Fig. 272. Electrical analog of the 
system in Fig. 271 (RLC-circuit) 
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(1*) 
I 

Ll" + RT' + - T = E' (t) 
C 

(Sec. 2.9). 

We consider (1). If ret) is a sine or cosine function and if there is damping (c > 0), 
then the steady-state solution is a harmonic oscillation with frequency equal to that of r(t). 
However, if r(t) is not a pure sine or cosine function but is any other periodic function, 
then the steady-state solution will be a superposition of harmonic oscillations with 
frequencies equal to that of r(t) and integer multiples of the latter. And if one of these 
frequencies is close to the (practical) resonant frequency of the vibrating system (see 
Sec. 2.8), then the corresponding oscillation may be the dominant patt of the response of 
the system to the external force. This is what the use of Fourier series will show us. Of 
course, this is quite surprising to an observer unfamiliar with Fourier series, which are 
highly important in the study of vibrating systems and resonance. Let us discuss the entire 
situation in terms of a typical example. 

E X AMP L E 1 Forced Oscillations under a Nonsinusoidal Periodic Driving Force 

In (I), let In = 1 (gm), C = 0.05 (gmfsec), and k = 25 (gmfsec2
), so that (1) becomes 

(2) y" + 0.05/ + 25y = r(t) 

where r(t) is measured in gm • cmfsec2. Let (Fig. 273) 

{ 

t + ~ 
r(t) = 2 

IT 
-( + 2" if 

if -7T<t<O, 

r(t + 27T) = r(t). 

O<t<7T, 

Find the steady-state solution yet). 

Fig. 273. Force in Example 1 

Solution. We represent ret) by a Fourier series. finding 

(3) r(t) = ~ (cos t + ~ cos 3t + ~ cos 5t + ... ) 
7T 3 52 

(take the answer [0 Prob. 11 in Problem Set 11.3 minus ~7T and write t for x). Then we consider the ODE 

(4) " I 4 v + 0.05y + 251' = -- cos Ilt . . - 2 
11 7T 

(n = 1. 3 .... ) 

whose right side is a single term of the series (3). From Sec. 2.8 we know that the steady-state solution vn(t) 

of (4) is of the form 

(5) Yn = An cos I1f + Bn sin nt. 
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By substituting this into (4) we find that 

0.2 
(6) A = n where 

Since the ODE (2) i~ linear. we may expect the steady-state solution to be 

(7) Y = .1'1 + )'3 + Y5 + ... 

where )'n is given by (5) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier 
series of r( t), provided that termwise differentiation of (7) is permissible. (Readers already fami) iar with the notion 
of uniform convergence [Sec. 15.51 may prove that (7) may be diilerentiated term by term.) 

From (6) we find that the amplitude of (5) is (a factor Vii;. cancels out) 

Numeric values are 

C1 = 0.0531 

C3 = 0.0088 

C5 = 0.2037 

C7 = 0.0011 

C9 = 0.0003. 

Figure 274 shows the input (multiplied by 0.1) and the output. For n = 5 the quantity Dn is very small. the 
denominator of C5 is small, and C5 is so large that Y5 is the dominating term in (7). Hence the output is almost 
a harmonic oscillation of five times the frequency of the driving force, a little distorted due to the term Yl, whose 
amplitude is about 25% of that of Y5' You could make the situation still more extreme by decreasing the damping 

constant c. Try it. • 

y 

0.3 

Fig. 274. Input and steady-state output in Example 1 

1. (Coefficients) Derive the fonnula for en from An and Bn. 

2. (Spring constant) What would happen to the amplitudes 
en in Example 1 (and thus to the fonn of the vibration) 
if we changed the spring constant to the value 97 If we 
took a stiffer spring with k = 817 First guess. 

3. (Damping) In Example I change c to 0.02 and discuss 
how this changes the output. 

4. (Input) What would happen in Example I if we 
replaced ret) with its derivative (the rectangular wave)? 
What is the ratio of the new en to the old ones? 
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15-111 GENERAL SOLUTION 

Find a general solution of the ODE y" + w2y = ret) with 
r(t) as given. (Show the details of your work.) 

5. r(t) = cos wt, w = 0.5, 0.8, U, 1.5, 5.0, 10.0 

6. r(t) = cos WIt + cos w2t (w2 
=1= W1

2
, W22) 

N 

7. r(t) = 2 an cos Ilt, Iwl =1= 1, 2, ... , N 

8. r(t) 

9. r(t) 

n=1 

sin t + l sin 3t + ! sin 5t + t sin 7t 

{ 

t+7f if 

-t + 7f if 

-7T<t<O 

O<t<7T 

and r(t + 27T) = ret), Iwl =1= 0, 1,3, 

10. r(t) = { ( 

7T-

if - 7T12 < t < 7T12 

if 7T12 < t < 37T12 

and r(t + 27T) = reT), Iwl =1= 1,3,5, ... 

7T 
11. ret) = "4 Isin t/ if -7T < t < 7T and 

r(t + 27T) = ret). Iwl =1= o. 2. 4 .... 

12. (CAS Program) Write a program for solving the ODE 
just considered and for jointly graphing input and 
output of an initial value problem involving that ODE. 
Apply the program to Probs. 5 and 9 with initial values 
of your choice. 

13. (Sign of coefficients) Some An in Example 1 are positive 
and some negative. Is this physically understandable? 

114-171 STEADY-STATE DAMPED OSCILLATIONS 

Find the steady-state oscillation of y" + c/ + Y = r(t) 

with c > 0 and ret) as given. (Sho\'i the details of your 
work.) 

14. ret) = an cos III 

15. r(t) = sin 3t 

16. reT) 
{ 

7Tt 

7f( 7T - t) 

if 

if 

and r(t + 27f) = ret) 
N 

17. ret) = 2 bn sin nt 
n=l 

-7T12 < t < ,,12 

7T12 < t < 3,,/2 

18. CAS EXPERIMENT. Maximum Output Term. 
Graph and discus~ outputs of y" + cy' + /...y = ret) 
with r(t) as in Example I for various c and k with 
emphasis on the maximum Cn and its ratio to the 
second largest Icni. 

~9_-~ RLC-CIRCUIT 
Find the steady-state current I(t) in the RLC-circuit in 
Fig. 272, where R = 100 n, L = 10 H, C = 10-2 F and 
E(t) V as follows and periodic with period 27f. Sketch or 
graph the first four partial sums. Note that the coefficients 
of the solution decrease rapidly. 

19. E(t) = 200t( 7T2 - t 2) (- 7T < t < 7f) 

{ 

100 (7Tt + t 2) if - 7f < t < 0 
20. E(t) = 

lOO( 7Tt - (2) if 0 < t < 7T 

11.6 Approximation by Trigonometric Polynomials 
Fourier series playa prominent role in differential equations. Another field in which they 
have major applications is approximation theory, which concerns the approximation of 
functions by other (usually simpler) functions. In connection with Fourier series the idea 
is as follows. 

Let lex) be a function on the interval -7T" ~ X ~ 7f that can be represented on this 
interval by a Fourier series. Then the Nth partial sum of the series 

N 

(1) f(x) = 00 + 2: (on cos nx + bn sin nx) 
n=l 

is an approximation of the given f(x). It is natural to ask whether (l) is the "best"" 
approximation of f by a trigonometric polynomial of degree N, that is, by a function 
of the form 

N 

(2) F(x) = Ao + 2: (An cos nx + Bn sin nx) (N fixed) 
n=l 

where "best" means that the "error" of the approximation is as small as possible. 
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Of course, we must first define what we mean by the error E of such an approximation. 
We could choose the maximum of If - Fl. But in connection with Fourier series it is 
better to choose a definition that measures the goodness of agreement between f and 
F on the whole interval - 7T ~ X ~ 7T. This seems preferable, in particular if f has jumps: 
F in Fig. 275 is a good overall approximation of f, but the maximum of If - FI (more 
precisely, the supremum) is large (it equals at least half the jump of fat Xo). We choose 

(3) E = J'" (f - Fi dx . 
-'" 

This is called the square error of F relative to the function f on the interval -7T ~ X ~ 7T. 

Clearly, E ~ O. 
N being fixed. we want to determine the coefficients in (2) such that E is minimum. 

Since (f - Ff = f2 - 2fF + F2, we have 

(4) E = J'" f2 dx - 2 J'" fF dx + J'" F2 dx. 
-~ -~ -~ 

We square (2), insert it into the I&<;t integral in (4), and evaluate the occurring integrals. 
This gives integrals of cos2 m: and sin2

1u (n ~ 1), which equal 7T, and integrals of 
cos nx, sin 1Z:r. and (cos nx)(sin mx). which are zero (just as in Sec. 11.1). Thus 

'" '" [ N J2 L7T F2 dx = L7T Ao + ~I (An cos llX + Bn sin nx) dx 

We now insert (2) into the integral of fF in (4). This gives integrals of f cos nx as well 
as f sin IU, just as in Euler's formulas, Sec. 1l.1, for an and bn (each multiplied by An 

or Bn)' Hence 

J'" fF dx = 7T(2Aoao + AlaI + ... + ANaN + Bibi + ... + BNbN)· 
-'" 

With these expressions, (4) becomes 

E = J:J2 
d, - 27T [2Aoao + ~l (Anan + Bnbn) J 

+ 7T [ 2A02 + ~I (An
2 + Bn

2)J . 
(5) 

x 

Fig. 275. Error of approximation 
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We now take An = an and Bn = bn in (2). Then in (5) the second line cancels half of the 
integral-free expression in the first line. Hence for this choice of the coefficients of F the 
square error, call it E*, is 

(6) 

We finally subtract (6) from (5). Then the integrals drop out and we get terms 
An 2 - 2Anan + an 2 = (An - an)2 and similar terms (Bn - bn)2: 

Since the sum of squares of real numbers on the right cannot be negative, 

E - E* ~ 0, thus E~E*, 

and E = E* if and only if Ao = ao, ... , EN = bN . This proves the following fundamental 
minimum property of the partial sums of Fourier series. 

Minimum Square Error 

The square error of Fill (2) (with fixed N) relative to f on the interval -7T ~ X ~ 7T 

is millimum if alld ollly if the coefficients of Fill (2) are the Foltrier coefficients of 
f. This millimllm vallle E* is givell by (6). 

From (6) we see that E* cannot increase as N increases, but may decrease. Hence with 
increasing N the partial sums of the Fourier series of f yield better and better 
approximations to f, considered from the viewpoint of the square error. 

Since E* ~ 0 and (6) holds for every N, we obtain from (6) the important Bessel's 
inequality 

(7) 

for the Fourier coefficients of any function f for which integral on the right exists. (For 
F. W. Bessel see Sec. 5.5.) 

It can be shown (see [eI2] in App. 1) that for such a function f, Parseval's theorem 
holds; that is, formula (7) holds with the equality sign, so that it becomes Parseval's 
identity4 

(8) 

4MARC ANTOINE P ARSEV AL (1755-1836), French mathematician. A physical interpretation of the identity 
follows in the next section. 
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-IT 

E X AMP L E 1 Minimum Square Error for the Sawtooth Wave 

o IT X 

Compute the minimum square error E* of F(x) with N = 1, 2, ... , 10, 20, ... , 100 and 1000 relative to 

f(x) = x + 71' 

on the interval - 71' ~ X ~ 71'. 

1 1 (_l)N+l 
Solution. F(x) = 71' + 2 (sin x - '2 sin 2, + '3 sin 3x - + ... + - ~ sin Nx) by Example 3 in 
Sec. 11.3. From this and (6), 

Numeric values are: 

N E* N E* N E* N E* 

1 8.1045 6 1.9295 20 0.6129 70 0.1782 

2 4.9629 7 1.6730 30 0,4120 80 0.1561 

3 3.5666 8 1.4767 40 0.3103 90 0.1389 

4 2.7812 9 l.3216 50 0.2488 100 0.1250 

5 2.2786 10 L.1959 (iO 0.2077 1000 0.0126 

Fig. 276. F with 

N = 20 in Example 1 

F = S1. S2, S3 are shown in Fig. 266 in Sec. 11.3, and F = S20 is shown in Fig. 276. Although l.r(x) - F(x)1 

is large at :+: 71' (how large?), where f is discontinuous, F approximates f quite well on the whole interval, except 
near :+:71', where "waves" remain owing to the Gibbs phenomenon (see CAS Experiment 20 in Problem Set 
11.2). 

Can you think of functions f for which E* decreases more quickly with increasing N? • 
This is the end of our discussion of Fourier series, which has emphasized the practical 
aspects of these series, as needed in applications. In the last three sections of this chapter 
we show how ideas and techniques in Fourier series can be extended to non periodic 
functions. 

L:il MINIMUM SQUARE ERROR 

Find the trigonometric polynomial F(x) of the form (2) for 
which the square error with respect to the given f(x) on the 
interval - 7T ~ x ~ 7T is minimum, and compute the 
minimum value for N = 1, 2 .... , 5 (or also for larger 
values if you have a CAS). 

1. f(x) = x (-7T < X < 7T) 

2. f(x) = x 2 (-7T < X < 7T) 

3. f(x) = Ixl (-7T < x < 7T) 

4. f(x) = .\'3 (-7T < X < 7T) 

5.f(x) ISinxl(-7T<x<7T) 

6. f(x) e- 1xl (- 7T < X < 7T) 

if -7T<X<O 
7. f(x) 

if O<X<7T 

{

X if 
8. f(x) = 

o if 

-!7T < x < !7T 

!7T < X < ~7T 

9. f(x) = .r(x + 7T) if -7T < x < 0, f(x) = xC-x + 7T) 
if 0 < x < 7T 

10. CAS EXPERIMENT. Size and Decrease of E*. 
Compare the size of the minimum square error E* for 
functions of your choice. Find experimentally the 
factors on which the decrease of E* with N depends. 
For each function considered find the smaIIest N such 
that E* < 0.1. 

11. (Monotonicity) Show that the minimum square error 
(6) is a monotone decreasing function of N. How can 
you use this in practice? 
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[12-161 PARSEVAL'S IDENTITY 

Usmg Parseval"s identity, prove that the series have the 
indicated sums. Compute the first fev; partial sums to see 
that the convergence is rapid. 

7T
4 

12. L + + + + ... = - = 1.014678032 
34 54 74 96 

(Use Prob. 15 in Sec. 11.1.) 

1 1 ~ 

1 rr 
16 

"2 = 0.116850275 

(Use Prob. 5. this set.) 

I I 7T
4 

15. J + - + - + .. 
24 34 90 

(Use Prob. 21 in Sec. 1l.1.) 

ILl 7T
6 

1.08232 3234 

13. L + - + - + ... = 
32 52 8 

1.23370 0550 16. I + - + - + - + ... = - = 1.001447078 
36 56 76 960 

(Use Prob. 13 in Sec. 11.1.) (Use Prob. 9, this set.) 

11.7 Fourier Integral 
Fourier series are powerful tools for problems involving functions that are periodic or are of 
interest on a finite interval only. Sections 11.3 and L 1.5 first illustrated this, and various further 
applications follow in Chap. 12. Since, of course, many problems involve functions that are 
nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the 
method of Fourier series to such functions. This idea will lead to "Fourier integrals." 

In Example I we stan from a special function fL of period 2L and see what happens 
to its Fourier series if we let L ~ x. Then we do the same for an arbitral}' function fL 
of period 2L. This will motivate and suggest the main result of this section, which is an 
integral representation given in Theorem 1 (below). 

E X AMP L E 1 Rectangular Wave 

Consider the periodic rectangular wave fdx) of period 2L > 2 given by 

J,N~ {; 

if -£<x<-1 

if -I<x< 

if I<x< L. 

The left part of Fig. 277 shows this function for 2L = 4, 8, 16 as well as the nonperiodic function f(x), which 
we obtain from fL if we let L ~ x, 

f(x) = lim hex) = {I 
L-"" 0 

if -I <x < I 

otherwise. 

We now explore what happens to the Fourier coefficients of fL as L increa~es. Since fL is even, bn = 0 for 
all n. For an the Euler formulas (6), Sec. 11.2. give 

I II I I II 1171"X 2 II Il71"X 2 sin (1171"IL) 
a - - dx - - an = - cos - - dx = - cos -- dx = - --- -
0- 2L -1 - £ ' £ -I L L 0 £ L 1171"IL 

This sequence of Fourier coefficients is called the amplitude spectrum of fL because lanl is the maximum 
amplitude of the wave an cos (Ilm:lL). Figure 277 shows this spectrum fOf the periods 2L = 4, 8, 16. We see 
that for increasing L these amplitude, become more and more dense on the positive wn-axis. where Wn = 1l71"1L. 

Indeed, for 2£ = 4, 8, 16 we have I. 3, 7 amplitudes per "half-wave" of the function (2 sin wn)/(Lwn ) (dashed 
in the figurel. Hence for 2L = 2k we have 2k - 1 

- I amplitudes per half-wave. so that these amplitudes will 
eventually be everywhere dense on the positive w.,-axis (and will decrease to zero). 

The outcome of this example gives an intuitive impression of what about to expect if we turn from our special 
function to an arbitrary one, as we shall do next. • 
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Waveform fL (x) 
1 , 

Amplitude spectrum un(wn) , rno, wn=nn/L 

fn=5 
\ ~ , 

x , , 
n=:} 

wn , ,I" 
~ n=3/ 

2L=4 
1 
2 

1'r\n=2 
£n=lO 
-, 

x 'L J ,..J W 

n=6/ 
n 

r--2L=8~ 
n= 14 

fL(;;6 1 n=4 

1 1 -'=1-_ 4 [1l;'I',uv 1--
C n =20 

-8 0 8 x 
. r 

n=12/ n=28/ 
Wn 

IE 2L= 16 "'I 

___________ f_(;;6~ ____________________ ___ 
-101 x 

Fig. 277. Waveforms and amplitude spectra in Example 1 

From Fourier Series to Fourier Integral 
We now consider any periodic function fL(X) of period 2L that can be represented by a 
Fourier series 

00 

fdx) = ao + ~ (an cos WnX + bn sin wnx), 
n=l 

w = n 

n7T 

L 

and find out what happens if we let L~ 00. Together with Example I the present calculation 
will suggest that we should expect an integral (instead of a series) involving cos wx and 
sin wx with W no longer restricted to integer multiples W = Wn = 117TIL of 7TIL but taking 
all values. We shall also see what form such an integral might have. 

If we insert an and bn from the Euler formulas (6), Sec. 1 1.2, and denote the variable 
of integration by v, the Fourier series of fdx) becomes 

We now set 

(n + 1)7T 
ll.w = Wn+l - Wn = 

L 

1l7T 7T 

L L 
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Then lIL = /1W/7T, and we may write the Fourier series in the form 

(1) 
1 L 1=[ L 

fdx) = - I iLlv) dv + - ~ (cos wnx) Llll' I iLtv) cos WnV dv 
2L -L 7T n=l -L 

+ (sin wnx) .lw f:/dV) sin wnv dVJ 
This representation is valid for any fixed L, arbitrarily large, but finite. 

We now let L ~ x and assume that the resulting nonperiodic function 

f(x) = lim iLlx) 
L_x 

is absolutely integrable on the x-axis: that is, the following (finite!) limits exist: 

(2) lim IOlf(x)1 dx + lim fblf(x)1 dx (written I_oo=lf(X)1 dX) . 
a~-x a b~x 0 

Then lIL ~ 0, and the value of the first term on the right side of (l) approaches zero. 
Also LlW = 7T/L ~ 0 and it seems plausible that the infinite series in (l) becomes an 
integral from 0 to Xl, which represents f(x), namely, 

I =[ = = ] (3) f(x) = - L cos wx I f(v) cos wv dv + sin wx I f(v) sin wv dv dw. 
7T ° -x -00 

If we introduce the notations 

(4) 
1 co 

A(w) = - I f(v) cos wv dv, 
7T -cc 

I co 

B(w) = - I f(v) sin wv dv 
7T -co 

we can write this in the form 

(5) f(x) = LX lA(w) cos wx + B(w) sin wx] dw. 

° 
This is called a representation of f(x) by a Fourier integral. 

It is clear that our naive approach merely suggests the representation (5), but by no 
means establishes it; in fact. the limit of the series in (I) as Llw approaches zero is not 
the definition of the integral (3). Sufficient conditions for the validity of (5) are as follows. 

Fourier Integral 

If f(x) is piecewise continllous (see Sec. 6.1) ill eve/}' finite interml and has a 
right-hand derimtive alld a left-hand derivative at evel), point (see Sec ILl) and 
if the integral (2) exists, then f(x) call be represented by a Fourier imegral (5) with 
A and B given by (4). At a point where f(x) is disconti1lllolis the value of the Fourier 
integral equals the average of the left- and right-hand limits of f(x) at that point 
(see Sec. 11.1). (Proof in Ref. [C 12]; see App. 1.) 
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Applications of Fourier Integrals 
The main application of Fourier integrals is in solving ODEs and PDEs, as we shall see 
for PDEs in Sec. 12.6. However, we can also use Fourier integrals in integration and in 
discussing functions defined by integrals, as the next examples (2 and 3) illustrate. 

E X AMP L E 2 Single Pulse, Sine Integral 

Find the Fourier integral representation of the function 

Solutioll. From (4) we obtain 

if 
f(x) = C if Ixl < I 

loll> I 

---_~~:j l--x 
Fig. 278. Example 2 

I Joe I Jl sin II"V 11 2 sin w 
A(w) = - f(v) cos >l'U dv = - cos wv dv = ---

7T -x 7T -1 mv -1 7n1' 

I Jl B(w) = - sin wU dv = 0 
7r -1 

and (5) gives the answer 

cos wx sin w 
(6) f(x) = dw. 

w 

The average of the left- and right-hand limits of f(x) at x = I is equal to (I + 0)/2. that is. 111. 
Furthermore. from (6) and Theorem I we obtain (multiply by 7r12) 

r if o ~x< I. fX 

cos In sin 11' 
(7) dll" = 71/4 if x = 1, 

o II" 

0 if x> 1. 

(Fig. 278). 

We mention that this integral is called Dirichlet's discontinous factor. (For P. L. Dirichlet see Sec. 10.8.) 
The case x = 0 is of particular interest. If x = O. then (7) gives 

co 

(8*) 1 sin II" 7r 
--dw=-. 

o w 2 

We see that this integral is the limit of the ~o-called sine integral 

(8) 

u 

1 sinw 
Si(lI) = -- dll' 

o W 

as II ~ x. The graphs of Si(lI) and of the integrand are shown in Fig. 279. 
Tn the case of a Fourier series the graphs of the partial sums are approximation curves of the curve of the 

periodic function represented by the series. Similarly, in the case of the Fourier integral (5). approximations are 
obtained by replacing GO by numbers a. Hence the integral 

(9) 

a 21 _c_os_w_x_s_in_'_v 
dw 

7r 0 W 

approximares the right side in (6) and therefore f(x). 
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y 

Integrand 1 
~ 

,; 
1C 

2 

Fig. 279. Sine integral Situ} and integrand 

Figure 280 shows o,cillations near the points of discontinuity of f(x). We might expect that these oscillations 
disappear as a approaches infinity. But this is not tfile; with increasing a, they are shifted closer to the points 
x = :!: I. Thi~ unexpected behavior. which also occurs in connection with Fourier series. is known as the Gibbs 
phenomenon. (See also Problem Set 1l.2.) We can explain it by representing (9) in terms of sine integmls as 
follows. Using (II) in App. A3.1. we have 

a a a 
2 I cos wx sin w I I sin (w + ,,"x) 1 I sin (w - wx) 
- dll' = - dw + - dw. 
7To U' 7To U' 7To l'\,' 

In the fIrst integral on the right we set w + wx = r. Then dw/w = dt/t, and 0 ::<; w ::<; a corresponds to 

0::<; t::<; (x + 1)1I. In the last integral we set w - wx ~ -I. Then dw/w = dt/t, and 0::<; w::<; a corresponds to 
0::<; t ::<; (x - I)a. Since sin (-t) = -sin t. we thus obtain 

2 

I
a. I(x+lla . cos wx sm w I Sin t 

- dw=- --dt-
1T 0 w 1T 0 t 

From this and (8) we see that our integral (9) equab 

I
(X-lla . 

smt 
-- dt. 

1T 0 t 

I I 
- Si(a[x + I]) - - Si(lI[x - I]) 
1T 1T 

and the oscillations in Fig 280 result from those in Fig. 279. The increa~e of a amounts to a transformation 
of the scale on the axis and causes the shift of the oscillations (the waves) toward the points of discontinuity 
-1 and 1. • 

2x 

Fig. 280. 

y 

a= 16 

-2 -1 0 2 x -2 -1 0 

The integral (9) for a = 8, 16, and 32 
I 2x 
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Fourier Cosine Integral and Fourier Sine Integral 
For an even or odd function the Fourier integral becomes simpler. Just as in the case of 
Fourier series (Sec. 1l.3), this is of practical interest in saving work and avoiding errors. 
The simplifications follow immediately from the formulas just obtained. 

Indeed. if f(x) is an evell function. then B(w) = 0 in (4) and 

(10) 
2 :x: 

Alw) = - I feu) cos wu du. 
7r 0 

The Fourier integral (5) then reduces to the Fourier cosine integral 

(11) f(x) = fO A(w) cos WX {hI 
o 

Similarly, if f(x) is odd, then in (4) we have A(w) = 0 and 

(12) 
2 GC 

B(w) = - L f(u) sin wu du. 
7r 0 

The Fourier integral (5) then reduces to the Fourier sine integral 

(13) f(x) = IX Blw) sin \1'X dw 
o 

Evaluation of Integrals 

(f even). 

(f odd). 

Earlier in this section we pointed out that the main application of the Fourier integral is 
in differential equations but that Fourier imegral representations also help in evaluating 
certain integrals. To see this, we show the method for an important case, the Laplace 
integrals. 

E X AMP L E 3 Laplace Integrals 

Fig. 281. fIx) in 
Example 3 

We shall derive the Fourier cosme and Fourier sine integrals of f(x) = e -kX, where x> 0 and k > 0 (Fig. 2lll). 
The re~ult will be used to evaluate the so-called Laplace integrals. 

Solutioll. (a) From tIO) we have A(lI") = ~ IXe- kv cos wv dv. Now. by integration by parts, 
7T 0 

I -kv k -lw ( lI" , ) e cos nov dv = - 2 2 e - - sm II'V + cos wv . 
k + w k 

If v = O. the expression on the right equals -kl(k2 + w2
). If v approaches infinity. that expression approache~ 

lero because of the exponential factor. Thus 

(14) 

By substituting this into (II) we thus obtain the Fourier cosine integral representation 

:x: 
2k L cos liT 

f(x) = e -k.-.; = - 2 2 dll" 
7T 0 k +w 

(x> 0, k> 0), 
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From this representation we see that 

(15) foo coswx dw = ~ e-kx 

o k2 +w2 2k 
(x> 0, k > 0). 

(b) Similarly, from (12) we have B(w) = ~ foo e-kv sin wu du. By integration by parts 
7T 0 

f -kv . 11' -ku (k . ) e slllwudu=- 2 2 e -SIllWU+Coswu. 
k + w w 

This equals -wl(k2 + ",2) if u = 0, and approaches 0 as u ~ ce. Thus 

(16) 

From (13) we thus obtain the Fourier sine integral representation 

00 

k 2 L 11'sinwx 
f(x) = e - x = - 2 2 dw. 

7T 0 k +w 

From this we see that 

= 
(17) L w sin U'X 7T -kx 

o k 2 + 11'2 d11' = 2 e 

The integrals (15) and (17) are called the Laplace integrals. 

11-61 EVALUATION OF INTEGRALS 

Show that the given integral represents the indicated 
function. Hint. Use (5), (11), or (13); the integral tells you 
which one, and its value tells you what function to consider. 
(Show the details of your work.) 

0:: • L smw 4. -- cos xw dw 
o H' r rr/4 

0 

0 if x< 0 
00 

{ wl2 

L
oo 

cos (rrwI2) 
5. 2 cosxw dw 

o l-w 

L cosxw + w sin xw 
1. dw = if x= 0 

1 + w2 

rre- x if x> 0 

00 • 

(x> 0, k > 0). 

• 

if O~x< 

if x= 

if x> 

if 0 < Ixl < rr/2 

if Ixl ~ 7T12 

L Slnw-wcosw 
2. 2 sinxw dw 

o w Lo:: sin rrw sin xw {¥ sin x 
6. 2 dw = 

o 1 - W 0 

if 

if 

00 

L cosxw 
3. --- dw 

o 1 + w 2 

{ 

12 if 0 < x < 1 

= :0/4 if x = 

if x> 

rr 
-e-x if x > 0 
2 

17-121 FOURIER COSINE INTEGRAL 
REPRESENTATIONS 

Represent j(x) as an integral (11). 

{

I if 
7. f(x) = 

o if 

O<x<a 

x>a 
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r
2 if O<x<a 

8. f(x) = 0 
if x>a 

=e 
if 0< x < 1 

9. f(x) 
if x > 1 

10. f(x) ~ f 1 

xl2 if o<x< 

- x/2 if <x<2 

0 if x>2 

rnx 
if O<X<7T 

11. f(x) = 0 
if X>7T 

= {e~X if O<x<a 
12. f(x) 

if x>a 

13. CAS EXPERIMENT. Approximate Fourier Cosine 
Integrals. Graph the integrals in Prob. 7, 9, and 11 as 
functions of x. Graph approximations obtained by 
replacing co with finite upper limits of your choice. 
Compare the quality of the approximations. Write a 
short report on your empirical results and observations. 

114-191 FOURIER SINE INTEGRAL 
REPRESENTATIONS 

Represent f(x) as an integral (13). 

14. f(x) = e if O<x<a 

if x> a 

{

SlllX if 
15. f(x) = 0 

if 

O<X<7T 
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{I - x
2 if O<x< 

16. f(x) = 0 
if x> 

{7T - x if O<X<7T 
17. f(x) = 0 

if X> 7T 

= ro~x if O<X<7T 
18. f(x) 

if x> 7T 

= r ~ x 
if O<x<a 

19. f(x) 
if x>a 

20. PROJECT. Properties of Fourier Integrals 
(a) Fourier cosine integral. Show that (11) implies 

(al) f(ax) = ~ fO A( :) cos xw dw 

(a2) 

(a3) 

(a> 0) (Scale change) 

xf(x) = fOO B*(w) sin xw dw, 
o 

dA 
B* = -

dw ' 
A as in (10) 

x 2f(x) = f=A*(W) cosxw dw, 
o 

d 2A 
A* = - dw 2 . 

(b) Solve Prob. 8 by applying (a3) to the result of 
Prob.7. 

(c) Verify (a2) for f(x) = I if 0 < x < a and 
f(x) = 0 if x > a. 

(d) Fourier sine integral Find formulas for the 
Fourier sine integral similar to those in (a). 

11.8 Fourier Cosine and Sine Transforms 
An integral transform is a transformation in the form of an integral that produces from 
given functions new functions depending on a different variable. These transformations 
are of interest mainly as tools for solving ODEs, PDEs, and integral equations, and they 
often also help in handling and applying special functions. The Laplace transform 
(Chap. 6) is of this kind and is by far the most important integral transform in 
engineering. 

The next in order of importance are Fourier transforms. We shall see that these 
transforms can be obtained from the Fourier integral in Sec. 11.7 in a rather simple fashion. 
In this section we consider two of them, which are real, and in the next section a third 
one that is complex. 
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Fourier Cosine Transform 
For an even function f(x), the Fourier integral is the Fourier cosine integral 

(1) (a) f(x) = t"'A(W) cos wx dw. 
o 

where 
2 "" 

(b) A(w) = - L f(v) cos wv dv 
7T 0 

[see (10), (11), Sec. 11.71. We now set A(w) = "'v'ij; icCw), where c suggests "cosine." 
Then from (1 b), writing v = x, we have 

(2) 

and from (la), 

(3) 

~
ac 

icCw) = - L f(x) cos wx dx 
'iT 0 

~
CIJ 

f(x) = - L ie(w) cos WX dll'. 
7T 0 

ATTENTION! In (2) we integrate with respect to x and in (3) with respect to 11". Formula 
(2) gives from f(x) a new function ie(w), called the Fourier cosine transform of f(x). 
Formula (3) gives us back f(x) from ie(w), and we therefore call f(x) the inverse Fourier 
cosine transform of ie(w). 

The process of obtaining the transform ie from a given f is also called the Fourier 
cosine transform or the Fourier cosine transJoml method. 

Fourier Sine Transform 
Similarly, for an odd function f(x), the Fourier integral is the Fourier sine integral [see 
(12), (13), Sec. 11.7] 

CIJ 

(4) (a) f(x) = L B(w) sin wx dw, 
o 

where 
2 ac 

(b) B(w) = - L f(v) sin wv dv. 
7T 0 

We now set B(w) = "'v'ij; isCw), where s suggests "sine:' Then from (4b), writing v = x, 
we have 

(5) A ~ CXJ fsCw) = - L f(x) sin wx dx. 
7T 0 

This is called the Fourier sine transform of f(x). Similarly, from (-I-a) we have 

(6) ~ 
""A 

f(x) = - L fs(w) sin wx dw. 
7T 0 

This is called the inverse Fourier sine transform of is(w). The process of obtaining iAw) 
from f(x) is also called the Fourier sine transform or the Fourier sine transJoT11111letlzod. 

Other flotations are 

and g;;;-l and 9F;! for the inverses of ;!Fe and 9Fs, respectively. 
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EXAMPLE 

x=a x 

Fig. 282. fIx) in 
Example 1 

Fourier Cosine and Fourier Sine Transforms 

Find the Fourier cosine and Fourier sine tran~forms of the function 

j(x) = {k 
o 

ifO<x<a 

if x> a 

Solution. From the definitions (2) and (5) we obtain by integration 

, f2 fa f2 (sin aw ) 
Ic(w) = -V -:;; k 0 cos wx dt = -V -:;; k -w-

, If fa If (1 - cos aw ) Iiw) = - k sin ll'X dx = - k . 
7T 0 7T W 

This agrees with formulas 1 in the first two tables in Sec. 11.10 (where k = 1). 
Note that for I(x) = k = const (0 < x < co). these transforms do not exist. (Why?) 

(Fig. 282). 

• 
E X AMP L E 2 Fourier Cosine Transform of the Exponential Function 

Find ?F c( e -x). 

Solution. By integration by parts and recursion. 

- ~f2 Leo -1· f; e-·l' 1= V2hr ?Fc(e x) = -7T 0 e . cos wx dx = -7T ---2 (-cos wx + w sin wx) = ---2 
l+w 0 l+w 

This agrees with formula 3 in Table 1. Sec. 11.10. with 1I = 1. See also the next example. • 
What did we do to introduce the two integral transforms under consideration? Actually 
not much: We changed the notations A and B to get a "symmetric" distribution of the 
constant 2/7T in the original formulas (10)-(13), Sec. 11.7. This redistribution is a standard 
convenience, but it is not essential. One could do without it. 

What have we gained? We show next that these transforms have operational properties 
that permit them to convert differentiations into algebraic operations (just as the Laplace 
transform does). This is the key to their application in solving differential equations. 

Linearity, Transforms of Derivatives 
If f(x) is absolutely integrable (see Sec. 11.7) on the positive x-axis and piecewise 
continuous (see Sec. 6.1) on every finite interval, then the Fourier cosine and sine 
transforms of f exist. 

Furthermore, if f and g have Fourier cosine and sine transforms, so does af + bg for 
any constants a and b, and by (2), 

~
oo 

9FcCaf + bg) = - L [af(x) + bg(x)] cos lIJX dx 
7T 0 

~ cc ~oo = a - L f(x) cos wx d-1: + b - L gCx) cos wx dx. 
7T 0 7T 0 

The right side is a9Fc(f) + b2Fc(g). Similarly for 2Fs, by (5). This shows that the Fourier 
cosine and sine transforms are linear operations, 

(7) 
(a) '*c(af + bg) = a9Fc(f) + b9FcCg), 

(b) 9FsCaf + bg) = a9FsCf) + b9Fs(g). 
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I Cosine and Sine Transforms of Derivatives 

Let f(x) be continuous and absolutely integrable on the x-axis, let t' (x) be piecewise 
continuous on eve'}' finite interval, and let let f(x) ~ 0 as x ~ 00. Then 

(a) 
(8) 

(b) 

9' e{f' (x)} = w9's{f(x)} - [f f(O), 

9's{f'(x)} = -w9'e{f(x)}. 

PROOF This follows from the definitions by integration by parts, namely, 

and similarly, 

[f CC 

= - I f'(x) cos wx dx 
7T 0 

= ~ [f(X) cos wx I: + w f~ f(x) sin wx dxJ 

= - [f f(O) + w9's{f(x)}; 

, [fIX' 9'sff (x)} = - f (x) sin wx dx 
7T 0 

= ~ [f(X) sin wx I: -w LX f(x) cos wx dx ] 

= 0 - w9'e{f(x)}. • 
Formula (8a) with t' instead of f gives (when f', f" satisfy the respective assumptions 
for f, J' in Theorem 1) 

Q7; { " Q7;' {2 '·0 ~e f (x)} = w~s{f (x)} - -V -:;;. f ( ); 

hence by (8b) 

(9a) 

Similarly, 

(9b) 

A basic application of (9) to PDEs will be given in Sec. 12.6. For the time being we 
show how (9) can be used for deriving transforms. 
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E X AMP L E 3 An Application of the Operational Formula (9) 

Find the Fourier cosine transform <;IF c(e -ax) of f(x) = e -ax, where a > O. 

Solution. By differentiation, (e- ax)" = a 2e-ax; thus 

From this, (9a), and the linearity (7 a), 

Hence 

The answer is (see Table I, Sec. ll.lO) 

(a> 0). • 
Tables of Fourier cosine and sine transfonns are included in Sec. 11.10. 

I -10 1 FOURIER COSINE TRANSFORM 

1. Let f(x) = - I if 0 < x < L f(x) = 1 if 1 < x < 2. 
f(x) = 0 if x > 2. Find ic(w), 

2. Let f(x) = x if 0 < x < k, f(x) = 0 if x > k. Find 
Ic(w), 

3. Derive formula 3 in Table 1 of Sec. 11.10 by integration. 

4. Find the inverse Fourier cosine transform f(x) from the 
answer to Prob. 1. Hint. Use Prob. 4 in Sec. 11.7. 

5. Obtain 9';:-1(1/(1 + w 2
)) from Prob. 3 in Sec. 11.7. 

6. Obtain 9';:-I(e-W
) by integration. 

7. Find 9'c«(1 - X
2
)-1 cos (7TX/2». Hint. Use Prob. 5 in 

Sec. 11.7. 

8. Let f(x) = x 2 if 0 < x < I and 0 if x> 1. Find 9'cCf). 

9. Does the Fourier cosine transform of X-I sin x exist? 
Of X-I cos x? Give reasons. 

10. f(x) = 1 (0 < x < (0) has no Fourier cosine or sine 
transform. Give reasons. 

/11-201 FOURIER SINE TRANSFORM 

11. Find 9's(e-"'-X) by integration. 

12. Find the answer to Prob. 11 from (9b). 

13. Obtain formula 8 in Table II of Sec. 11.1 I from (8b) 
and a suitable formula in Table I. 

14. Let f(x) = sinx if 0 < x < 7T and 0 if x> 7T. Find 
9's(f). Compare with Prob. 6 in Sec. 11.7. Comment. 

15. In Table II of Sec. 11.10 obtain formula 2 from formula 
4, using r@ = y.;;: [(30) in App. 3.1]. 

16. Show that 9'sCx- 1I2
) = w- 1I2 by setting wx = t 2 and 

using S(oo) = y:;;j8 in (38) of App. 3.1. 

17. Obtain 9'sCe-ax) from (8a) and formula 3 in Table I of 
Sec. 11.10. 

18. Show that 9's(x-3/2
) = 2w1/2

• Hint. Set wx = t 2
, 

integrate by parts, and use C(oo) = y:;;j8 in (38) of 
App.3.1. 

19. (Scale change) Using the notation of (5), show that 
f(ax) has the Fourier sine transform (1/a)IsCw/a). 

20. WRITING PROJECT. Obtaining Fourier Cosine 
and Sine Transforms. Write a short report on ways 
of obtaining these transforms, giving illustrations with 
examples of your own. 
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11.9 Fourier Transform. 
Discrete and Fast Fourier Transforms 

The two transforms in the last section are real. We now consider a third one, called the 
Fourier transform, which is complex. We shall obtain this transform from the complex 
Fourier integral. which we explain first. 

Complex Form of the Fourier Integral 
The (real) Fourier integral is [see (4), (5), Sec. 11.7] 

where 

f(x) = LX [A(w) cos wx + B(w) sin wx] (hI' 
o 

1 x 

A(w) = - f f(v) cos wv dv, 
7T -x 

1 = 
B(w) = - J f(v) sin wv dv. 

7T -0<: 

Suhstituting A and B into the integral for f, we have 

1 GC x 

f(x) = - L f f(v) Lcos wv cos IVX + sin wv sin wx] dv dlV. 
7T 0 -x 

By the addition formula for the cosine L(6) in App. A3.1] the expression in the brackets 
[ ... ] equals cos (wv - wx) or, since the cosine is even, cos (wx - wv). We thus obtain 

(1 *) 1 =[ "" ] f(x) = - L f f(v) cos (wx - wv) dv dw. 
7T 0 -x 

The integral in brackets is an even function of w. call it F(w). because cos (wx - wv) is 
an even function of w, the function f does not depend on IV, and we integrate with respect 
to v (not w). Hence the integral of F(w) from w = 0 to x is 1/2 times the integral of F(w) 
from -x to x. Thus (note the change of the integration limit!) 

(1) 1 = [ = ] 
f(x) = 27T Lx L::.l(V) cos (wx - wv) dv dw. 

We claim that the integral of the form (1) with sin instead of cos is zero: 

(2) 1 x [ 00 ] - f J f(v) sin (wx - wv) dv dw = O. 
27T -0<: -x 

This is true since sin (wx - IVV) is an odd function of lV, which makes the integral in 
brackets an odd function of w, call it G(w). Hence the integral of G(W) from -x to ex; is 
zero, as claimed. 

We now take the integrand of (1) plus i (= -v=T) times the integrand of (2) and use 
the Euler formula l( 11) in Sec. 2.2] 

(3) eix 
= cos x + i sin x. 
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THEOREM 1 

Taking wx - IrV instead of x in (3) and multiplying by f(v) gives 

f(v) cos (~~:\" - wv) + if(v) sin (wx - wv) = f(v)ei(WX-Wv) 

Hence the result of adding (1) plus i times (2), called the complex Fourier integral, is 

(4) 
I =:xl . 

f(x) = - f f f(v)e'W(X-v) dv dw 
27T -oc -= 

(i = v=i). 

It is now only a very short step to our present goal, the Fourier transform. 

Fourier Transform and Its Inverse 
Writing the exponential function in (4) as a product of exponential functions, we have 

(5) 
1 x [I cc . J. f(x) = -- f -- f f(v)e-'WV dv e'wx dw. 

yI2; -x yI2; -cc 

The expression in brackets is a function of tV, is denoted by 1(».'), and is called the Fourier 
transform of f; writing v = x, we have 

(6) 
A 1 f= . 
few) = -- f(x)e-'wx dx. 
~ -x 

With this, (5) becomes 

(7) 
I f= A • f(x) = -- f(w)e'WX dw 

yI2; -0:; 

and is called the inverse Fourier transform of jew). 
Another notation for the Fourier transform is 

I = ?F(f), 

so that 

The process of obtaining the Fourier transform ':!F(f) = I from a given f is also called 
the Fourier transform or the Fourier transfon1l method. 

Conditions sufficient for the existence of the Fourier transform (involving concepts 
defined in Secs. 6.1 and 11.7) are as follows. as we state without proof. 

Existence of the Fourier Transform 

{tJCx) is absolutely integrable on the x-axis and piecewise continuous on every finite 
interval. then tile Fourier transform ICw) of f(x) given by (6) exists. 
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E X AMP L E 1 Fourier Transform 

Find the Fourier transfonn of f(x) = I if Ixl < 1 and f(x) = 0 otherwise. 

Solution. Using (6) and integrating, we obtain 

- I Jl iwx 1 e-
iwx 

few) = -- e - dx = -- . --. -
v'2; -1 v'2; -IW 

As in (3) we have eiw = cos W + i sin w, e-iw = cos w - i sin w, and by subtraction 

i w - e-iw = 2; sin w. 

Substituting this in the previous formula on the right, we see that i drops out and we obtain the answer 

_ ,-:;; sin w 

few) = "2 --;- . 
E X AMP L E 2 Fourier Transform 

Find the Fourier transfonn '!F(e -ax) of f(x) = e -ax if X > 0 and f(x) = 0 if x < 0; here a > o. 
Solution. From the definition (6) we obtain by integration 

m( -ax 1 Loo 
-ax -iwx d ere )= ,~ e e x 

v27r 0 

e-ca+iw)X 

v'2; -(a + iw) v'2;(a + iw) 

This proves fonnula 5 of Table III in Sec. 11.10. 

Physical Interpretation: Spectrum 

• 

• 

The nature of the representation (7) of f(x) becomes clear if we think of it as a superposition 
of sinusoidal oscillations of all possible frequencies, called a spectral representation. 
This name is suggested by optics, where light is such a superposition of colors 
(frequencies). In (7), the "spectral density" jew) measures the intensity of f(x) in the 
frequency interval between wand w + Aw (Aw small, fixed). We claim that in connection 
with vibrations, the integral 

f,o Ij(w)12 dw 
-co 

can be interpreted as the total energy of the physical system. Hence an integral of Ij(w)12 

from a to b gives the contribution of the frequencies w between a and b to the total energy. 
To make this plausible, we begin with a mechanical system giving a single frequency, 

namely, the harmonic oscillator (mass on a spring, Sec. 2.4) 

my" + ky = o. 

Here we denote time t by x. Multiplication by y' gives my' y" + ky' y = O. By integration, 

!mv2 + !ky2 = Eo = const 

where v = y' is the velocity. The first term is the kinetic energy, the second the potential 
energy, and Eo the total energy of the system. Now a general solution is (use (3) in 
Sec. 11.4 with t = x) 
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THEOREM 2 

w0
2 = kIm 

where Cl = (al - ibI )/2, Cl = CI = (al + ibl )/2. We write simply A cle
iwoX, 

B = cle- iWoX• Then y = A + B. By differentiation, v = y' = A' + B' = iWo(A - B). 

Substitution of v and)' on the left side of the equation for Eo gives 

Here Wo 
2 = kim. as just stated: hence mwo 2 = k. Also i2 = -I. so that 

Hence the energy is proponional to the square of the amplitude lell. 
As the next step, if a more complicated system leads to a periodic solution y = f(x) 

that can be represented by a Fourier series, then instead of the single energy term IeII2 we 
get a series of squares Ienl2 of Fourier coefficients Cn given by (6), Sec. 11.4. In this case 
we have a "discrete spectrum" (or "point spectrum") consisting of countably many 
isolated frequencies (infinitely many, in general), the corresponding Ienl2 being the 
contributions to the total energy. 

Finally, a system whose solution can be represented by an integral (7) leads to the above 
integral for the energy, as is plausible from the cases just discussed. 

Linearity. Fourier Transform of Derivatives 
New transforms can be obtained from given ones by 

Linearity of the Fourier Transform 

The Fourier transform is a linear operation; that is, for any functions f(x) and g(x) 
whose Fourier transforms exist and any constants a and b, the Fourier transform 
of af + bg exists, and 

(8) g;(af + bg) = a'2F(f) + bgjP(g). 

PROOF This is true because integration is a linear operation, so that (6) gives 

I co _ 

gjP{af(x) + bg(x)} = ~ ~ f [af(x) + bg(x)]e-tWX dx 
v 27T -::>0 

1 ::>0. 1::>0. 

= a -- f f(x)e- tWX dx + b -- J g(x)e-tWX dx 
yI2; -co yI2; -::>C 

= agjP{f(x)} + b'2F{g(x)}. • 
In applying the Fourier transform to differential equations, the key property IS that 
differentiation of functions corresponds to multiplication of transforms by iw: 
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Fourier Transform of the Derivative of I(x) 

Let f(x) be continuous on the x-axis and f(x) ~ 0 as Ixl ~ co. Furthermore, let 
f' (x) be absolutely integrable on the x-axis. Then 

(9) ~(f'(x)} = iw~{f(x)}. 

PROOF From the definition of the Fourier transform we have 

, 1 IX, . 
~{f (x)} = -- f (x)e-ZWX dx. 

yI2; -= 

Integrating by parts, we obtain 

~{f'(x)} = ~ [f(x)e- iWX loc - (-iw) Ioo 

f(x)e- iwx dX] . 
yI2; -= -= 

Since f(x) ~ 0 as Ixl ~ ro, the desired result follows, namely, 

~(f'(x)} = 0 + iw~{f(x)}. • 
Two successive applications of (9) give 

~(f") = iw~(f') = (iwf~(f). 

Since (iW)2 = -w2, we have for the transform of the second derivative of f 

(10) ~{f"(x)} = -w2~{f(X)}. 

Similarly for higher derivatives. 
An application of (l0) to differential equations will be given in Sec. 12.6. For the time 

being we show how (9) can be used to derive transforms. 

E X AMP L E 3 Application of the Operational Formula (9) 

Find the Fourier transform of xe -x' from Table III. Sec 11.10. 

Solution. We use (9). By formula 9 in Table III. 

~(~e-X2) = ~{ . + (e-X2)'} 

= - ~ ~{(e-x'n 

I 1 2} 
= - - ill' - e-w 4 

2 v'2 

• 
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THEOREM 4 

Convolution 
The convolution f * g of functions f and g is defined by 

(11) h(x) = (f * g)(x) = Ioo 

f(P)R(x - p) dp = t; f(x - p)g(p) dp. 
-~ -x 

The purpose is the same as in the case of Laplace transforms (Sec. 6.5): taking the 
convolution of two functions and then taking the transform of the convolution is the same 
as multiplying the transforms of these functions (and multiplying them by \.1'2;): 

Convolution Theorem 

Suppose that f(x) and g(x) are piecewise continuous, bounded. and absolutely 
intes;rable Oil the x-axis. Then 

(12) '?Jf(f * g) = \.1'2; '?Jf(f)'?Jf(g). 

PROOF By the definition, 
I x x . 

'?Jf(f * g) = -- I I f(p)g(x - p) dp e-ZWX dx. 
\.1'2; -00 -00 

An interchange of the order of integration gives 

I X:JC . 

'?Jf(f * g) = -- I I f(p)g(x - p)e-ZWX d-..: dp. 
\.1'2; -x -x 

Instead of x we now take x - p = q as a new variable of integration. Then x = p + q and 

I 00 00 . 

'?Jf(f * g) = -- I I f(p)g(q)e-ZW(p+q) dq dp. 
\.1'2; -x -x 

This double integral can be written as a product of two integrals and gives the desired 
result 

lOX:. 00 . 

'?Jf(f * g) = -- I f(p)e- ZWP dp I g(q)e-·wq dq 
\.1'2; -cxo -00 

• 
By taking the inverse Fourier transform on both sides of (12), writing j = '?Jf(f) and 
g = '?Jf(g) as before, and noting that \.1'2; and l/\.I'2; in (12) and (7) cancel each other, 
we obtain 

(13) (f * g)(X) = {C j(w)g(w)eiwx dw, 
-x 

a formula that will help us in solving partial differential equations (Sec. 12.6). 
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Discrete Fourier Transform (OFT), 
Fast Fourier Transform (FFT) 
In using Fourier series, Fourier transforms, and trigonometric approximations (Sec. 11.6) 
we have to assume that a function f(x), to be developed or transformed, is given on some 
interval, over which we integrate in the Euler formulas, etc. Now very often a function 
f(x) is given only in terms of values at finitely many points. and one is interested in 
extending Fourier analysis to this case. The main application of such a "discrete Fourier 
analysis" concerns large amounts of equally spaced data, as they occur in 
telecommunication, time series analysis, and various simulation problems. In these 
situations. dealing with sampled values rather than with functions. we can replace the 
Fourier transform by the so-called discrete Fourier transform (DFT) as follows. 

Let f(x) be periodic, for simplicity of period 27f. We assume that N measurements of 
f(x) are taken over the interval 0 ~ x ~ 27f at regularly spaced points 

(14) 
27fk 

N' 
k = 0, 1, ... , N - 1. 

We also say that f(x) is being sampled at these points. We now want to determine a 
complex trigonometric polynomial 

(15) 

N-l 

q(x) = 2: cne
inxk 

n~O 

that interpolates f(x) at the nodes (14). that is. q(Xk) = f(Xk). written out, with fk denoting 
f(Xk). 

N-l 

(16) fk = f(xk) = q(Xk) = 2: c,/nxk k = 0, 1, ... , N - 1. 
n~O 

Hence we must determine the coefficients co, ... , CN - 1 such that (16) holds. We do this 
by an idea similar to that in Sec. 11.1 for deriving the Fourier coefficients by using the 
orthogonality ofthe trigonometric system. Instead of integrals we now take sums. Namely, 
we multiply (16) by e-imxk (note the minus!) and sum over k from 0 to N - 1. Then we 
interchange the order of the two summations and insert Xk from (14). This gives 

N-l N-IN-l N-l N-l 

(17) 
~ f -imxk _ ~ ~ iCn-m)xk _ ~ ~ iCn-m)27TkIN 
£..J ke - £..J £..J cne - £..J Cn £..J e . 
k~O k~O n~O n=O k=O 

Now 

We donote [ ... ] by r. For n = m we have r = eO = 1. The sum of these terms over k 
equals N, the number of these terms. For n "* m we have r "* 1 and by the formula for a 
geometric sum [(6) in Sec. 15.1 with q = rand n = N - 1] 

N-l 1 - r N 

2: rk = = 0 
k=o 1 - r 



SEC. 11.9 Fourier Transform. Discrete and Fast Fourier Transforms 525 

because rN = 1; indeed, since k, m, and n are integers, 

r N = eiCn- m
)27Tk = cos 27Tk(n - m) + i sin 27Tk(n - m) = I + 0 = 1. 

This shows that the right side of (17) equals cmN. Writing n for m and dividing by N, we 
thus obtain the desired coefficient formula 

(18*) fk = f(Xk), n = 0, 1, ... , N - 1. 

Since computation of the Cn (by the fast Fourier transform, below) involves successive 
halfing of the problem size N, it is practical to drop the factor lIN from Cn and define the 
discrete Fourier transform of the given signal f = [fo fN_I]T to be the vector 
f = [io iN-I] with components 

(18) 

N-l 

in = NCn = ~ fke-inXk, 
k=O 

fk = f(Xk), n = 0, ... , N - 1. 

This is the frequency spectrum of the signaL 
In vector notation, f = FNf, where the N X N Fourier matrix FN = [enk] has the 

entries [given in (18)] 

(19) 

where n, k = 0, ... , N - 1. 

E X AMP L E 4 Discrete Fourier Transform (OFT). Sample of N = 4 Values 

Let N = 4 measurements (sample values) be given. Then w = e -2r.i/N = e -",i/2 = -i and thus wnk = (_i)nk. 

Let the sample values be. say f = [0 I 4 9]T. Then by (18) and (19). 

[ w' 
wO wO 

A wO wI w2 

(20) f = F4f = 
2 w4 wO w 

wO w3 w6 

::1 f = [: -i -I :1 [~1 = [-41: 8i1 
w6 I -I -I 4 -6 

w9 1 -[ -i 9 -4 - 8i 

From the first matrix in (20) it is easy to infer what F N looks like for arbitrary N. which in practice may be 
1000 or more, for reasons given below. • 

From the DFT (the frequency spectrum) f = FNf we can recreate the given signal 

f = F IV 1 f, as we shall now prove. Here F N and its complex conjugate F N = ~ [wnk
] satisfy 

(21a) 

where I is the N X N unit matrix; hence F N has the inverse 

(21b) 
-1 _ 1 -

FN - N FN • 
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PROOF We pr~ve (21). By the multiplication rule (row times col~n) the product matrix 
G N = FNFN = [gjk] in (21a) has the entries gjk = Row j ofFN times Column k ofFN. 
That is, writing W = wjw\ we prove that 

= WO + WI + ... + WN- 1 = {~ if 

if 

j=l=-k 

j = k. 

Indeed, when j = k, then w\vk = (wwl = (e2TTiINe-2uiIN)k = 1 k = L so that the sum 
of these N tenns equals N; these are the diagonal entries of GN. Also, when j =f=. k, then 
W =I=- 1 and we have a geometric sum (whose value is given by (6) in Sec. 15.1 with 
q=Wandn=N-l) 

WO + WI + ... + WN-1 = 1 - WN = 0 
1 - W 

• 
We have seen that f is the frequency spectrum of the signal f(x). Thus the components 
in of f give a resolution of the 2 IT-periodic function f(x) into simple (complex) harmonics. 
Here one should use only n's that are much smaller than N!2, to avoid aliasing. By this we 
mean the effect caused by sampling at too few (equally spaced) points, so that. for instance, 
in a motion picture, rotating wheels appear as rotating too slowly or even in the wrong sense. 
Hence in applications, N is usually large. But this poses a problem. Eq. (18) requires O(N) 
operations for any particular n, hence O(N2) operations for, say. alln < N!2. Thus, already 
for 1000 sample points the straightforward calculation would involve millions of operations. 
However, this difficulty can be overcome by the so called fast Fourier transform (FFT), 
for which codes are readily available (e.g. in Maple). The FFT is a computational method 
for the DFT that needs only O(N) log2 N operations instead of O(N2). It makes the DFT a 
practical tool for large N. Here one chooses N = 2P (p integer) and uses the special fonn 
of the Fourier matrix to break down the given problem into smaller problems. For instance. 
when N = 1000, those operations are reduced by a factor lOOO/log2 1000 = 100. 

The breakdown produces two problems of size M = N12. This breakdown is possible 
because for N = 2M we have in (19) 

The given vector f = [fo fN_I]T is split into two vectors with M components 
each, namely, fev = [fo f2 fN_2]T containing the even components of f, and 
fod = [fl!3 fN_dT containing the odd components of f. For fev and fod we 
determine the DFTs 

A [~ 
fev = fev.o iev.2 ~ r fev.N-2 = FMfev 

and 

fOd = [iOd,1 iOd.3 ~ r f od,N-l = F Mfod 

involving the same M X M matrix F M' From these vectors we obtain the components of 
the DFT of the given vector f by the formulas 

(22) 
(a) 11 = 0,"', M - 1 

(b) in+M = iev,n - wNniod.n 11 = 0,"', M - 1. 
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For N = 2P this breakdown can be repeated p - 1 times in order to finally arrive at NI2 
problems of size 2 each, so that the number of multiplications is reduced as indicated 
above. 

We show the reduction from N = 4 to M = NI2 = 2 and then prove (22). 

E X AMP L E 5 Fast Fourier Transform (FFT). Sample of N = 4 Values 

When N = 4. then W = WN = -i as in Example 4 and M = N12 = 2. hence It' = "'M = e-2m/2 = e--rr; = -I. 
Consequently. 

- = [/0] = = [I I] [foJ = [fo + 12J fev A F2 fev 
f2 I -I f2 fo - f2 

From this and (22a) we obtain 

lo = lev.o + wN°lod.O = (fo + f2) + (fl + 13) = fo + ft +,(2 + 13 

II = lev,1 + H'N
1
lod.l = efo - f2) - i(fl + f3) = fo - iIt - f2 + i13-

Similarly. by (22b). 

A A 0 A 

f2 = fev,o - II'N fod,O = efo + f2) - (fl + f3) = fo - ft + 12 - f3 
A A 1 A 

f3 = f ev.l - wN f ud.l = (fo - f2) - (-i)(fl - f3) = fo + if 1 - f2 - if3' 

This agrees with Example 4, as can be seen by replacing O. l. 4, 9 with fo. ft, 12, /3, 

We prove (22). From (8) and (19) we have for the components of the DFT 

Splitting into two sums of M = NI2 terms each gives 

M-I M-I 

f- ~ 2kn ~ (2k+ 1m 
n = .c.., WN f2k + .c.., WN .f2k+l· 

k=O 

We now use WN
2 = WM and pull out WN

n from under the second sum, obtaining 

M-l M-I 

(23) f- ~ knf n ~ knf 
n =.c.., WM eV,k + WN .c.., WM od,k' 

k=O k=O 

• 

The twO sums are f eV,n and f od.no the components of the "half-size" transforms F fev and 
Ffod ' 

Formula (22a) is the same as (23). In (22b) we have 11 + M instead of n, This causes 
a sign change in (23), namely -wN

n before the second sum because 

This gives the minus in (22b) and completes the proof. • 
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--
1. (Review) Show that 1Ii = -i, e ix + e-ix = 2 cos x, 

eix - e -;,,, = 2i sin x. 

12-91 FOURIER TRANSFORMS BY INTEGRATION 

Find the Fourier transform of f(x) (without using Table III 
in Sec. ILl 0). Show the details. 

{

e kX if x < 0 
2. f(x) = 

o ifx>O 

{

k ifO<x<b 
3. f(x) = 0 

otherwise 

(k> 0) 

{

e2iX if - I < x < 
4. f(x) = 

o otherwise 

5. f(x) = e if-l<x< 

otherwise 

6. f(x) = {: 
if -I < x < 1 

otherwise 

7. f(x) = {: 
ifO<x< 

otherwise 

{

xe- X if -1 < x < 0 
8. f(x) = 

o otherwise 

{

-I if-l<x<O 

9. f(x) = 01 if 0 < x < 

otherwise 

OTHER METHODS 

10. Find the Fourier transform of f(x) = xe-x if x> 0 and 
o if x < 0 from formula 5 in Table III and (9) in the 
text. Him: Consider xe-x and e-x . 

11. Obtain '!-F(e-x"/2) from formula 9 in Table m. 
12. Obtain formula 7 in Table III from formula 8. 

13. Obtain formula 1 in Table III from formula 2. 

14. TEAM PROJECT. Shifting. (a) Show that if f(x) 
has a Fourier transform, so does f(x - a), and 
SC{f(x - a)} = e-iwaSC[f(x)}. 

(b) Using (a), obtain formula 1 in Table III, Sec. l1.10, 
from formula 2. 

(e) Shifting on the w-Axis. Show that if j(lI') is the 
Fourier transform of f(x), then J(w - a) is the Fourier 
transform of eiaxf(x). 

(d) Using (c), obtain formula 7 in Table TTTfrom 1 and 
formula 8 from 2. 
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11.10 Tables of Transforms 
Table I. Fourier Cosine Transforms 

See (2) in Sec. 11.8. 

f(x) fetw ) = ?]PeW 
I 

{~ 
if 0 < X < a H sinaw I 
otherwise 7f w 

2 x a - 1 (0 < a < I) H no) cos a7f 
7f w a 2 

(na) see App. A3.1.) 

3 e-ax (a> 0) H ((12: W2 ) 

I 
4 e-x2/2 e-w2/ 2 

5 e-ax" (0) 0) _I _ e-w2/(4a> 

'\~ 

H n! 
Re (a + iW)71+1 

Re = 
6 xne-ax (a> 0) 

(a 2 + w2)n+l Real part 

ro~, ifO<x<a _1_ [ sin a(l - w) + sin o( 1 + w) ] 
7 

otherwise \12; I-w I + w 

8 cos «(lX2) (a> 0) 1 (W2 7f) 
V2c; cos 4a - "4 

9 sin (llX
2) (a> 0) 

1 C1,2 7f) 
vTc; co~ 4a + "4 

smax H (1 - lI(w - a» \0 -- (a> 0) (See Sec. 6.3.) 
x 

e-x sin x I 2 
II -- arctan-

I X \12; w2 

I 
12 lo(ax) (a> 0) \ff I 

Va2 - w2 (l - lI(w - 0)) (See Secs. 5.5, 6.3.) 
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Table II. Fourier Sine Transforms 

See (5) in Sec. 11.8. 

I 
J(x) is(w) = ~s(J) 

{~ 
ifO<x<a H [ 1 - cosaw ] 1 
otherwise 7f W 

2 1/~ 1/,,;;' 

3 1/J3/2 2~ 

4 x a-I (O<a<l) H r(a) sin (!7f 

7f w a 2 
(rca) see App. A3.1.) 

I 

5 e-ax (a> 0) fI ( w ) 
V 7f a2 + H.·

2 

e-ax H w 6 -- la > 0) - arctan -

I 
x 7f a 

IT i II! 1m = 
7 xne-ax (a> 0) V 7f (0 2 + ~1,2)n+ 1 

1m (a + iw)n+l 
Imaginary part 

8 xe-x2/2 we-w2/2 

9 xe-ax2 (a > 0) _~_v_ e-w2/4a 
(2a)3/2 

{Si~X if 0 < X < a _1_ [ sin aU - w) _ sin aO + w) ] 
10 

otherwise yI2; I-w 1 + w 

I 
cos (I\" E u(w - a) 11 -- (a > 0) (See Sec. 6.3.) 

x V 2 

2a yI2; sinh (/11' -aw 12 arctan - (a > 0) e 
x w 

I 
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Table III. Fourier Transforms 

See (6) in Sec. 1l.9. 

---
I i(x) jeW) = ge(f) 

C 
if -17 < x < b H sinbw 1 
otherwise 7T w 

{~ 
ifb<x<c e-ibw _ e-icw 

2 
iw\l2; otherwise 

I r; e-a1wl 

3 
x 2 + a2 (0 > 0) 

\I 2 a 

{ , ifO<x<b 
-1 + 2eibw - e-2ibw 

4 2X: b if b < x < 2b 
\l2;w2 

otherwise 

r~~T if x > 0 1 
5 (a> 0) 

\I2;(a + iw) otherwise 

r~x if b < x < c eCa-iw)c _ eCa-iw)b 

6 
V2-ii-Ca - iw) otherwise 

e:x if -b <.r < b IT sin b(w - a) 
7 I otherwise \I 7T w-a 

{e:
x if b < x < c i eibCa-w) _ eicCa-w) 

8 V2; otherwise a-w 

9 e-a:il (a> 0) _1_ e-w2/4a 

V2a 

sin ax H if Iwl < a; o iflwl > a 10 -- (a> 0) 
x 

--
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1. What is a Fourier series? A Fourier sine series? A 
half-range expansion? 

2. Can a discontinuous function have a Fourier series? A 
Taylor series? Explain. 

3. Why did we start with period 27f? How did we proceed 
to functions of any period p? 

4. What is the trigonometric system? Its main property by 
which we obtained the Euler formulas? 

5. What do you know about the convergence of a Fourier 
. ? senes. 

6. What is the Gibbs phenomenon? 

7. What is approximation by trigonometric polynomials? 
The minimum square error? 

8. What is remarkable about the response of a vibrating 
system to an arbitrary periodic force? 

9. What do you know about the Fourier integral? Its 
applications? 

10. What is the Fourier sine transform? Give examples. 

11l-20 I FOURIER SERIES 

Find the Fourier series of f(x) as given over one period. 
Sketch f(x). (Show the details of your work.) 

11. f(x) {-: 

12. f(x) C 
13. f(x) = x 

14. f(x) 

IS. f(x) 

if -1 < x < 0 

if O<x<1 

if -7f/2 < x < 7f/2 

if 7f/2 < x < 37f/2 

(-27f < X < 27f) 

(-2<x<2) 

if -I < x < I 

{2 
x 

-x if < x < 3 

16. f(x) = {- I - x 
1 - x 

if -1 < x < 0 

if 0 < x < 1 

17. f(x) = Isin 8m:1 (-118 < x < 1/8) 

18. f(x) = eX (-7f < x < 7f) 

19. f(x) = x 2 (-7f/2 < x < 7f/2) 

20. f(x) = x (0 < x < 27f) 

TIONS AND PROBLEMS 

[21-23J Using the answers to suitable odd-numbered 
problems, find the sum of 

21. I - ~ + ~ - ~ + 

22. + + + ... 
1·3 3·5 5·7 

23.1+b+~+ 

24. (Parseval's identity) Obtain the result of Prob. 23 by 
applying Parseval's identity to Prob. 12. 

2S. What are the sum of the cosine terms and the sum of 
the sine terms in a Fourier series whose sum is f(x)? 
Give two examples. 

26. (Half-range expansion) Find the half-range sine series 
of f(x) = 0 if 0 < x < 7f/2, f(x) = 1 if 7f/2 < x < 7f. 
Compare with Prob. 12. 

27. (Half-range cosine series) Find the half-range cosine 
series of f(x) = x (0 < x < 27f). Compare with 
Prob.20. 

~8-291 MINIMUM SQUARE ERROR 
Compute the minimum square errors for the trigonometric 
polynomials of degree N = I, ... , 8: 

28. For f(x) in Prob. 12. 

29. For f(x) = X (-7f < X < 7f). 

~0-311 GENERAL SOLUTION 

Solve y" + (lly = ret). where Iwl '* o. I. 2 ..... r(t) 
is 27f-periodic and: 

31. r(t) = (2 

~2-371 FOURIER INTEGRALS AND 
TRANSFORMS 

Sketch the given function and represent it as indicated. If 
you have a CAS, graph approximate curves obtained by 
replacing ::to with finite limits; also look for Gibbs 
phenomena. 

32. f(x) = I if I < x < 2 and 0 otherwise, by a Fourier 
integral 

33. f(x) = x if 0 < x < 1 and 0 otherwise, by a Fourier 
integral 
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34. f(x) = I + x/2 if -2 < x < o. f(x) = I - x/2 if 
o < x < 2, ((x) = 0 othenvise, by a Fourier cosine 
integral 

37. f(x) = 4 - x 2 if -2 < x < 2. f(x) = 0 otherwise. by 
a Fourier cosine integral 

38. Find the Fourier transform of f(x) = k if 
a < x < b. f(x) = 0 otherwise. 35. f(x) = -I - x/2 if -2 < x < O. f(x) = 1 - x/2 if 

o < x < 2, f(x) = 0 otherwise. by a Fourier sine 
integral 

36. f(x) = -4 + x 2 if -2 < x < 0, f(x) = 4 - x 2 if 
o < x < 2, f(x) = 0 otherwise, by a Fourier sine 
integral 

39. Find the Fourier cosine transform of f(x) = e-2x if 
x > 0, f(x) = 0 if x < O. 

40. Find 9' c(e-2x) and 9' s(e-2x) by formulas involving 
second derivatives 

- - -- --~ .. "."- .. ""''''-''---'-.... ...... _--___ .·."4 ...... _ ....... -. .... -. .... ·_._ .... ~ _ 

Fourier Series, Integrals, Transforms 

Fourier series concern periodic functions f(x) of period p = 2L, that is. by definition 
f(x + p) = f(x) for all x and some fixed p > 0; thus. f(x + IIp) = f(x) for any 
integer 11. These series are of the form 

(I) = ( ) 
117T 117T 

f(x) = ao + ~ an cos - x + bn sin - X 

n~l L L 
(Sec. 11.2) 

with coefficients, called the Fourier coefficients of f(x), given by the Euler formulas 
(Sec. 11.2) 

(2) 

1 L - f f(x) dx. 
2L -L 

1 fL 117TX 
an = - f(x) cos -- dx 

L -L L 

1 fL 117TX 
bn = - f(x) sin -- dx 

L -L L 

where 11 = 1. 2. • ••. For period 27T we simply have (Sec. 11.1) 

(l *) f(x) = ao + ~ (an cos nx + bn sin I1X) 

71=1 

with the Fourier coefficients of f(x) (Sec. L1.1) 

I .,,-
ao = 27T L!(X) dx, 

I .,,-
an = - f f(x) cos I1X dx, 

7T _.,,-

1 .,., 
bn = - f f(x) sin nx dx. 

7T _.,,-

Fourier series are fundamental in connection with periodic phenomena, 
pm1icularly in models involving differential equations (Sec. 11.5, Chap. 12). If f(x) 

is even [f( -x) = f(x)] or odd [f( - x) = - f(x)], they reduce to Fourier cosine or 
Fourier sine series, respectively (Sec. 11.3). If f(x) is given for 0 ~ x ~ L only, 
it has two half-range expansions of period 2L, namely, a cosine and a sine series 
(Sec. 11.3). 


