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EXAMPLE 4
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Fig. 254. Example 4
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EXAMPLE 5
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Hence the integral over S in Stokes’s theorem equals —28 times the area 477 of the disk S. This yields the answer
—28-47 = —112% =~ —352. Confirm this by direct calculation, which involves somewhat more work. [l

Physical Meaning of the Curl in Fluid Motion. Circulation

Let S, be a circular disk of radius rg and center P bounded by the circle CTo (Fig. 254), and let
F(Q) = F(x, v, 2) be a continuously differentiable vector function in a domain containing Sfo' Then by Stokes’s
theorem and the mean value theorem for surface integrals (see Sec. 10.6),

fﬁ Fer' ds = ff(cur] Fyenda = (curl F)*n(PHA,
C, S

"o

where Az is the area of S,.O and P* is a suitable point of S,.o. This may be written in the form
1 !
(cul F)en(P*) = — Fer ds.
ATO Cro

In the case of a fluid inotion with velocity vector F = v, the integral

% ver' ds

C,.D

is called the circulation of the flow around C,o. It measures the extent to which the corresponding fluid motion
is a rotation around the circle CTo' If we now let rg approach zero, we find

1
) (curl v)*n(P) = lim — % ver' ds;
To™ ATO C,
o
that is, the component of the curl in the positive normal direction can be regarded as the specific circulation
(circulation per unit area) of the flow in the surface at the corresponding point. N

Work Done in the Displacement around a Closed Curve

Find the work done by the force F = 2\'_\'3 sinzi + 3_\-2_\-2 sinZj+ xz_y3 cos 2 k in the displacement around the
curve of intersection of the paraboloid z = x2+ _\'2 and the cylinder (v — D%+ y2 = 1.

Solution. This work is given by the line integral in Stokes’s theorem. Now F = grad f, where f = x%v sin z

and curl (grad f) = 0 (see (2) in Sec. 9.9), so that (curl F)*n = 0 and the work is 0 by Stokes’s theorem. This
agrees with the fact that the present field is conservative (definition in Sec. 9.7). N

Stokes’s Theorem Applied to Path Independence

We emphasized in Sec. 10.2 that the value of a line integral generally depends not only
on the function to be integrated and on the two endpoints A and B of the path of integration
C, but also on the particular choice of a path from A to B. In Theorem 3 of Sec. 10.2 we
proved that if a line integral

©) fCF(r)-dr = fC(F1 dx + Fydy + Fy d)

(involving continuous F,, Fy, F5 that have continuous first partial derivatives) is path
independent in a domain D, then curl F = 0 in D. And we claimed in Sec. 10.2 that.
conversely. curl F = 0 everywhere in D implies path independence of (9) in D provided
D is simply connected. A proof of this needs Stokes’s theorem and can now be given as
follows.

Let C be any closed path in D. Since D is simply connected, we can find a surface S
in D bounded by C. Stokes’s theorem applies and gives

i(Fl dx + Fody + F3dz) = iF.r’ ds = fsf(curl F)endA
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for proper direction on C and normal vector n on S. Since curl F = 0 in D, the surface
integral and hence the line integral are zero. This and Theorem 2 of Sec. 10.2 imply that
the integral (9) is path independent in D. This completes the proof. ]

DIRECT INTEGRATION OF THE SURFACE

INTEGRALS

Evaluate the integral f f (curl FYen dA directly for the given
F and S.

F=[4z3 16x, 0, 8S:z=y(O0=x=1,0=y=1)

=2 (O<\<4 O<y<1)

[ V]S 2=2+3y2y=0,0=z=2
[2. 3. 0]

thesquareOfan,Oéyéa,z=l

=% —x% 0,8 x2+32=1z=0

N

2.F=[O, 0, 5Sxcosz],

S.'x2+y2=4,y§O,O§z§%7T
3. F=[-¢¥. & é&%.

S:z=x+yO0=x=1,0=2y=1)
4. F = [3cosy, coshz, x],

Sthesquare 0 =x=2,0=y=2,z=4
5.F= [ezz e“siny, & cosyl,

S: 2

. F

.F =

S

9. Verify Stokes’s theorem for F and S in Prob. 7.
10. Verify Stokes’s theorem for F and S in Prob. 8.

11-18| EVALUATION OF 5f> Fer' ds
<

Calculate this line integral by Stokes’s theorem, clockwise
as seen by a person standing at the origin, for the following
F and C. Assume the Cartesian coordinates to be right-
handed. (Show the details.)

1. List the kinds of integrals in this chapter and how the
integral theorems relate some of them.

2. How can work of a variable force be expressed by an
integral?

3. State from memory how you can evaluate a line integral.
A double integral.

4. What do you remember about path independence? Why
is it important?

5. How did we use Stokes’s theorem in connection with
path independence?

6. State the definition of curl. Why is it important in this
chaprer?

7. How can you transform a double integral or a surface
integral into a line integral?

1. F=[-3y, 3x, z],Cthecirclex® +y*=4,z=1
12. F=[4z, —2x, 24,
C the intersection of 32 + y2 =landz =y + 1
13. F = [y% 2 —x + 2], around the triangle with
vertices (0, 0, 1), (1, 0. 1), (1, 1, 1)
1 F=[y 0% -7
Cthe circle 22 + y2 = a2,z = b (> 0)
15. F = [y, z2 x|, Casin Prob. 12
16. F = [xz, yz, 22],
C the intersection of x2 + y2 + z2 =4 and z = y?
17. F = [cos 7ry, sin 7x, 0], around the rectangle with
vertices (0, 1, 0), (0,0, 1), (1,0, 1), (1, 1. 0)
18. F=[z, x, y].CasinProb. 13

19. (Stokes’s theorem not applicable) Evaluate § Fer' ds,
c
= (2 + )" [—y,x], C:x% + y? = 1,z =0, oriented
clockwise. Why can Stokes’s theorem not be applied?
What (false) result would it give?

20. WRITING PROJECT. Grad, Div, Curl in
Connection with Integrals. Make a list of ideas and
results on this topic in this chapter. See whether you
can rearrange or combine parts of your material. Then
subdivide the material into 3—5 portions and work out
the details of each portion. Include no proofs but simple
typical examples of your own that lead to a better
understanding of the material.

==k STIONS AND PROBLEMS

8. What is orientation of a surface? What is its role in
connection with surface integrals?

9. State the divergence theorem and its applications from
memory.

10. State Laplace’s equation. Where in physics is it
mmportant? What properties of its solutions did we
discuss?

11-20] LINE INTEGRALS f F(r)-dr
(WORK INTEGRALS) ©
Evaluate, with F and C as given, by the method that seems

most suitable. Recall that if F is a force, the integral gives
the work done in a displacement along C. (Show the details.)

1. F=[x% 2 77,
C the straight-line segment from (4, 1, 8) to (0, 2, 3)
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12. F = [cosz, —sinz, —x sinz — y cosz]. C the

straight-line segment from (—2. 0, %’n’) to (4. 3. 0)
1B.F=[x—v 0 ¢

C:y= 3x%, z = 2x for x from 0 1o 2
14. F = [yz, 2zx, xv],

C the circle x2 + 2 = 9, z = 1, counterclockwise
15. F = [-3v%, 3x® + cosy. 0]

C the circle x2 + _\'2 = 16. z = 0, counterclockwise
16. F = [sin @y, cos @y, sin 7x].

Ctheboundary of 0 =x =172, 0=y =2,z = 2x
17. F =92, 5x, 3y,

Citheellipse x2 + v2 =9, ;=x + 2
18. F = [coshx, ¢*¥, tanz], C:x2 + 2 = 4,z = x2

(Sketch C.)
V. F=[2 x* y¥,C:2+y2=dx+y+z=
20. F = [x2 32, %], C the helix

r=[2cost. 2sint, 61} from (2. 0. 0) to (0. 2, 3

DOUBLE INTEGRALS,

CENTER OF GRAVITY

Find the coordinates X. ¥ of the center of gravity of a mass

of density f(x. ¥ in the region R. (Sketch R. Show the

details.)

21. f = 2xy, R the triangle with vertices (0, 0), (1, 0),
(Ln

2. f=1LR0O=y=1-2

23. f= LR x2+y2=d%v=0

1-25]

-2 10
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24, f=x2+ 2 RPF+¥V¥=1,x20,y20

25. f = 2x2, R the region below y = x + 2 and above

y = _‘—2

SURFACE INTEGRALS f f F-ndA
S

Evaluate this integral directly or. if possible. by the
divergence theorem. (Show the details.)
26. F = [2x2, 4y, 0],

Ssx+y+:=1Lx=20,y=0,z=0
27. F =[». —x. O]

S:3c+ 2y +-=6,x=0,v=0,z20
2. F=[x—vy v—z z—x]

S the sphere of radius 5 and center 0
29. F=[y2 2 2.

S the surface of x2 + y2 = 4,0 =7 =5
30. F = [v3, 3, 327,

S the portion of the paraboloid z = x% + y%, 7 = 4
31. F = [sin2 X, -—ysin2x, 5:].

S the surface of the box |2 = a,y| = b, [d = ¢
32.F=[1, 1, al. $:x>+y2+4:2=4,220
3B.F=[x, x z.Sx2+y*=1,0=z=h
34. F as in Prob. 33, S the complete boundary of

2+3y2=1,0=z=h

35. F=[e¥ 0. ze"].Sthe rectangle with vertices (0. 0, 0),
(1.2.0),(0,0.5),(1.2,5)

Vector Integral Calculus. Integral Theorems

discussed in Sec. 10.1.

Chapter 9 extended differential calculus to vectors, that is, to vector functions
v(x, ¥, 2) or v(r). Similarly. Chapter 10 extends integral calculus to vector functions.
This involves line integrals (Sec. 10.1), double integrals (Sec. 10.3), surface
integrals (Sec. 10.6), and triple integrals (Sec. 10.7) and the three “big” theorems
for wransforming these integrals into one another, the theorems of Green (Sec. 10.4),
Gauss (Sec. 10.7), and Stokes (Sec. 10.9).

The analog of the definite integral of calculus is the line integral (Sec. 10.1)

fF od —fF Ix + Fydv + Fadz —be L
(1) o (r)edr = C( 14X 9 d) 3dz) = . (x(r)) ar T

where C: r(t) = [x(r), (1), z2(t)] = x(Di + y()j + z(Ok (@ = r = b) is a curve in
space (or in the plane). Physically. (1) may represent the work done by a (variable)
force in a displacement. Other kinds of line integrals and their applications are also
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Independence of path of a line integral in a domain D means that the integral
of a given function over any path C with endpoints P and Q has the same value for
all paths from P to Q that lie in D; here P and Q are fixed. An integral (1) is
independent of path in D if and only if the differential form F; dx + Fady + Fy dz
with continuous F,, Fy, F5 is exact in D (Sec. 10.2). Also, if curl F = 0, where
F = [F,. F,, F3], has continuous first partial derivatives in a simplv connected
domain D, then the integral (1) is independent of path in D (Sec. 10.2).

Integral Theorems. The formula of Green’s theorem in the plane (Sec. 10.4)

oF,  oF
@) ff( 2 _ 9 ) dvdy = ffc(Fl dx + Fydy)
R

ox dy

transforms double integrals over a region R in the xy-plane into line integrals over
the boundary curve C of R and conversely. For other forms of (2) see Sec. 10.4.
Similarly, the formula of the divergence theorem of Gauss (Sec. 10.7)

3) ”fdidev:”F-ndA
T S

transforms triple integrals over a region 7 in space into surface integrals over the
boundary surface S of T, and conversely. Formula (3) implies Green’s formulas

@ [[[vee + vevpav= ||+ Z—i dA,
T S

0g of
5 V2o — gVZf) dV = —= — g — | dA.
s [[fuss—evnav=[[(r % - 27)
Finally, the formula of Stokes’s theorem (Sec. 10.9)
6) (curl FyendA = P Fer'(s) ds
I f

transforms surface integrals over a surface S into line integrals over the boundary
curve C of § and conversely.







2" PART C

,. Fourier Analysis.
A . Partial
Differential
Equations

CHAPTER 11 Fourier Series, Integrals, and Transforms
CHAPTER 12 Partial Differential Equations (PDEs)

Fourier analysis concerns periodic phenomena, as they occur quite frequently in
engineering and elsewhere—think of rotating parts of machines, alternating electric
currents, or the motion of planets. Related periodic functions may be complicated. This
situation poses the important practical task of representing these complicated functions in
terms of simple periodic functions. namely. cosines and sines. These representations will
be infinite series, called Fourier series.'

The creation of these series was one of the most path-breaking events in applied
mathematics, and we mention that it also had considerable influence on mathematics as
a whole, on the concept of a function, on integration theory, on convergence theory for
series. and so on (see Ref. [GR7] in App. 1).

Chapter 11 is concerned mainly with Fourier series. However, the underlying ideas can
also be extended to nonperiodic phenomena. This leads to Fourier integrals and
transforms. A common name for the whole area is Fourier analysis.

Chapter 12 deals with the most important partial differential equations (PDEs) of physics
and engineering. This is the area in which Fourier analysis has its most basic applications,
related to boundary and initial value problems of mechanics, heat flow, electrostatics, and
other fields.

LJEAN-BAPTISTE JOSEPH FOURIER (1768-1830). French physicist and mathematician, lived and taught
in Paris. accompanied Napoléon in the Egyptian War. and was later made prefect of Grenoble. The beginnings
on Fourier series can be found in works by Euler and by Daniel Bernoulli, but it was Fourier who employed
them in a systematic and general manner in his main work, Théorie analytique de la chaleur (Analvtic Theory
of Heat, Paris, 1822). in which he developed the theory of heat conduction (heat equation: see Sec. 12.5), making
these series a most important tool in applied mathematics.

477
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Fourier Series, Integrals,
and Transforms

Fourier series (Sec. 11.1) are infinite series designed to represent general periodic
functions in terms of simple ones, namely. cosines and sines. They constitute a very
important tool, in particular in solving problems that involve ODEs and PDEs.

In this chapter we discuss Fourier series and their engineering use from a practical point
of view, in connection with ODEs and with the approximation of periodic functions.
Application to PDEs follows in Chap. 12.

The theory of Fourier series is complicated. but we shall see that the application of these
series is rather simple. Fourier series are in a certain sense more universal than the familiar
Taylor series in calculus because many discontinuous periodic functions of practical interest
can be developed in Fourier series but, of course, do not have Taylor series representations.

In the last sections (11.7-11.9) we consider Fourier integrals and Fourier transforms,
which extend the ideas and techniques of Fourier series to nonperiodic functions and have
basic applications to PDEs (to be shown in the next chapter).

Prerequisite: Elementary integral calculus (needed for Fourier coefficients)
Sections that may be omitted in a shorter course: 11.4—11.9
References and Answers to Problems: App. 1 Part C, App. 2.

11.1 Fourier Series

478

Fourier series are the basic tool for representing periodic functions, which play an
important role in applications. A function f(x) is called a periodic function if f(x) is
defined for all real x (perhaps except at some points, such as x = *7/2, £37/2, - - - for
tan x) and if there is some positive number p. called a period of f(x). such that

) fox+p)=fx for all x.

The graph of such a function is obtained by periodic repetition of its graph in any interval
of length p (Fig. 255).

Familiar periodic functions are the cosine and sine functions. Examples of functions
that are not periodic are x, x2, x3, €%, cosh x, and In x, to mention just a few.

If f(x) has period p, it also has the period 2p because (1) implies
fGx+2p) = f(Ix + p] + p) = f(x +p) = f(x), etc.; thus for any integern =1,2,3,- -+,

) f(x + np) = f(x) for all x.
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[

VARV Vs

] P |

Fig. 255. Periodic function

Furthermore if f(x) and g(x) have period p, then af(x) + bg(x) with any constants ¢ and
b also has the period p.

Our problem in the first few sections of this chapter will be the representation of various
Junctions f(x) of period 2 in terms of the simple functions

3) |1, cosx, Sinux, cos2x, sm2x,---, cos nx, sinnx, - - -

All these functions have the period 2. They form the so-called trigonometric system. Figure
256 shows the first few of them (except for the constant 1, which is periodic with any period).
The series to be obtained will be a trigonometric series, that is, a series of the form

ag + ay cosx + by sinx + ay cos 2x + by sin2x + - - -

) = ag + 2 (a,, cos nx + b, sin nx).
n=1
dg, Uy, b1. as, by, * - + are constants, called the coefficients of the series. We see that each

term has the period 2. Hence if the coefficients are such that the series converges, its
sum will be a function of period 2.

It can be shown that if the series on the left side of (4) converges, then inserting
parentheses on the right gives a series that converges and has the same sum as the series
on the left. This justifies the equality in (4).

Now suppose that f(x) is a given function of period 27 and is such that it can be
represented by a series (4), that is, (4) converges and, moreover, has the sum f(x). Then,
using the equality sign, we write

5) f() = ay + >, (a, cos nx + b, sin nx)

n=1

AN A Y/ WA W AN 4
0 WZﬂ 0\/77:\/277: 0\/\/\/27r

COS X cos 2x cos 3x

V\f 2n (V\ 7[r/'\ 2n 0/\ N/\n /\ 2
N NV \VARVARV/

sin x sin 2x sin 3x

Fig. 256. Cosine and sine functions having the period 27
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EXAMPLE 1

CHAP. 11 Fourier Series, Integrals, and Transforms

and call (5) the Fourier series of f(x). We shall prove that in this case the coefficients
of (5) are the so-called Fourier coefficients of f(x), given by the Euler formulas

1 ar
@  a=5- | fwa

1 T
(6) (b) a, = — f f(x) cos nx dx n=1.2.---
m Y _r

1 a
(c) b, = — f f(x) sin rx dx n=172---
ﬂ- T

The name *Fourier series” is sometimes also used in the exceptional case that (5) with
coefficients (6) does not converge or does not have the sum f(x)—this may happen but
is merely of theoretical interest. (For Euler see footnote 4 in Sec. 2.5.)

A Basic Example

Before we derive the Euler formulas (6). let us become familiar with the application of
(5) and (6) in the case of an important example. Since your work for other functions will
be quite similar, try to fully understand every detail of the integrations, which because of
the n involved differ somewhat from what you have practiced in calculus. Do not just
routinely use your software, but make observations: How are continuous functions (cosines
and sines) able to represent a given discontinuous function? How does the quality of the
approximation increase if you take more and more terms of the series? Why are the
approximating functions, called the partial sums of the series, always zero at 0 and #?
Why is the factor 1/n (obtained in the integration) important?

Periodic Rectangular Wave (Fig. 257a)

Find the Fourier coefficients of the periodic function f(x) in Fig. 257a. The formula is

—r<x<0

—k if
(7 f) = [ and
k if O<x<7T

fix + 2m) = f(x).

Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric
circuits, etc. (The value of f(x) at a single point does not affect the integral: hence we can leave f(x) undefined
atx = Qand x = *q1)

Solution. From (6a) we obtain ag = 0. This can also be seen without integration, since the area under the
curve of f(x) between —m and 7 is zero. From (6b).

T 0 ar
1 1
ay, = — f f(x) cos nx dx = — l:f (—k) cosnx dx + f k cos nx d_\':l
T s w —ar o
1 sin nx sinnx |7
- — | - = -0
™ n —ar 0
because sinnx = 0 at —1, 0, and wfor all n = 1, 2, - - - . Similarly, from (6c) we obtain
1 T 1 0 ar
b, = — f f&x) sinnxdx = — l:f (—k) sinnx dx + f k sin nx d.\':l
o J_ Lol e 0
1 . cos nx [© cosny |7
T no |, n o]~
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flx)

-7 o] T 2n x
L _‘46 |

(a) The given function f{x) (Periodic rectangular wave)

LY x
—77:\
N— ~_
S
B ACEP2 N
k AR -
f "\
/ \\
4 A\
el //\\ /’\“
N ~_7 ! x
~T T
;Lk sin b
P _k ”
N\ ~

(b) The first three partial sums of the corresponding Fourier series
Fig. 257. Eample 1

Since cos ( -@) = cos @ and cos 0 = 1, this yields

b, = [cos O — cos (—nm) — cos nw + cos 0] = — (1 — cos na).
ni ni
Now, cos = —1, cos 27 = 1, cos 37 = —1, elc_; in general,
—1 for odd n, 2 forodd n,
cos nir = and thus 1 — cosnm =
1 forevenn, 0 for cven n.

Hence the Fourier coefficients b,, of our function are

4k
by = —
a

4 4k
s by = 0, b3=§, by =0, b5=5ﬂ-,..._
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Since the a,, are 7ero, the Fourier series of f(x) is

a4k (. 1 [
(8) — |sinx + — sin3x + — sin5x +---).
T 3 5

The partial sums are
4k ak { 1
Sy = —sinx, Sg = — |sinx + — sin3x]}, etc.,
™ T 3

Their graphs in Fig. 257 seem to indicate that the series is convergent and has the sum f(x), the given function.
We notice that at x = 0 and x = 7, the points of discontinuity of f(x), all partial sums have the value zero, the
arithmetic mean of the limits —k and k of our function, at these points.

Furthermore, assuming that f(x) is the sum of the series and setting x = 7/2, we have

(1)_k_ﬁ(l_L+L_+...
7)== 3 5 )

thus

This is a famous result obtained by Leibniz in 1673 from geometric considerations. It illustrates that the values
of various series with constant terms can be obtained by evaluating Fourier series at specific points. |

Derivation of the Euler Formulas (6)

The key to the Euler formulas (6) is the orthogonality of (3), a concept of basic importance,
as follows.

Orthogonality of the Trigonometric System (3)

The trigonometric system (3) is orthogonal on the interval —m = x = 7 (hence also
on 0 = x = 27 or any other interval of length 27 because of periodicity): that is,
the integral of the product of any two functions in (3) over that interval is 0, so that
for any integers n and m,

T

(a) f cosnx cosmx dx = 0 (n +m)
) (b) f sin nx sinmx dx = 0 (n +#m
(©) f sin nx cosmx dx = 0 (n#+ morn=m).

—r

PROOF This follows simply by transforming the integrands trigonometrically from products into

sums. In (9a) and (9b), by (11) in App. A3.1,

T T

1 (7 1
f COS nx cos mx dx = 5 J__ﬁcos (n+ mxdx + > f cos (1 — m)x dx

—aT

T

] . 1 T l T
f smnxmnmxdx:;f cos n—m)xdx—;f cos (n + m)x dx.
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Since m # n (integer!), the integrals on the right are all 0. Similarly, in (9c), for all integer
m and n (without exception; do you see why?)

T T

1 [ 1
f sinnxcosmxdxzif sin(n+m)xdr+5f sin(n —m)xdx =0+ 0. &

—ar —r

Application of Theorem 1 to the Fourier Series (5)
We prove (6a). Integrating on both sides of (5) from — to 7, we get

T

f_:f(x) dy = f_ﬁ

We now assume that termwise integration is allowed. (We shall say in the proof of
Theorem 2 when this is true.) Then we obtain

[ao + E (a,, cos nx + b,, sin nx):| dx.
n=1

J_Wf(x) dx = qq fwdx + i (an fwcosnxdx + b, fr sinnxdx) .
- - n=1

—aT —ar

The first term on the right equals 27ra,. Integration shows that all the other integrals are
0. Hence division by 27 gives (6a).

We prove (6b). Multiplying (5) on both sides by cos mx with any fixed positive integer
m and integrating from — 7 to 7, we have

10) f f(x) cos mx dx = f [ao + > (a, cos nx + b, sin nx):| cos mx dx.

-7 n=1

We now integrate term by term. Then on the right we obtain an integral of a, cos mx.
which is 0; an integral of a,, cos nx cos mix, which is a,,,7 for n = m and O for n # m by
(9a); and an integral of b,, sin ax cos mx, which is O for all n and m by (9¢). Hence the
right side of (10) equals a,,7. Division by 7 gives (6b) (with m instead of n).

We finally prove (6¢). Multiplying (5) on both sides by sin mx with any fixed positive
integer m and integrating from —r to , we get

—7

(1D f f(x) sinmx dx = f I:ao + E (a,, cos nx + b, sin nx):l sin mx dx.

n=1

Integrating term by term, we obtain on the right an integral of ¢, sin mx, which is 0; an
integral of a,, cos nx sin mx, which is 0 by (9¢); and an integral of b,, sin ax sin mx, which
i8 b, mif n = m and O if n # m, by (9b). This implies (6¢) (with n denoted by m). This
completes the proof of the Euler formulas (6) for the Fourier coefficients. |
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Convergence and Sum of a Fourier Series

The class of functions that can be represented by Fourier series is surprisingly large and
general. Sufficient conditions valid in most applications are as follows.

THEOREM 2 i Representation by a Fourier Series

Let f(x) be periodic with period 27 and piecewise continuous (see Sec. 6.1) in the
interval —m = x = . Furthermore, let f(x) have a left-hand derivative and a
right-hand derivative at each point of that interval. Then the Fourier series (5) of
f(x) [with coefficients (0)] converges. Its sum is f(x), except at points x, where f(x)
is discontinuous. There the sum of the series is the average of the left- and
right-hand limits® of f(x) at x,.

PROOF We prove convergence in Theorem 2. We prove convergence for a continuous function
f(x) having continuous first and second derivatives. Integrating (6b) by parts, we obtain.

T T

- — F(x) sin nx dx.
—  ha J_]

1 T
a, = f f(x) cos nx dx =

f(x) sin nx
= — SIS
T

nT

The first term on the right is zero. Another integration by parts gives

f'(x) cosmx |™
a, = 5
nm

1 ko
- =3 f F"(x) cos nx dx.
nem J_.

—r

The first term on the right is zero because of the periodicity and continuity of f'(x). Since
f" is continuous in the interval of integration, we have

"G < M

for an appropriate constant M. Furthermore, |cos nx| = 1. It follows that

1 |, 1 [ 2M
la,| = —— f f(x) cos nx dx| < — f Mdx= —5.
nem |J_; nem J_, n
flx)
f(1-0) _—
2The left-hand limit of f(x) at xg is defined as the limit of f(x) as x approaches x from the left
1 / and is commonly denoted by f(xg — 0). Thus
o il +0) fg —0) = }Limo f(xo — h) as h — ( through positive values.
0 1 x ~
Fig. 258. Left- and The right-hand limit is denoted by f(xg + 0) and
right-hand limits . .
o + 0) = ’llmo f(xo + h) as  — 0 through positive values.
h—!
fli—0)=1,
1 +0) =1 The left- and right-hand derivatives of f(x) at x, are defined as the limits of
)
of the function flo — h) — flxg — 0) and fog +h) = fle +0)
—h h :
X ifx<1
flx) = respectively, as £ — 0 through positive values. Of course if f(x) is continuous at xg, the last term in
x/2 both numerators is simply ftxg)-
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Similarly, |b,| < 2 M/n® for all n. Hence the absolute value of each term of the Fourier
series of f(x) is al most equal to the corresponding term of the series

.o

which is convergent. Hence that Fourier series converges and the proof is complete.
(Readers already familiar with uniform convergence will see that, by the Weierstrass test
in Sec. 15.5, under our present assumptions the Fourier series converges uniformly, and
our derivation of (6) by integrating term by term is then justified by Theorem 3 of
Sec. 15.5.)

The proof of convergence in the case of a piecewise continuous function f(x) and the
proof that under the assumptions in the theorem the Fourier series (5) with coefficients
(6) represents f(x) are substantially more complicated; see, for instance, Ref. [C12]. W

1 | 1 1
la0|+2M(l+l+?+?+?+32

Convergence at a Jump as Indicated in Theorem 2

The rectangular wave in Example 1 has a jump at x = 0. Its left-hand limit there is —k and its right-hand limit
is k (Fig. 257). Hence the average of these limits is 0. The Fourier series (8) of the wave does indeed converge
to this value when x = 0 because then all its terms are 0. Similarly for the other jumps. This is in agreement
with Theorem 2. [}

Summary. A Fourier series of a given function f(x) of period 27 is a series of the form
(5) with coefficients given by the Euler formulas (6). Theorem 2 gives conditions that are
sufficient for this series to converge and at each x to have the value f(x), except at
discontinuities of f(x), where the series equals the arithmetic mean of the left-hand and
right-hand limits of f(x) at that point.

6. (Change of scale) If f(x) has period p, show that f(ax),

1. (Calculus review) Review integration techniques for
integrals as they are likely to arise from the Euler
formulas, for instance, definite integrals of x cos nx,
x2 sin nx, e~ 2* cos nx, etc.

2-3| FUNDAMENTAL PERIOD

The fundamental period is the smallest positive period. Find
it for

2. cosx, sinx, cos2x, sin2x, cosax, Sin X,

cos 27rx,  sin 2y

. 27rx . 27x
3. cosny, sinmx. cos — ., sin —— ,
k k
2rnx . 29tax
cos sin
ko k

4. Show that f = const is periodic with any period but
has no fundamental period.

5. If f(x) and g(x) have period p, show that
x) = af(x) + bg(x) (¢, b, constant) has the period p.
Thus all functions of period p form a vector space.

a # 0. and f(x/b), b # 0. are periodic functions of x
of periods p/a and bp, respectively. Give examples.

GRAPHS OF 27--PERIODIC FUNCTIONS
Sketch or graph f(x), of period 27, which for —7 <x < 7r
is given as follows.
7. f(x) = x
9. f(x) =7 — ||

8. f(x) = ¢ W
10. f(x) = |sin 2x]

—x% f—-m<x<0
11. f(x) = {
B if o<x<aw
1 if—wm<x<O
12. f(x) = {
coslix f 0<x<
13-24 FOURIER SERIES

Showing the details of your work, find the Fourier series
of the given f(x). which is assumed to have the period 27.
Sketch or graph the partial sums up to that including
cos Sx and sin 5x.
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1
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23.
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fx)
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1
5T < x <
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24,

25.

26.

27.

28.

29.

30.
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—4x if —m<x<0
fx) = )
4 if O<x<
(Discontinuities) Verify the last statement in Theorem

2 for the discontinuities of f(x) in Prob. 13.

CAS EXPERIMENT. Graphing. Write a program for
graphing partial sums of the following series. Guess
from the graph what f(x) the series may represent.
Confirm or disprove your guess by using the Euler
formulas.

(@) 2(sinx + % sin3x + LsinS5x + - - )

— 2(%sin2x + Lsindx + Lsinbx - - )
(b)L+i + 1 3x + 4L s Sx + - - -
gt 3 (cos x + 5 cos 3x + 35 cos S5x )

(©) 27 + 4(cos x — % cos 2x + § cos 3x — 5 cos 4x
+ — .- .)

CAS EXPERIMENT. Order of Fourier Coefficients.
The order seems to be 1/n if f is discontinous. and 1/n®
if f is continuous but f' = df/dx is discontinuous, 1/r>
if f and f' are continuous but £” is discontinuous, etc.
Try to verify this for examples. Try to prove it by
integrating the Euler formulas by parts. What is the
practical significance of this?

PROJECT. Euler Formulas in Terms of Jumps
Without Integration. Show that for a function whose
third derivative is identically zero,

1
a, = — I:— 2 Js Sinnxg, — — EJS' COS nXxg
n
1 Y/ A
+ = 2 jq sin nx,
n
. 1 1 -
b, = — 2 Js COS nxg — — 2]8 SN AXg
n
l -
— =5 2 Jj< cos nx,
n

where n = 1, 2, - - - and we sum over all the jumps j,
Jerjuof £, §', f'. respectively. located at x;.

Apply the formulas in Project 28 to the function in
Prob. 21 and compare the results.

CAS EXPERIMENT. Orthogonality. Integrate and
graph the integral of the product cos mx cos nx (with
various integer m and n of your choice) from —a to a
as a function of a and conclude orthogonality of cos
mx and cos nx (m # n) for @ = a7 from the graph. For
what m and n will you get orthogonality for a = 7/2,
713, 7/4? Other a? Extend the experiment to cos mx
sin ny and sin mv sin nx.
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11.2 Functions of Any Period p = 2L

The functions considered so far had period 2, for the simplicity of the formulas. Of
course, periodic functions in applications will generally have other periods. However, we
now show that the transition from period p = 27 to a period 2L is quite simple. The
notation p = 2L is practical because L will be the length of a violin string (Sec. 12.2) or
the length of a rod in heat conduction (Sec. 12.5), and so on.

The idea is simply to find and use a change of scale that gives from a function g(v) of
period 27r a function of period 2L. Now from (5) and (6) in the last section with g(v)
instead of f(x) we have the Fourier series

e)) gv) =aqy + 2 (a,, cos nv + b, sin nv)

n=1

with coefficients

1 aT
ag — E f g(U) dv

1 ko
(93] ay = — f g(v) cos nv dv
7T —aT

1 ki
b, = — f g(v) sin nv du.
T 1

We can now write the change of scale as v = kx with k such that the old period v = 27
gives for the new variable x the new period x = 2L. Thus, 277 = k2L. Hence k = #/L and

(3) v = kx = miL.

This implies dv = (7/L) dx. which upon substitution into (2) cancels 1/27r and 1/7 and
gives instead the factors 1/2L and 1/L. Writing

@ gw) = f(x),

we thus obtain from (1) the Fourier series of the function f(x) of pertod 2L

bad ni nm
) f) =ay + 2, (an cos —— x + b,, sin A x)

n=1

with the Fourier coefficients of f(x) given by the Euler formulas
1 (L
(a) ao = z f_Lf(x) dx

6 b B 1 J‘L nwx B
)] (b) an—z _Lf(x)cosTd,\ n=12,---

nTXx

1 L
b — : = . e
(c) n= T f_ Lf(x) sin dx n=1,2,
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Just as in Sec. 11.1, we continue to call (§) with any coefficients a trigonometric series.
And we can integrate from O to 2L or over any other interval of length p = 2L.

EXAMPLE 1 Periodic Rectangular Wave
Find the Fourier series of the function (Fig. 259)

0 if 2<x<-1
f@ =9k if —1<x< 1 p=2=4 L=2
0

if I<x< 2

Solution. From (62) we obain ag = k/2 (verify!). From (6b) we obtain
2 1
__lf - nﬂ'\‘d_lJ'k nwxd_Zk_nﬂ'
a.n—2 _zfxcos 2 x—2 L cos 3 r-"_”sm 7 -

Thus a,, = 0 if n is even and

a, =2kint f n=1,59,---, a, = —2klnm if n=3,711,---.
From (6¢) we find that b,, = 0 forn = 1, 2. - - - . Hence the Fourier series is
_k + 2k T 1 3 + 1 S5 + m
_f(x)—2 - coszx 3c032x 5cosz,\ .
flx)
J— k
LT
-2 -1 0] 1 2 x

Fig. 259. Example ]

EXAMPLE 2 Periodic Rectangular Wave

Find the Fourier series of the function (Fig. 260)

—k if 2<x<90

f(x)={ p=2L=4, L=2.
kK if 0<x<2

Solution. ay = 0 from (62). From (6b). with /L, = 1/2,

0 2
1 f K nmE L f . nm
a, = 2 Y ) cos 2 x A cos 5 x
1 2k nmx o 2k | nmx 2
= — | — — sin + — sin =0.
2 nm 2 | am 0

so that the Fourier series has no cosine terms. From (6c¢),

b 1 2k nax |© 2k nax |2
n 2 | nw cos 2 |2 nw o8 2 lo
k 4kinm  if n=1.3,---
= — ({ —cosnm—cosnm+1)=
n 0 if n=24,---.
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Hence the Fourier series of f(x) is

4k [ & 1 . 3w 1 . 57
fx) 51n2x+3sm2x+551n 2x+

It is interesting that we could have derived this from (8) in Sec. 11.1, namely, by the scale change (3). Indeed,
writing v instead of x, we have in (8), Sec. 11.1,

4k 1 1
— [sinv + — sin3v + — sin5v + - - -} .
T 3 5

Since the period 247 in v corresponds to 2L = 4, we have k = 7/L = 7/2 and v = kx = 7x/2 in (3); hence we

obtain the Fourier series of f(x), as before. |
flx)
P—
4‘ u(t)
_? zi x
—F /‘\I | l/\
—~rlw 0 il t
Fig. 260. Example 2 Fig. 261. Half-wave rectifier

EXAMPLE 3 Half-wave Rectifier

A sinusoidal voltage E sin wr. where 7 is time. is passed through a half-wave rectifier that clips the negative
portion of the wave (Fig. 261). Find the Fourier series of the resulting periodic function

0 if —L<tr<O. 2 p
u(h) = p=2L=—, L= —.
Esinwt if 0<i<L @ @

Solution. Since u = 0 when —L < t < 0, we obtain from (6a), with ¢ instead of x,

7w B

w
ag = — E sin wtdt = —
0 27 Jy T

and from (6b), by using formula (11) in App. A3.1 with x = wz and y = nwt,

mlw mlw
w . [ . R
a, = — f Esinwrcosnwrdt = — [sin (1 + miwr + sin (1 — n)wi] dt.
T Jg 2o Jg
If n = 1, the integral on the right is zero, and if n = 2, 3, - - -, we readily obtain

" 2 N

_ oE cos (1 + mywt cos (1 — n)wt e
a1+ nw (1 — Bw

0

E —cos (1 + mym + 1 . —cos(1 —n)7m + 1
2 ’

1+n 1—n

If n is odd, this is equal to zero, and for even n we have

_E 2 . 2 _ 2F ”
4= Gn 1+n 1—n) (n—D@nE+ D7 (=24,
In a similar fashion we find from (6¢) that by = E/2 and b,, = O forn = 2,3, - - - . Consequently,
© E + E 2E 1 1
W) = — = _“ A
- 3 sin wi? - 3 cos 2wt + i3 cos 4wt + ) |
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[1-11] FOURIER SERIES FOR PERIOD p = 2L

Find the Fourier series of the function f(x), of period p = 2L,
and sketch or graph the first three partial sums. (Show the
details of your work.)

1. fO=-1(2<x<0fx)=10<x<D.p=4
2. f)=0(2<x<0).f=40<x<2.p=4

Lfx)=x% (-1<x<1), p=2

4 f(x) = mx¥2 (-l <x<l), p=2

5. fx)=sinmx (0<x<1), p=1

6. f(x) =cosmx (—i<x<i), p=1

7- fx) =Ix} (-1 <x<1). p=2

1 +xif -1 <x<O0

S'f(x):{l—xif 0<x<1 P=72

9. fo)=1—1x (-1<x<1), p=2

10. fx)=0(—2<x<0), fH)=x0<x<2),p=4
1. f(x) = —x (—1<x<0), f=x O<x<1),

) =1

12. (Rectifier) Find the Fourier series of the function
obtained by passing the voltage v(f) = V,, cos 1007t
through a half-wave rectifier.

13. Show that the familiar identities

cos® x = 2 cosx + 4 cos 3x and

(1<x<3), p=4

sin® x = 3 sin x —  sin 3x can be interpreted as
Fourier series expansions. Develop cos? x.

Fourier Series, Integrals, and Transforms

14. Obtain the series in Prob. 7 from that in Prob. 8.
15. Obtain the series in Prob. 6 from that in Prob. 5.

16. Obtain the series in Prob. 3 from that in Prob. 21 of
Problem Set 11.1.

17. Using Prob. 3, show that

1 1_ 1 . = L2
1 its i + 127 .

18. Showthat 1 + 2+ 3+ L + ... =1g2

19. CAS PROJECT. Fourier Series of 2L-Periodic
Functions. (a) Write a program for obtaining partial
sums of a Fourier series (1).

(b) Apply the program to Probs. 2-5, graphing the first
few partial sums of each of the four series on common
axes. Choose the first five or more partial sums until
they approximate the given function reasonably well.
Compare and comment.

20. CAS EXPERIMENT. Gibbs Phenomenon. The
partial sums s,,(x) of a Fourier series show oscillations
near a discontinuity point. These oscillations do not
disappear as n increases but instead become sharp
“spikes.” They were explained mathematically by
J. W. Gibbs®. Graph s,,(x) in Prob. 10. When n = 50,
>ay, you will see those oscillations quite distinctly.
Consider other Fourier series of your choice in a similar
way. Compare.

11.3 Even and Odd Functions.
Half-Range Expansions

The function in Example 1, Sec. 11.2, is even, and its Fourier series has only cosine
terms. The function in Example 2, Sec. 11.2, is odd, and its Fourier series has only sine

terms.

Recall that g is even if g(—x) =

g(x), so that its graph is symmetric with respect to the

vertical axis (Fig. 262). A function k is odd if h(—x) = —h(x) (Fig. 263).

Now the cosine terms in the Fourier series (5), Sec. 11.2. are even and the sine terms
are odd. So it should not be a surprise that an even function is given by a series of
cosine terms and an odd function by a series of sine terms. Indeed, the following holds.

3JOSIAH WILLARD GIBBS (1839-1903), American mathematician. professor of mathematical physics at
Yale from 871 on. one of the founders of vector calculus [another being O. Heaviside (see Sec. 6.1)],
mathematical thermodynamics, and statistical mechanics. His work was of great importance to the development

of mathematical physics.
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THEOREM 1

PROOF

y

oS T

Fig. 262. Even function Fig. 263. Odd function

Fourier Cosine Series, Fourier Sine Series

The Fourier series of un even function of period 2L is a “Fourier cosine series”

1) o) =ag+ S a, cos —

n=1

X (f even)

with coefficients (note: integration from O to L only!)

2 _IJL d _ZJL() rMT.\'d_ 15

2 G =7 Of(x) ) an =7 Ofxcos [ n , 2, .

The Fourier series of an odd function of period 2L is a “Fourier sine series”

@) f0) =3 bysin - x (f odd)

n=1

with coefficients

4 b = 2 fL . onmx e
) n= 7 Of(x)sm—L dx.

Since the definite integral of a function gives the area under the curve of the function
between the limits of integration, we have

L L

f gx)ydx =2 f gx) dx for even g
—L 0
L

f hxydx =0 for odd &
-L

as is obvious from the graphs of g and A. (Give a formal proof.) Now let f be even. Then
(6a), Sec. 11.2, gives aq in (2). Also, the integrand in (6b), Sec. 11.2, is even (a product
of even functions is even), so that (6b) gives a,, in (2). Furthermore, the integrand in (6c),
Sec. 11.2, is the even f times the odd sine, so that the integrand (the product) is odd, the
integral is zero, and there are no sine terms in (1).
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THEOREM 2

EXAMPLE 1

EXAMPLE 2

CHAP. 11 Fourier Series, Integrals, and Transforms

Similarly, if f is odd, the integrals for ¢ and a,, in (6a) and (6b), Sec. 11.2, are zero,
f times the sine in (6¢) is even. (6¢) implies (4). and there are no cosine terms in (3). B

The Case of Period 277. If L = 1, then f(x) = gq¢ + E a,, cos nx (f even) with
coefficients n=1

aT

1 2
(2*) ag = — f f(x) dx, a, = — f fx)cosnxdx, n=1,2,---
T Yo m™ Yo

and f(x) = >, b, sin nx (f odd) with coefficients
n=1

2
(4%) by = — f () sin nx dx, n=172---
T Yo

For instance, f(x) in Example 1, Sec. 11.1, is odd and is represented by a Fourier sine
series.

Further simplifications result from the following property, whose very simple proof is
left to the student.

Sum and Scalar Multiple

The Fourier coefficients of a sum f{ + fo are the sums of the corresponding Fourier

coefficients of f, and fo.
The Fourier coefficients of cf are c times the corresponding Fourier coefficients

of f.

Rectangular Pulse

The function f*(x) in Fig. 264 is the sum of the function f(x) in Example | of Sec 11.1 and the constant k.
Hence, from that example and Theorem 2 we conclude that

4k i 1 1 .
fFxy=k+ — |sinx + — sin3x + — sinSx+ ---]. |
T 3 5

Half-Wave Rectifier

The function u(r) in Example 3 of Sec. 11.2 has a Fourier cosine series plus a single term v(r) = (£/2) sin wt.
We conclude from this and Theorem 2 that u(z) — v(z) must be an even function. Verify this graphically. (See
Fig. 265.)

) 0.5
2k

- 0 T 21 3 47 x - Y nt

Fig. 264. Example1 Fig. 265. u(t) —v(t)withE =1, w =1
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EXAMPLE 3 Sawtooth Wave

Find the Fourier series of the function (Fig. 266)

fy=x+7 if —w<x<m and fx + 2m) = f(x).
f(x)
~7 T X
(a) The function f(x)

-y 0 T x

(b) Partial sums Sy, Sg, S3, Sgq
Fig. 266. Example 3

Solution. We have f = f; + fo, where f; = x and fo = 7. The Fourier coefficients of fs are zero, except
for the first one (the constant term). which is 7. Hence, by Theorem 2. the Fourier coefficients a,,. b,, are those
of f1, except for qq, which is 7. Since fyis odd, a,, =0 forn =1,2,-- -, and

2 (7 2 (7
b, = . fo f1x) sinnx dx = P fo x sin nx dx.

Integrating by parts, we obtain

2 —xcosnx |7 1 (7 2
bpy=—|——| +— cosnxdx | = — — cosnm.
T n o nJdy n
Hence by = 2, bg = —2/2, bg = 2/3, by = —2/4, - - -, and the Fourier series of f(x) is
. L [
f(x)=7-r+2(sm.\'~551n2x+§s1n3x—+-~-). |

Half-Range Expansions

Half-range expansions are Fourier series. The idea is simple and useful. Figure 267
explains it. We want to represent f(x) in Fig. 267a by a Fourier series. where f(x) may
be the shape of a distorted violin string or the temperature in a metal bar of length L, for
example. (Corresponding problems will be discussed in Chap. 12.) Now comes the idea.
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flx)

L x

(a) The given function f(x)

£
MM

_L L x

(b) f(x) extended as an even periodic function of period 2L
£,

L /\ 4 /\
~"V I~/ "

(e) f(x) extended as an odd periodic function of period 2L

Fig. 267. (a) Function f(x) given on an interval 0 S x =L

(b) Even extension to the full “range” (interval) —L = x = L (heavy curve)
and the periodic extension of period 2L to the x-axis

(c) Odd extension to —L = x = L (heavy curve) and the periodic extension
of period 2L to the x-axis

We could extend f(x) as a function of period L and develop the extended function into a
Fourier series. But this series would in general contain both cosine and sine terms. We
can do better and get simpler series. Indeed, for our given f we can calculate Fourier
coefficients from (2) or from (4) in Theorem 1. And we have a choice and can take what
seems more practical. If we use (2). we get (1). This is the even periodic extension f;
of fin Fig. 267b. If we choose (4) instead. we get (3), the odd periodic extension f, of
f in Fig. 267c.

Both extensions have period 2L. This motivates the name half-range expansions: f is
given (and of physical interest) only on half the range, half the interval of periodicity of
length 2L.

Let us illustrate these ideas with an example that we shall also need in Chap. 12.

EXAMPLE 4 “Triangle” and Its Half-Range Expansions

Find the two half-range expansions of the function (Fig. 268)

kZA‘_
2k L
— if 0<x<—
Lx 1 X 5

0 L2 L =« Fo) = L
Fig. 268. The given T L-x if —-<x<L
function in Example 4 -

Solution. (a) Even periodic extension. From (2) we obtain

2 L
= i 2k fu v dv + 2k J (L dx | =
ag = 2 2 . x dx 2 " Ndx| =
2 L
|:2k fu niw o+ Zk-f @ ) nir d:,
— xcos —xdx + — —x)cos —xdx|.
0 L L Jip L

| ==

2
L

a, =
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We consider a,,. For the first integral we obtain by integration by parts
12 L2
niT ILx  nm Li2 L ni
xcos —Xxdx= ——sin —x - — s — x dx
0 L nw

L 0 nw Jgo

2 . nw 2 ni |
= ——sin — + —— {cos — — .
2nm 2 nzﬂ'z

Similarly, for the second integral we obtain

L L . nTT
+ — sin — x dx
Li2 R Jr)9 L

— (o L L\ . nw ? nir
= o o 22 cosna — cos —- | .

We insert these two results into the formula for a,,. The sine terms cancel and so does a factor L2. This gives

L
nm L . nmw

f(L—x)cos—xdx=—(L—x)sm—x

2 L niw L

4k nar
a4y = 5 5 ZCOST —cosnm— 1}.
n T
Thus,
as = ~16ki(2%52), ag = —16kN(6Z), aip = —16k/(10%7%), - -
2 6 o

and a,, = 0if n # 2. 6. 10. 14. - - - . Hence the first half-range expansion of f(x) is (Fig. 269a)

k 16k (1 277 1 6
f) = 7 2 ?COST_\"F ?cosTx+-~- .

This Fourler cosine series represents the even periodic extension of the given function f(x), of period 2L.

(b) Odd periodic extension. Similarly, from (4) we obtain

8  nar
%) b,= —5 & sin —
nom 2

Hence the other half-range expansion of f(x) is (Fig. 269b)
8k 1 K 1 37 1 57
fo="z eyt g )

This series represents the odd periodic extension of f(x), of period 2L.
Basic applications of these results will be shown in Secs. 12.3 and 12.5. |

g

—L 0 L x

(a) Even extension

§ N )
—L\/ 0 L \/ x

(b) Odd extension

Fig. 269. Periodic extensions of f(x) in Example 4



496 CHAP. N

Poem SEFEFEE "

[1—9 EVEN AND ODD FUNCTIONS

Are the following functions even. odd. or neither even nor

odd?
1. |x
2. sin (x?), sin x, x sinh x, [x%], e™, xe®, tan 2x, x/(1 + 12)

, x2 sinnx, x + 2. e‘lIl, In x, x cosh x

Are the following functions, which are assumed to be
periodic of period 2. even. odd, or neither even nor odd?

3fx)y =2 (—m<x<m

4. f(x) = x2 (—a/2 < x < 37/2)

5. f(x)=e ™ (—a<x<md

6. f(x) =xsiny (—T<x<m)

7. fx) = alx] —2® (—wm<x< 7@

8. flxy=1—x + 32X (—m<xy< @D

9. fF) = N1 + D if —m<x<0. fx)=—11 + x?

fo<x<mw

10. PROJECT. Even and Odd Functions. (a) Are the
following expressions even or odd? Sums and products
of even functions and of odd functions. Products of
even times odd functions. Absolute values of odd
functions. f(x) + f(—x)and f(x) — f(—x) for arbitrary
f.

(b) Write €, 1/(1 — x). sin (x + k), cosh (x + k) as
sums of an even and an odd function.

{¢) Find all functions that are both even and odd.

(d) Is cos® v even or 0dd? sin®x? Find the Fourier
series of these functions. Do you recognize familiar

identities?
FOURIER SERIES OF EVEN AND ODD

FUNCTIONS

Is the given function even or odd? Find its Fourier series.
Sketch or graph the function and some partial sums. (Show
the details of your work.)

1L f(x) = 7 — |x| (—r<x<m)

11.4 Complex Fourier Series.

Fourier Series, integrals, and Transforms

12. flx) = 2x|x] (—l<x<1)
x if a2 < x < 7@/2
13. f(x) = [
a—x |if w2 < x < 37/2
e ™ if —m <x<0
14. f(x) = [
me® if 0 <x<m
2 if —2<x<0
15. f(x) = {
0 if 0 <x<2

1— 4 if —2<x<2
16. f(x) = [ (p = 8)
0

if 2<x<6

17-25 HALF-RANGE EXPANSIONS

Find (a) the Fourier cosine series, (b) the Fourier sine series.
Sketch f(x) and its two periodic extensions. (Show the
details of your work.)

17. fy =1 (0 < x < 2)
8. f(x) =x (0<x<3)
9. fx) =2 —x O<x<?2)
0 (0<x<2)
20. f(x) = [
1 2<x<4)
1 0<x<1)
21. flx) = {
2 (1<x<2)
X 0 < x < 7/2)
22. f(x) = {
w2 (72 < x < @)
23 f(x)=x (0O<x<L)
24. f(x) = 2 (0<vy<lLl)
25. fy=m7—x (O<x<m

26. [Mlustrate the formulas in the proof of Theorem 1 with
examples. Prove the formulas.

Optional

In this optional section we show that the Fourier series

o

Q) f&x) = g4 + 2 (a,, cos nx + b, sin nx)

n=1

can be written in complex form, which sometimes simplifies calculations (see Example 1,
on page 498). This complex form can be obtained because in complex, the exponential
function e* and cos f and sin ¢ are related by the basic Euler formula (see (11) in Sec. 2.2)

() e’ = cost+ isinc

Thus e ™ =cosrt—isint
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Conversely, by adding and subtracting these two formulas, we obtain
o a —it : L —it
3) (a) cost= 5(81 + e ™), (b) sint = —2—_(e —e ™).
i
From (3), using 1/i = —i in sin t and setting t = nx in both formulas, we get

. . 1 . .
an( P e—inx) 4+ — bn( T — e—znx)

1
a, cos nx + b, sin nx = 5 Y

1 ) 1 .
= g (a, — ib )" + By (a, + ib,)e” """

We insert this into (1). Writing ag = ¢o.  3(a, — ib,) = ¢,, and 3(a, + ib,) = k,,
we get from (1)

@ FOOV = co + D (€™ + kye™ ™).

n=1

The coefficients c;. ¢y, - - - . and ky, ky. - - - are obtained from (6b), (6¢) in Sec. 11.1 and
then (2) above with t = nx.

_ 1 by = | f‘” i i .- 0 dx = 1 f‘” ) —in:rd.
Cp = 5 (a, — iby) = Y. _ﬂf()\)(cos nx — isinnx) dx = Y _ﬂf(.x e X
3

! - 1 i TR 1 i inxT
k, = 5 (a, + ib,) = Py f_ﬂf(x)(cos nx + isinnx) dx = o f_ﬂf(x)e dx.

Finally, we can combine (5) into a single formula by the trick of writing k,, = ¢_,,. Then
(4). (5), and ¢, = ag in (6a) of Sec. 11.1 give (summation from —ce!)

o0
f(;\) — 2 cy, e’L‘lLt’
n=—co

©)
1 aT
Cp = — f f(x) e ™" dx, n=0,*I1,*2 ---.
20 J_ ]

This is the so-called complex form of the Fourier series or, more briefly, the complex
Fourier series, of f(x). The c,, are called the complex Fourier coefficients of f(x).
For a function of period 2L our reasoning gives the complex Fourier series

a0

f( x) = 2 Cn ei‘n.wx/L’
n=—xc

)

1 F )
Cp = = flx)e~ =il gy n=0,=*I,*2 ---.
mo2L f_L
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EXAMPLE 1 Complex Fourier Series

Find the complex Fourier series of f(x) = ¢” if —7 < x < 7 and f(x + 27) = f(x) and obtain from it the usual
Fourier series.

Solution. Since sin n7 = 0 for integer n, we have

e = cos nar * i sinnwr = cos nr = (— D).

With this we obtain from (6) by integration

T

1

T —in
= et

1
29 J_ 27 1 —in T

1 r—inx 7 ] ]

€ = -

Cn

On the right,

1 B 1 +in 1+in
1—in (0 —in(l +in) 1402

and e” — e " =2sinh 7

Hence the complex Fourier series is

. o0 .
sinh 7 1+in .
(®) F=— 3 D" 7 & (—7<x<m).
T oo 1+n
From this let us derive the real Fourier series. Using (2) with f = nx and i = —1, we have in (8)
1+ in)ei’"JE = (1 + in)(cos nx + i sinnx) = (cos nx — n sin nx) + i(n cos nx + sin nx).

Now (8) also has a corresponding term with —n instead of n. Since cos (—nx) = cos nx and
sin (—nx) = —sin nx, we obtain in this term

(1 — im)e ™% = (1 — in)(cos nx — i sin nx) = (cos nx — n sin nx) — i(n cos nx + sin nx).
If we add these two expressions, the imaginary parts cancel. Hence their sum is
2(cos nx — n sin nx), n=12---

For n = 0 we get 1 (not 2) because there is only one term. Hence the real Fourier series is

T 2

x  2sinha [ 1 1 . 1 .
9) e = - - 512 (cosx«smx)+1—+$(c052x—251n2x)—+~-- .

In Fig. 270 the poor approximation near the jumps at >4 is a case of the Gibbs phenomenon (see CAS
Experiment 20 in Problem Set 11.2).

10

1 e 1
- 0 T ox

Fig. 270. Partial sum of (9), terms from n = 0 to 50
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. (Calculus review) Review complex numbers.

. (Even and odd functions) Show that the complex
Fourier coefficients of an even function are real and
those of an odd function are pure imaginary.

. (Fourier coefficients) Show that
Cp * C_py by =

4o = Co, An = i{c, — c_y).

4. Verity the calculations in Example 1.

7-13

. Find further terms in (9) and graph partial sums with

your CAS.

. Obtain the real series in Example 1 directly from the

Euler formulas in Sec. 11.

COMPLEX FOURIER SERIES

Find the complex Fourier series of the following functions.
(Show the details of your work.)

7.
8.
9.

11.5 Forced Oscillations

f)=—-1if—-7<x<0,f=1if0<x<m
Convert the series in Prob. 7 to real form.
fy=x (—m<x<m

10. Convert the series in Prob. 9 to real form.

11.
12.
13.

14.

fx) = x?
Convert the series in Prob. 11 to real form.
fx)=x (0O<x<2m

(—r<x<)

PROJECT. Complex Fourier Coefficients. It is very
interesting that the c,, in (6) can be derived directly by
a method similar to that for a,, and b,, in Sec. 11.1. For
this, multiply the series in (6) by e with fixed
integer m, and integrate termwise from —4r to r on
both sides (allowed, for instance, in the case of uniform
convergence) to get

f_:f(x)e_i"lJE dx = g: Cpn f

n=—0o -

T

ez(‘n—m):c dx.
ar

Show that the integral on the right equals 27 when
n = m and 0 when n # m [use (3b)], so that you get
the coefficient formula in (6).

Fourier series have important applications in connection with ODEs and PDEs. We show
this for a basic problem modeled by an ODE. Various applications to PDEs will follow
in Chap. 12. This will show the enormous usefulness of Euler’s and Fourier’s ingenious
idea of splitting up periodic functions into the simplest ones possible.

From Sec. 2.8 we know that forced oscillations of a body of mass m on a spring of
modulus k are governed by the ODE

@)

my" + ¢y +ky=r@)

where y = y(#) is the displacement from rest, ¢ the damping constant, k the spring constant
(spring modulus), and r(#) the external force depending on time ¢. Figure 271 shows the
model and Fig. 272 its electrical analog, an RLC-circuit governed by

Spring
Mass m

External
force r(z)

Fig. 271,
consideration

. Dashpot

Vibrating system under

C

o

o3 :

L0
E@)

Fig. 272.  Electrical analog of the
system in Fig. 271 (RLC-circuit)
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1
1) LI" + RI' + o != E'(n (Sec. 2.9).

We consider (1). If r(r) is a sine or cosine function and if there is damping (¢ > 0),
then the steady-state solution is a harmonic oscillation with frequency equal to that of r(¢).
However, if r(f) is not a pure sine or cosine function but is any other periodic function,
then the steady-state solution will be a superposition of harmonic oscillations with
frequencies equal to that of r(f) and integer multiples of the latter. And if one of these
frequencies is close to the (practical) resonant frequency of the vibrating system (see
Sec. 2.8), then the corresponding oscillation may be the dominant part of the response of
the system to the external force. This is what the use of Fourier series will show us. Of
course, this is quite surprising to an observer unfamiliar with Fourier series, which are
highly important in the study of vibrating systems and resonance. Let us discuss the entire
situation in terms of a typical example.

Forced Oscillations under a Nonsinusoidal Periodic Driving Force

In (1), let m = 1 (gm), ¢ = 0.05 (gm/sec), and k = 25 (gm/secz). so that (1) becomes
2) ¥y’ + 005y + 25y = r(»)

where r(t) is measured in gm - cm/sec?, Let (Fig. 273)

a
1+ if —m<i<o,
@) = - r(t + 2@ = r(1).

Find the steady-state solution y(1).

r)
2

N I

Fig. 273. Force in Example 1

Solution. We represent (1) by a Fourier series, finding
3 2 —1 3 —I 5

(1) = os t + -+ r+ -
( ) r(1r) - Cos 32 cOS 52 CcOS

(take the answer 1o Prob. 11 in Problem Set 11.3 minus %ﬂ' and write 7 for x). Then we consider the ODE

4
(C)] ¥+ 005y + 25y = 5 cosnf (n=13"--)
nea

whose right side is a single term of the series (3). From Sec. 2.8 we know that the steady-state solution v,,(1)
of (4) is of the form

5) Yn = A, cos nf + B, sinnt.
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By substituting this into (4) we find that

425 - n%) 02

6 A, = ——H—, B, = , where D, = (25 — n5? + (0.0517°.
© " nzan " nh, " ¢ ) ( "

Since the ODE (2) is linear. we may expect the steady-state solution to be

D y=»wtygtys+t---

where y,, is given by (5) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier
series of r{1), provided that termwise differentiation of (7) is permissible. (Readers already familiar with the notion

of uniform convergence [Sec. 15.5] may prove that (7) may,b_edifferentiated term by term.)
From (6) we find that the amplitude of (5) is (a factor V D,, cancels out)

4
C,=VaAZ+B2=——

Ilz’iT\/D_n ’
Numeric values are
C; = 0.0531
Cs = 0.0088
Cs = 0.2037
C; = 0.0011
Cg = 0.0003.

Figure 274 shows the input (multiplied by 0.1) and the output. For n = 5 the quantity D,, is very small. the
denominator of Cy is small, and Cj is so large that ys is the dominating term in (7). Hence the output is almost
a harmonic oscillation of five times the frequency of the driving force, a little distorted due to the term y;, whose
amplitude is about 25% of that of y5. You could make the sitnation still more extreme by decreasing the damping
constant ¢. Try it.

¥
03|
ook Output
01y \K\
L i L \ 1 \ 1
-3 |- 1 1o 1] e |3l
01k
Input
_0'2_

Fig. 274. Input and steady-state output in Example 1

S&le® : LEM-SET 35 i

1. (Coefficients) Derive the formula for C,, from A,, and B,,. 3. (Damping) In Example 1 change c to 0.02 and discuss
2. (Spring constant) What would happen to the amplitudes how this changes the output.
C,, in Example 1 (and thus to the form of the vibration) 4. (Input) What would happen in Example 1 if we
if we changed the spring constant to the value 97 If we replaced r(z) with its derivative (the rectangular wave)?

took a stiffer spring with k = 817 First guess. What is the ratio of the new C,, to the old ones?
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GENERAL SOLUTION
Find a general solution of the ODE y” + «?y = r(r) with
r(f) as given. (Show the details of your work.)

S. r(t) = cos wt, w = 0.5,0.8, 1.1, 1.5, 5.0, 10.0

6. r(r) = cos wit + cos wyt (0% # @2, wy?)

N
7.r(t) = 2 a,cosnt, |lof#1,2,---, N
n=1
8. r(r) = sins + Lsin3r + L sin5r + 4 sin 7r
t+ 7 if —7<1r<O
9. r(t) =
—t+ 7 if o<t<

and r(t + 2m)

t it
10. r(t) = [

a—1 if

r(t), lo| # 0,1, 3, - -
—al2 <t < /2

72 < t < 37/2

and r(t + 27) = r(1), |o| #1,3,5, -

T
11. r(r) = ”y |sin#] if —77 < t < 7 and

r(t + 2m) = r(n). |w| +0.2.4,---

12. (CAS Program) Write a program for solving the ODE
just considered and for jointly graphing input and
output of an initial value problem involving that ODE.
Apply the program to Probs. 5 and 9 with initial values
of your choice.

13. (Sign of coefficients) Some A,, in Example 1 are positive
and some negative. Is this physically understandable?

Fourier Series, Integrals, and Transforms

14-17| STEADY-STATE DAMPED OSCILLATIONS
Find the steady-state oscillation of y" + v’ + y = ()
with ¢ > 0 and r(r) as given. (Show the details of your
work.)

14. (1) = a,, cos nur

15. r(t) = sin 3¢

{ Tt if
m(m — 1) if

and »(t + 27) = ¥(1)
N
17. r(t) = >, b, sinnt
n=1
18. CAS EXPERIMENT. Maximum Output Term.
Graph and discuss outputs of ¥y + ¢y’ + ky = #(1)
with r(f) as in Example 1 for various ¢ and k with
empbasis on the maximum C,, and its ratio to the
second largest |C,].

—ml2<r< @2

16. r(1)
w2 <t < 3w/2

19-20| RLC-CIRCUIT

Find the steady-state current /() in the RLC-circuit in
Fig. 272, where R = 100 Q, L = 10 H, C = 1072 F and
E(r) V as follows and periodic with period 2. Sketch or
graph the first four partial sums. Note that the coefficients
of the solution decrease rapidly.

19. E(r) = 2000(a2 — 1) (—7 <t < 1)

100(at + 12 if —w <r<0

20. E(r) = {

100(art — %) if o<t<m

11.6 Approximation by Trigonometric Polynomials

Fourier series play a prominent role in differential equations. Another field in which they
have major applications is approximation theory, which concerns the approximation of
functions by other (usually simpler) functions. In connection with Fourier series the idea

is as follows.

Let f(x) be a function on the interval —7 = x = 7 that can be represented on this
interval by a Fourier series. Then the Nth partial sum of the series

N

m ) = q¢ + 2 (a,, cos nx + b, sin nx)

n=1

is an approximation of the given f(x). It is natural to ask whether (1) is the “best”
approximation of f by a trigonometric polynomial of degree N, that is, by a function

of the form

@) Fx) = Ay + 2, (A,, cos nx + B, sin nx)

N
(N fixed)

n=1

where “best” means that the “error” of the approximation is as small as possible.
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Of course, we must first define what we mean by the error E of such an approximation.
We could choose the maximum of |[f — F|. But in connection with Fourier series it is
better to choose a definition that measures the goodness of agreement between f and
F on the whole interval —m = x = 7. This seems preferable, in particular if f has jumps:
F in Fig. 275 is a good overall approximation of f, but the maximum of |f — F| (more
precisely, the supremum) is large (it equals at least half the jump of f at xg). We choose

@) E=[ (- FPa.

This is called the square error of F relative to the function f on the interval — 7 =x = 7.
Clearly. E = 0.

N being fixed. we want to determine the coefficients in (2) such that E is minimum.
Since (f — F)2 = f2 — 2fF + F2, we have

) E= f_w f2de—2 f_w fF dx + f_w F2 dx.

We square (2), insert it into the last integral in (4), and evaluate the occurring integrals.
This gives integrals of cos®ax and sin nx (n = 1), which equal 7, and integrals of
cos nx, sin nx, and (cos nx)(sin mx). which are zero (just as in Sec. 11.1). Thus

T T N 2
f F2 dx = f |:A0 + 2 (A,, cosnx + B, sin rvc)j| dx
- -7 n=1

= TRAZ+ A2+ -+ AP+ B2+ - + By

We now insert (2) into the integral of fF in (4). This gives integrals of f cos nx as well
as f sin mx, just as in Euler’s formulas, Sec. 11.1, for a,, and b,, (each multiplied by A,,
or B,,). Hence

d

f fF dx = 7T(2A0a0 + Alal + -+ ANaN + B]b] + o+ BNbN)‘

—r

With these expressions, (4) becomes

T N
E= f f2dy — 2w |:2A0a0 + > Aa, + Bnbn)}

n=1

) N
+ {2,402 + > @A,2+ an)} .

n=1

Pr i, ’
- ~
/ \ f4
\)/
=
|

Fig. 275. Error of approximation
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We now take A,, = a,, and B,, = b,, in (2). Then in (5) the second line cancels half of the
integral-free expression in the first line. Hence for this choice of the coefficients of F' the
square error, call it E*, is

- N
(6) E¥ = f f2dx — 7 [2%2 + > (a2 + bnz):| .

n=1
We finally subtract (6) from (5). Then the integrals drop out and we get terms

A2 — 24,4, + a2 = (4,, — a,)? and similar terms (B,, — b,,)*:

N

E — E* = 77{2(A0 —ag? + 2, [(A, — ap)? + (B, — n)2]}.
n=1

Since the sum of squares of real numbers on the right cannot be negative,

E—-F*=0, thus E = E*,

and E = E* if and only if Ag = aq, - - -, By = by. This proves the following fundamental
minimum property of the partial sums of Fourier series.

Minimum Square Error

The square error of F in (2) (with fixed N) relative to f on the interval —m=x = 7
is minimum if and only if the coefficients of F in (2) are the Fourier coefficients of
f. This minimum value E* is given by (6).

From (6) we see that E* cannot increase as N increases, but may decrease. Hence with
increasing N the partial sums of the Fourier series of f vield better and better
approximations to f, considered from the viewpoint of the square error.

Since E* = 0 and (6) holds for every N, we obtain from (6) the important Bessel’s
inequality

@ 202+ 3 (@2 + b= - [ 1w a
T _—7

n=1

for the Fourier coefficients of any function f for which integral on the right exists. (For
F. W. Bessel see Sec. 5.5.)

It can be shown (see [C12] in App. 1) that for such a function f, Parseval’s theorem
holds; that is. formula (7) holds with the equality sign, so that it becomes Parseval’s
identity*

oc ] ko
8) 2a> + 2 (a,® + b2 = — f fG)? dx.
n=1 T ew

“MARC ANTOINE PARSEVAL (1755-1836), French mathematician. A physical interpretation of the identity
follows in the next section.
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EXAMPLE 1

2r

v

7 0

Fig. 276. F with
N = 20 in Example 1

P 15 b

-9 MINIMUM SQUARE ERROR

X
Find the trigonometric polynomial F(x) of the form (2) for 8. f0) = {0
which the square error with respect to the given f(x) on the
interval —71 = x = 4 is minimum, and compute the
minimum value for N = 1, 2. - - -, 5 (or also for larger

Minimum Square Error for the Sawtooth Wave

Compute the minimum square error E* of F(x) with N = 1, 2, - - - | 10, 20, - - -, 100 and 1000 relative to
fX)=x+w (—m<x<m

on the interval — 7 = x = 7.
(-1

. 1 1
Solution. F(x) = 7 + 2(sinx — — sin2x + g sin3x — + - -- + sin Nx) by Example 3 in

Sec. 11.3. From this and (0),

E*:f (x+'n')2dx—'n'(2772+42 —2).

n=1 1

Numeric values are:

N E* N E* N E* N E*

1 8.1045 6 1.9295 20 0.6129 70 0.1782
2 4.9629 7 1.6730 30 0.4120 80 0.1561
3 3.5666 8 1.4767 40 0.3103 90 0.1389
4 2.7812 9 1.3216 50 0.2488 100 0.1250
5 2.2786 10 L.1959 60 0.2077 1000 0.0126

F = S1. So, S3 are shown in Fig. 266 in Sec. 11.3, and F = Sy is shown in Fig. 276. Although |f(x) — F(x)|
is large at 7 (how large?), where f is discontinuous, F approximates f quite well on the whole interval, except
near *47, where “waves” remain owing to the Gibbs phenomenon (see CAS Experiment 20 in Problem Set
11.2).

Can you think of functions f for which E* decreases more quickly with increasing N? |

This is the end of our discussion of Fourier series, which has emphasized the practical
aspects of these series, as needed in applications. In the last three sections of this chapter
we show how ideas and techniques in Fourier series can be extended to nonperiodic
functions.

el — 0N

if —%Tr<x<

3

NI N
3

if %77<x<

9. fW) =x(x+ MiIf —7<x<0, f(x) = x(—x + m
fo<x<m

values if you have a CAS).

L@ =x(zm<x<m) 10. CAS EXPERIMENT. Size and Decrease of E*.
2 fx) =x*(—7<x<m Compare the size of the minimum square error E* for
f = (—Tm<x<m functions of your choice. Find experimentally the
4. fx) =2 (—m<x < m factors on which the decrease of E* with N depends.
5. f(x) = [sinx| (-7 <x < ™ For each function considered find the smallest N such
6. f(x) — e—l:cj (—77' < x < ) that £* < 0.1.

-1 < x <0 11. (Monotonicity) Show that the minimum square error
7. f(x) = { (6) is a monotone decreasing function of N. How can

1 O<x<am you use this in practice?
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12-16! PARSEVAL’S IDENTITY 1 1 + 1 N 1
Using Parseval's identity, prove that the series have the T 12-32 32.52 52-77
indicated sums. Compute the first few partial sums to see 2 1
that the convergence is rapid. = T 2 = 0.11685 0275
1 1 7t (Use Prob. 5. this set.)
12.l+¥+¥+F+---—¥~I.Ol4678032 1 1 e
15,1 + =5 + =5 + -+ = — = 1082323234
(Use Prob. 15 in Sec. 11.1.) 2 3 90
(Use Prob. 21 in Sec. 11.1.)
o4 e L o™ aam00ss0 ' 1 m°
. ¥ e =5 =12 6. 1+ S5 + o5 + =5+ = 5o = 1001447078
(Use Prob. 13 in Sec. 11.1.) (Use Prob. 9, this set.)

11.7 Fourier Integral

EXAMPLE 1

Fourier series are powerful tools for problems involving functions that are periodic or are of
interest on a finite interval only. Sections 11.3 and 11.5 first illustrated this, and various further
applications follow in Chap. 12. Since, of course, many problems involve functions that are
nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the
method of Fourier series to such functions. This idea will lead to “Fourier integrals.”

In Example 1 we start from a special function fy, of period 2L and see what happens
to its Fourier series if we let L — 2. Then we do the same for an arbirrary function fy,
of period 2L. This will motivate and suggest the main result of this section, which is an
integral representation given in Theorem 1 (below).

Rectangular Wave

Consider the periodic rectangular wave fy(x) of period 2L > 2 given by

0 if “L<x<-—1
frx) =41 if —I1<x< 1
0 if IT<x< L.

The left part of Fig. 277 shows this function for 2L = 4, 8, 16 as well as the nonperiodic function f(x), which
we obtain from fy, if we let L — =,
1 if—l<x<l
f(x) =1lim fr(x) =
L 0 otherwise.
We now explore what happens to the Fourier coefficients of f; as L increases. Since fy is even, b,, = 0 for
all n. For a,, the Euler formulas (6), Sec. 11.2, give

1 nmx n

. it 2 (!
= 55 _ldx=z, n = T _]COS_L_dx:Z Ocos

This sequence of Fourier coefficients is called the amplitude spectrum of f; because |an| is the maximum
amplitude of the wave a,, cos (nmx/L). Figure 277 shows this spectrum for the periods 2L = 4, 8, 16. We see
that for increasing L these amplitudes become more and more dense on the positive w-axis. where w,, = n#/L.
Indeed, for 2L = 4, 8, 16 we have 1, 3, 7 amplitudes per “half-wave” of the function (2 sin w,,)/(Lw,,) (dashed
in the figure). Hence for 2L = 2% we have 271 — | amplitudes per half-wave, so that these amplitudes will
eventually be everywhere dense on the positive w,,-axis (and will decrease to zero).

The outcome of this example gives an intuitive impression of what about to expect if we turn from our special
function to an arbitrary one, as we shall do next. |

7 2 sin (nw/l)
L dx = — — —

L nall
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Waveform f;(x} 1 Amplitude spectrum a (w; )

n=1 w =nn/L

fi(x) ‘

" Y— =
-2 0 2 x i S 7 w,
[ —— = =
oL =4 n=3 n=1
1
2 N n=2
fL(x)' F\/ n=10
J | I — A | T~y
—4 0 4 x NYPE T w
/" n
fs—2L = 88— n=6 n=14
1 n=4
= 4“( n=20
L L it J_L_ ' Tny 4—..(
—8 O 8 x T L= T w
n=12/ n:28/ "
= 2L =16 >]
f(x)l
-101 x

Fig. 277. Waveforms and amplitude spectra in Example 1

From Fourier Series to Fourier Integral

We now consider any periodic function f;(x) of period 2L that can be represented by a
Fourier series

had nar
i) = a¢ + 2 (a,, cos w,x + b, sin w,x), W, = e
n=1

and find out what happens if we let L — . Together with Example 1 the present calculation
will suggest that we should expect an integral (instead of a series) involving cos wx and
sin wx with w no longer restricted to integer multiples w = w,, = n7/L of /L but taking
all values. We shall also see what form such an integral might have.

If we insert a,, and b,, from the Euler formulas (6), Sec. 11.2, and denote the variable

of integration by v, the Fourier series of f;(x) becomes

oo

1 " 1 o
frx = EYa f_LfL(v) dv + T E [Cos W, X f_LfL(v) cos WU dv

n=1
L
+ sin wy,x f fr(v) sinw,v dv} .
—L

We now set
_n+ D7 nw

T
Aw =w, ., —w, I L -



508

THEOREM 1

CHAP. 11 Fourier Series, Integrals, and Transforms

Then 1/L = Aw/, and we may write the Fourier series in the form

1 " 1 .
D filx)= — f fitvydv + — E [(cos w,x) Aw f fr(v) cos w,v dv
2L J_ 4 T L

n=1

L
+ (sin w,x) Aw f fi(U) sinw,v dv:|
-L

This representation is valid for any fixed L, arbitrarily large, but finite.
We now let L — o¢ and assume that the resulting nonperiodic function

£ = Jim_fr(x)

is absolutely integrable on the x-axis: that is, the following (finite!) limits exist:

0 b €
) lim_ fa £l dx + Jim, fo lfo)| dx (written f_ Ifeo) dx) :

Then 1/L — 0, and the value of the first term on the right side of (1) approaches zero.
Also Aw = @i/l — 0 and it seems plausible that the infinite series in (1) becomes an
integral from O to %, which represents f(x), namely,

] 0 oC oo
3) fxy=— f |:cos wx f f() cos wv dv + sin wxf f(v) sin wv dv] dw.
T J¢0 —x —

If we introduce the notations

(os] (os]

1 1
@) Alw) = — f f(v) cos wu dv, B(w) = — f f(v) sinwv dv
T Y—ee aa 50

we can write this in the form
(5) fx)y = f |A(w) cos wx + B(w) sin wx]| dw.
0

This is called a representation of f(x) by a Fourier integral.

It is clear that our naive approach merely suggests the representation (5), but by no
means establishes it; in fact, the limit of the series in (1) as Aw approaches zero is not
the definition of the integral (3). Sufficient conditions for the validity of (5) are as follows.

Fourier Integral

If f(x) is piecewise continuous (see Sec. 6.1) in every finite interval and has a
right-hand derivative and a left-hand derivative at every point (see Sec 11.1) and
if the integral (2) exists, then f(x) can be represented by a Fourier integral (5) with
A and B given by (4). At a point where f(x) is discontinuous the value of the Fourier
integral equals the average of the left- and right-hand limits of f(x) at that point
(see Sec. 11.1). (Proof in Ref. [C12]; see App. 1.)
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Applications of Fourier Integrals

The main application of Fourier integrals is in solving ODEs and PDEs, as we shall sece

for PDEs in Sec. 12.6. However, we can also use Fourier integrals in integration and in

discussing functions defined by integrals, as the next examples (2 and 3) illustrate.
EXAMPLE 2 Single Pulse, Sine Integral

Find the Fourier integral representation of the function

1 if <1
fo = { (Fig. 278).
0 if [x] > 1
flx)
’—— 1
-1 0 1 x

Fig. 278. Example 2

Solution. From (4) we obtain

2 1 . 1 R
1 1 sin wo 2 sinw
A(w) = — fw)coswov dv = — coswy dv = =
7 J_ 7 J_ mw |1 s
e
B(w) = — f sinwv dv =0
™I
and (5) gives the answer
cc .
2 COs WX §in w
()] floy= — — dw.
7T Jg w

The average of the left- and right-hand limits of f(x) at x = 1 is equal to (1 + 0)/2, that is, 1/2.
Furthermore. from (6) and Theorem | we obtain (multiply by 7/2)

/2 if 0=x<1,

xcos wx sin w .
f ——dw =3 74 if x=1,

o w

@)
0 if x> 1.

We mention that this integral is called Dirichlet’s discontinous factor. (For P. L. Dirichlet see Sec. 10.8.)
The case x = 0 is of particular interest. If x = 0. then (7) gives

(os]

sinw T
(8*%) f dw = —.
o 2

w

We see that this integral is the limit of the so-called sine integral

U -
sin w
8) Si(u) =f dw
w

o

as u — o. The graphs of Si(#) and of the integrand are shown in Fig. 279.

In the case of a Fourier series the graphs of the partial sums are approximation curves of the curve of the
periodic function represented by the series. Similarly, in the case of the Fourier integral (5), approximations are
obtained by replacing % by numbers a. Hence the integral

©

W

a .
2 J' €OS wx sin w

7 Jg w

approximates the right side in (6) and therefore f(x).
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Integrand 1|

0.5 7 \
== ] "I ! - = ~ =)
45 -3 -2r -1r 0/ . 2r 3~ 4n u

>
A
\

1 - |

05t

/
\
NIx

Fig. 279. Sine integral Si(u) and integrand

Figure 280 shows oscillations near the points of discontinuity of f(x). We might expect that these oscillations
disappear as « approaches infinity. But this is not true; with increasing a, they are shifted closer to the points
x = *1. This unexpected behavior, which also occurs in connection with Fourier series. is known as the Gibbs
phenomenon. (See also Problem Set 11.2.) We can explain it by representing (9) in terms of sine integrals as
follows. Using (11) in App. A3.1, we have

a a . a .

2 COS WX sin w 1 sin (w + wx) 1 sin (W — wx)

— —dw = — —dw + — — dw
ar

T Jo W 0 w wT Jo w

In the first integral on the right we set w + wx = t. Then dw/w = di/t, and 0 = w = a corresponds to

0 =1 = (x + 1)a. In the last integral we set w — wx = —¢. Then dw/w = dt/1, and 0 = w = a corresponds to
0 =t = (x — 1)a. Since sin (—f) = —sin f, we thus obtain
a . x+Da . x—-Da .
2 €OS wx sin w 1 sin f 1 sin f
— —dw = — dt — — — dt.
T Jg w T Jg t T Jg f

From this and (8) we see that our integral (9) equals
1 | I
— Si(a[x + 1]) — — Si(alx — 1)
T T

and the oscillations in Fig 280 result from those in Fig. 279. The increase of a amounts to a transformation
of the scale on the axis and causes the shift of the oscillations (the waves) toward the points of discontinuity
—land 1. |

/
a=8 a=16 a=32

-2 11 0o 1Vox 2 -10 1" 2« 210 1 2«
Fig. 280. The integral (9) for a = 8, 16, and 32
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EXAMPLE 3

0
Fig. 281. f(x)in
Example 3

Fourier Cosine Integral and Fourier Sine Integral

For an even or odd function the Fourier integral becomes simpler. Just as in the case of
Fourier series (Sec. 11.3), this is of practical interest in saving work and avoiding errors.
The simplifications follow immediately from the formulas just obtained.

Indeed, if f(x) is an even function. then B(w) = 0 in (4) and

2 te o)
10) Aw) = — f f() cos wu dv.
T Jo
The Fourier integral (5) then reduces to the Fourier cosine integral
a1 fx) = f A(w) cos wx du (f even).
(i

Similarly, if f(x) is odd, then in (4) we have A(w) = 0 and

cC

2
12) Bw) = — f f(@©) sin wu dv.
T Yo
The Fourier integral (5) then reduces to the Fourier sine integral

13) f(x) = fo B(w) sin wx dw (f odd).

Evaluation of Integrals

Earlier in this section we pointed out that the main application of the Fourier integral is
in differential equations but that Fourier integral representations also help in evaluating
certain integrals. To see this, we show the method for an important case, the Laplace
integrals.

Laplace Integrals

We shall derive the Fourier cosine and Fourier sine integrals of f(x) = e "% wherex >0and k >0 (Fig. 281).
The result will be used to evaluate the so-called Laplace integrals.

X
. 2
Solution. (a) From (10) we have AGw) = — f ¢ % cos wu dv. Now, by integration by parts,
T Jo

k

fe_kv coswvdy = — —5——5
kS + w

ko ( wo )
e - T sinwv + coswu] .
If v = 0. the expression on the right equals —kIKE + wz). If v approaches infinity. that expression approaches
sero because of the exponential factor. Thus

2kl w

14 Aoy = 2N
(&) () k2 + “.2

By substituting this into (11) we thus obtain the Fourier cosine integral representation

2k = COS WX
— 5 e x>0, k>0).

foy = ¢k = s
7T Jg 2+ w
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From this representation we see that

COS WX T g
(15) -5 g dw= e x x>0, k>0).
0 w

oo

2
(b) Similarly, from (12) we have B(w) = — f e ¥ sinwv dv. By integration by parts
T o

w k
J-e_k" siowv dv = — —5——— e [ — sinwv + coswu) .
kK +w w

This equals —wi(k® + w?) if v = 0, and approaches 0 as v — . Thus

2wl

Bw)= 55— .
16) (w) 2+ w2

From (13) we thus obtain the Fourier sine integral representation

oC
2 w Sin wx
foy=e == J- —— dw.
0

T K+ w?

From this we see that

= W sin wx Ty
a7n m dw = 7 e x>0, k>0
0 V
The integrals (15) and (17) are called the Laplace integrals. |
i U — N+ 1
EVALUATION OF INTEGRALS w2 i 0=x<]I
Show that the given integral represents the indicated 4 J- sin w dw = 14 if _
. s xw dw = =1
function. Hinz. Use (5, (11, or (13); the integral tells you o cosmwaw =T g *
which one, and its value tells you what function to consider. 0 if x> 1
(Show the details of your work.)
. = cos (Twl2
0 if x<0 5. f % cos xw dw
oo + . 0 - W
1 [ CEXWEWIIW 4L an i x=0
0 1+ w zcosx if 0<|xl<7T/2
e ® if x>0 =
0 if |x| = =2
2. f R T RY inaw dw * sin 7w sin xw gsinx if O=x=a
0 w 6. | —— 5 dw=
o l-w 0 if x> 7

axi2 f 0<x<1

FOURIER COSINE INTEGRAL
REPRESENTATIONS

Represent f(x) as an integral (11).

=9 a4 if x=1
0 if x> 1
if 0<x<a

% ' 1
3.J- M dw = 1 “ZTifx>0 7. f(x) :[
A , 2 0 if x>a
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2 if 0<x<a
8. f(x) =
0 if x>a
x if O0<x<1
9 flx) =
0 if x>1
x/2 if 0<x<1
10 f(x) =31 —x/2 if 1 <x<2
0 if x> 2
sinx if O<x<a
11, f(x) =
0 if x> a

e if 0<x<a
12. f(x) =
0

if x>a

13. CAS EXPERIMENT. Approximate Fourier Cosine
Integrals. Graph the integrals in Prob. 7, 9, and 11 as
functions of x. Graph approximations obtained by
replacing o with finite upper limits of your choice.
Compare the quality of the approximations. Write a
short report on your empirical results and observations.

FOURIER SINE INTEGRAL

REPRESENTATIONS
Represent f(x) as an integral (13).

1 if 0<x<a
14.f(x)={
0

if x>a

if O0<x<m

sin x
15. f(x) =
0 if x>
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1 —x% if 0<x<1
16. f(x) = [
0 x> 1
T—x if O0<x<g
17. f(x) =
0 x> a
cosx if O0<x<a
18.f(x)=[
x>

if 0<x<a

a—x
19. f(x) ={

0 if xX>a

20. PROJECT. Properties of Fourier Integrals
(a) Fourier cosine integral. Show that (11) implies

1 (w
(al) f(ax) = — J- A(—) cos xw dw
a Yo a

(a > 0) (Scale change)

(@2) xf(x) = J(-) B*(w) sin xw dw,

dA
Bx = - —,

v A as in (10)

@3) x2f(x) = J- A*(w) cos xw dw,
0

a5 = d2A
dw? ’

(b) Solve Prob. 8 by applying (a3) to the result of
Prob. 7.

(c¢) Verify (a2) for f(x) = 1 if 0 < x < g and
f)=0if x> a.

(d) Fourier sine integral. Find formulas for the
Fourier sine integral similar to those in (a).

11.8 Fourier Cosine and Sine Transforms

An integral transform is a transformation in the form of an integral that produces from
given functions new functions depending on a different variable. These transformations
are of interest mainly as tools for solving ODEs, PDEs, and integral equations, and they
often also help in handling and applying special functions. The Laplace transform
(Chap. 6) is of this kind and is by far the most important integral transform in

engineering.

The next in order of importance are Fourier transforms. We shall see that these
transforms can be obtained from the Fourier integral in Sec. 11.7 in a rather simple fashion.
In this section we consider two of them, which are real, and in the next section a third

one that is complex.
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Fourier Cosine Transform

For an even function f(x), the Fourier integral is the Fourier cosine integral
ke o3 2 oc

() (a) fx)= f A(w) cos wx dw, where by Alw) = — f f(v) cos wu dv
0 mT Yo

[see (10), (11), Sec. 11.7]. We now set A(w) = V2/7r fc(w), where ¢ suggests “cosine.”
Then from (1b), writing v = x, we have

A / 2~
2) flwy= [— J- f(x) cos wx dx
T o

and from (1a),

2 .
3) flo)= |— f Flw) cos wx dw.
m Yo

ATTENTION! In (2) we integrate with respect to x and in (3) with respect to w. Formula
(2) gives from f(x) a new function fc(w), called the Fourier cosine transform of f(x).
Formula (3) gives us back f(x) from fc(w), and we therefore call f(x) the inverse Fourier
cosine transform of fc(w).

The process of obtaining the transform f, from a given f is also called the Fourier
cosine transform or the Fourier cosine transform method.

Fourier Sine Transform

Similarly, for an odd function f(x), the Fourier integral is the Fourier sine integral [see
(12), (13), Sec. 11.7]

cC 2 oc
@ (@ f&x= J- B(w) sin wx dw, where (b) Bw) = — J- f(v) sinwo dv.
(o T Yo

We now set B(w) = V2/# fs(w), where s suggests “sine.” Then from (4b), writing v = x,
we have

R / 2 =
5) fwy= [— J- f(x) sin wx dx.
am Yo

This is called the Fourier sine transform of f(x). Similarly, from (4a) we have

2
(6) f=_[— f Fw) sin wx dw.
mT Yo

This is called the inverse Fourier sine transform of fs( w). The process of obtaining fs(w)
from f(x) is also called the Fourier sine transform or the Fourier sine transform method.
Other notations are

F () = fe, F(f) = f,

and & and F;' for the inverses of F, and F, respectively.
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EXAMPLE 1

L

x=a x
Fig. 282. f(x)in
Example 1

EXAMPLE 2

Fourier Cosine and Fourier Sine Transforms

Find the Fourier cosine and Fourier sine transforms of the function

k if0<x<a
f) = (Fig. 282).
0 ifx>a

Solution. From the definitions (2) and (5) we obtain by integration

a .
A 2 2 sin aw
flwy= [— k f coswydy= [— k (7)
V7 0 7 w
2 “ 2 1 — cosaw
fwm = | = kf sinwxdy = |~k (_) )
a 0 a w

This agrees with formulas 1 in the first two tables in Sec. [1.10 (where k = 1).
Note that for f(x) = k = const (0 < x < ), these transforms do not exist. (Why?) |

Fourier Cosine Transform of the Exponential Function
Find F (™).

Solution. By integration by parts and recursion,
- 2 (7 . 2 " NI
Fole™) = \/— e Vcoswxdy= [— > (—coswx + wsinwy) | = ——5
7 Jo 7 1 +w

This agrees with formula 3 in Table I, Sec. 11.10, with ¢ = 1. See also the next example. |

What did we do to introduce the two integral transforms under consideration? Actually
not much: We changed the notations A and B to get a “symmetric” distribution of the
constant 2/4r in the original formulas (10)-(13), Sec. 11.7. This redistribution is a standard
convenience, but it is not essential. One could do without it.

What have we gained? We show next that these transforms have operational properties
that permit them to convert differentiations into algebraic operations (just as the Laplace
transform does). This is the key to their application in solving differential equations.

Linearity, Transforms of Derivatives

If f(x) is absolutely integrable (see Sec. 11.7) on the positive x-axis and piecewise
continuous (see Sec. 6.1) on every finite interval, then the Fourier cosine and sine
transforms of f exist.

Furthermore, if f and g have Fourier cosine and sine transforms, so does af + bg for
any constants a and b, and by (2),

2 oo
[ — f [af(x) + bg(x)] cos wx dx
U 1]
2 (= 2
a \/if fx)coswxdx +b [— f g(x) cos wx dx.
o Yo 0

The right side is aF () + b%.(g). Similarly for F,, by (5). This shows that the Fourier
cosine and sine transforms are linear operations,

F laf + bg)

I

3

(@) Felaf + bg) = aF(f) + bF (),
(») UJ?S(af + bg) = (ZOJ'TS(f) + bg;s(g)-

@)



516

THEOREM 1

PROOF

CHAP. 11 Fourier Series, Integrals, and Transforms

|_Cosine and Sine Transforms of Derivatives

Let f(x) be continuous and absolutely integrable on the x-axis, let ' (x) be piecewise
continuous on every finite interval, and let let f(x) — 0 as x — . Then

2

(a) Flf' (0} = wFAF)) — ‘/— £(0),
8 .
(b) FAF W) = —wF )

This follows from the definitions by integration by parts, namely,

FAf' ) = [— f F'(x) cos wx dx
= I:f(X) coswx | +w f f(x) sin wx dx:|
\/ T
2
- J_ FO) + w&F{f(x)};
ar

oc

f F'(x) sin wx dx
0

oc

[\]

and similarly,

[y

Ff %))

20

f(x) sin wx

- wf f(x) cos wx dx
0

0

vF{f0}. u

Formula (8a) with f’ instead of f gives (when f', f” satisfy the respective assumptions
for f, f" in Theorem 1)

" ’ 2,
FAf 0} = wF{f (0} — Vo F0);

hence by (8b)

2
(9a) F ') = —wF(fx} — /; £(0).
Similarly,
[ " 2 2
(9b) Ff 0} = —wFf0)} + = wif(0).

A basic application of (9) to PDEs will be given in Sec. 12.6. For the time being we
show how (9) can be used for deriving transforms.
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An Application of the Operational Formula (9)

Find the Fourier cosine transform F (e~ ") of f(x) = ¢~ ", where a > 0.

Solution. By differentiation, (¢™*%' = q

2

o

% thus

afx) = f').

From this, (9a), and the linearity (7a),

EF ) = F N

2, 2 !
=Tw g;c(f) - — O
a
= W) v a =
a

Hence

The answer is (see Table I, Sec. 11.10)

@ + wAHF ) = aV2/m

[ 2
gc(e—ax) — ; ( 2 i 2 ) (a > 0). [ |

Tables of Fourier cosine and sine transforms are included in Sec. 11.10.

| -10| FOURIER COSINE TRANSFORM

1.

2.

10.

Let f) = —1if0<x< L f® =1if1 <x<?2,
fx) = 0 if x > 2. Find f,(w).

Let f()) = xif 0O < x < k, f(x) = 0if x > k. Find
fc(w).

. Derive formula 3 in Table 1 of Sec. 11.10 by integration.

. Find the inverse Fourier cosine transform f(x) from the

answer to Prob. 1. Hint. Use Prob. 4 in Sec. 11.7.

. Obtain F,1(1/(1 + w?)) from Prob. 3 in Sec. 11.7.
. Obtain ¥, 1(e™*) by integration.
. Find F (1 — x%)71 cos (7x/2)). Hint. Use Prob. 5 in

Sec. 11.7.

. Let f(x) = x2if 0 < x < 1 and 0 if x > 1. Find F.(f).
9,

Does the Fourier cosine transform of x™! sin x exist?
Of x™! cos x? Give reasons.

f(x) = 1 (0 < x < o°) has no Fourier cosine or sine
transform. Give reasons.

FOURIER SINE TRANSFORM

11.

Find & (e~ ) by integration.

12.
13.

14

15

16.

17.

18.

19.

Find the answer to Prob. 11 from (9b).

Obtain formula 8 in Table II of Sec. 11.11 from (8b)
and a suitable formula in Table L.

Let f(x) = sinx if 0 < x < 7and 0 if x > . Find
F(f). Compare with Prob. 6 in Sec. 11.7. Comment.
In Table II of Sec. 11.10 obtain formula 2 from formula
4, using T'@) = V' [(30) in App. 3.1].

Show that F(x~V2) = w™Y2 by setting wx = 12 and
using S(e°) = V 71/8 in (38) of App. 3.1.

Obtain F (e~ ") from (8a) and formula 3 in Table I of
Sec. 11.10.

Show that F (x~¥2) = 2wY2. Hinr. Set wx = 2
integrate by parts, and use C(®) = Va8 in (38) of
App. 3.1.

(Scale change) Using the notation of (5), show that
f(ax) has the Fourier sine transform (1/a)f,(w/a).

. WRITING PROJECT. Obtaining Fourier Cosine

and Sine Transforms. Write a short report on ways
of obtaining these transforms, giving illustrations with
examples of your own.
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11.9 Fourier Transform.
Discrete and Fast Fourier Transforms

The two transforms in the last section are real. We now consider a third one, called the
Fourier transform, which is complex. We shall obtain this transform from the complex
Fourier integral. which we explain first.

Complex Form of the Fourier Integral
The (real) Fourier integral is [see (4), (5), Sec. 11.7]

fx) = f [A(w) cos wx + B(w) sin wx] dw
(3

where

oo

e 1
Aw) = — f f(v) cos wo dv, B(w) = — f f(v) sin wo dv.
T “—x T J—=
Substituting A and B into the integral for f, we have
1 oC o
flx)y=— f f f(v) [cos wv cos wx + sin wu sin wx] dv dw.
T J0 Y—=

By the addition formula for the cosine [(6) in App. A3.1] the expression in the brackets
[- - -] equals cos (wv — wx) or, since the cosine is even, cos (wx — wv). We thus obtain

1 o0 20
(1% f&) = — f [ f f(v) cos (wx — wv) [Iv] dw.
T Yo —c

The integral in brackets is an even function of w. call it F(w). because cos (wx — wv) is
an even function of w, the function f does not depend on w, and we integrate with respect
to v (not w). Hence the integral of F(w) from w = 0 to > is 1/2 times the integral of F(w)
from —= to . Thus (note the change of the integration limit!)

1) fx) = 21_7T _O:C j;f(v) cos (wx — wv) dv | dw.
(

We claim that the integral of the form (1) with sin instead of cos is zero:

1

) [ |:f f(v) sin (wx — wo) dv:l dw = 0.
2’7T —oc -

This is true since sin (wx — wwv) is an odd function of w, which makes the integral in
brackets an odd function of w, call it G(w). Hence the integral of G(w) from —x to « is
zero, as claimed.

We now take the integrand of (1) plus i (= V=1) times the integrand of (2) and use
the Euler formula [(11) in Sec. 2.2]

3) € = cos x + i sin x.
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Taking wx — wuv instead of x in (3) and multiplying by f(v) gives
f(v) cos (wx — wv) + if(v) sin (wx — wv) = f(v)d®T¥

Hence the result of adding (1) plus / times (2), called the complex Fourier integral, is
1 * 7 )

(4) f(_\‘) = 2— f f f(v)e’tw(:r—v) dv dw (l — /__1).
T Y—oc Y~

It is now only a very short step to our present goal, the Fourier transform.

Fourier Transform and Its Inverse

Writing the exponential function in (4) as a product of exponential functions, we have

L * 1 . —iwv ‘WX
5) flo = Vo f_oc [ﬁ f_ocf(v)e dv] & dw.

The expression in brackets is a function of w, is denoted by f(w), and is called the Fourier
transform of f; writing v = x, we have

oQ
~

1 .
©) fovw) = ﬁ f fx)e ™" dx.

—oc

With this, (5) becomes

oa

1 ~ .
) fx) = ﬁ f_ fOr)e™™ dw

and is called the inverse Fourier transform of f (w).
Another notation for the Fourier transform is

A

F =%,
so that
f=F(H).

The process of obtaining the Fourier transform F(f) = f from a given f is also called
the Fourier transform or the Fourier transform method.

Conditions sufficient for the existence of the Fourier transform (involving concepts
defined in Secs. 6.1 and 11.7) are as follows, as we state without proof.

Existence of the Fourier Transform

If f(x) is absolutely integrable on the x-axis and piecewise continuous on every finite
interval, then the Fourier transform f(w) of f(x) given by (6) exists.
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EXAMPLE 2

CHAP. 11 Fourier Series, Integrals, and Transforms

Fourier Transform
Find the Fourier transform of f(x) = 1 if |x] < 1 and f(x) = 0 otherwise.
Solution. Using (6) and integrating, we obtain

1 oiwr |1

1
£ 1 f —iwx 1 —iw iw
= ——— dx = . - = —
o) V2w _18 V2 —iw |1 —iwV2r e <)

As in (3) we have " = cosw + i sinw, e~ = cos w — i sin w, and by subtraction

iw

& — 7™ = 2isinw.

Substituting this in the previous formula on the right, we see that { drops out and we obtain the answer
A T sinw
fwy= [— .
2 w

Find the Fourier transform F(e %) of f(x) = e *Tif x > 0 and f(x) = 0 if x < 0; here a > 0.

Fourier Transform

Solution. From the definition (6) we obtain by integration

(o]
1 )
Fle )= —— J- e e dx
¢ V2w Jg
1 e—(a+iw)x 20 i
T Vg @+ iw) Izo_ V27 (a + iw)

This proves formula 5 of Table III in Sec. 11.10.

Physical Interpretation: Spectrum

The nature of the representation (7) of f(x) becomes clear if we think of it as a superposition
of sinusoidal oscillations of all possible frequencies, called a spectral representation.
This name is suggested by optics, where light is such a superposition of colors
(frequencies). In (7), the “spectral density” f (w) measures the intensity of f(x) in the
frequency interval between w and w + Aw (Aw small, fixed). We claim that in connection

with vibrations, the integral

f_ [Fon? aw

can be interpreted as the total energy of the physical system. Hence an integral of | f w)?
from a to b gives the contribution of the frequencies w between a and b to the total energy.
To make this plausible, we begin with a mechanical system giving a single frequency,

namely, the harmonic oscillator (mass on a spring, Sec. 2.4)

my” + ky = 0.

Here we denote time ¢ by x. Multiplication by y’ gives my’y” + ky'y = 0. By integration,

imv® + 2ky? = Ey = const

where v = y' is the velocity. The first term is the kinetic energy, the second the potential
energy, and E, the total energy of the system. Now a general solution is (use (3) in

Sec. 11.4 with ¢t = x)
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Y = ay coS wox + by sin wox = ¢,™0% + c_ "%, wo2 = kim

where ¢; = (a; — ib))/2, c_y = & = (ay + iby)/2. We write simply A = c,0%,
B = c_,e”™* Then y = A + B. By differentiation, v = y' = A" + B’ = iwg(A — B).
Substitution of v and y on the left side of the equation for E; gives

Ey = gmv® + 3ky® = 3m(iwo)*(A — B)® + 3k(A + B)*.
Here w,> = kf/m. as just stated: hence mwg? = k. Also i2 = —1. so that
Eo = 3k[—(A — B> + (A + B)?] = 2kAB = 2kcye™9%c_1e™™0% = 2kcyc_y = 2Kcyf>

Hence the energy is proportional to the square of the amplitude |cy).

As the next step, if a more complicated system leads to a periodic solution y = f(x)
that can be represented by a Fourier series, then instead of the single energy term |c;[? we
get a series of squares |c,,|* of Fourier coefficients ¢, given by (6), Sec. 11.4. In this case
we have a “discrete spectrum” (or “point spectrum’) consisting of countably many
isolated frequencies (infinitely many, in general), the corresponding |c,|? being the
contributions to the total energy.

Finally, a system whose solution can be represented by an integral (7) leads to the above
integral for the energy, as is plausible from the cases just discussed.

Linearity. Fourier Transform of Derivatives

New transforms can be obtained from given ones by

1
| Linearity of the Fourier Transform

The Fourier transform is a linear operation; that is, for any functions f(x) and g(x)
whose Fourier transforms exist and any constants a and b, the Fourier transform
of af + bg exists, and

(8 Flaf + bg) = a%(f) + bF(g).

PROOF This is true because integration is a linear operation, so that (6) gives

1 * .
Flaf() + bg) = = | _[afC) + bgoale ™ ax

oc

f fO)e ™ dx + b # f g(x)e™ ™= dx

= aF{f(x)} + bF{gx)}. |

In applying the Fourier transform to differential equations, the key property is that
differentiation of functions corresponds to multiplication of transforms by iw:



522 CHAP. 11 Fourier Series, Integrals, and Transforms

THEOREM 3 | Fourier Transform of the Derivative of f(x)

Let f(x) be continuous on the x-axis and f(x) — 0 as |x| — . Furthermore, let
f'(x) be absolutely integrable on the x-axis. Then

9) F{f' (0} = wF{f(x)}.

PROOF From the definition of the Fourier transform we have

G

, 1 L
F{fm} = e f F(x)e™™= dx.

—as

Integrating by parts, we obtain

oc

F(f' (0} = — (—iW)f f(x)e = dx:I .

|: f(x) e—iw:t

ﬁ_
S|

7

Since f(x) — 0 as |x| — o, the desired result follows, namely,
F(f(0} =0+ iwF{f(x)}. [ |
Two successive applications of (9) give
F(") = wF(") = wPF().
Since (iw)®2 = —w2, we have for the transform of the second derivative of f

(10) F'0)) = —w*F{f(x)}.

Similarly for higher derivatives.
An application of (10) to differential equations will be given in Sec. 12.6. For the time
being we show how (9) can be used to derive transforms.

EXAMPLE 3 Application of the Operational Formula {9)

Find the Fourier transform of .\'e_xz from Table 1. Sec 11.10.

Solution. We use (9). By formula 9 in Table IIL

F(xe ™) = @{ - (e_xz)'}
e

1
= 7 tw?(e_xz)
1 1 2
= — — jy - P 14
2 V2
- _ m —w?a .
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PROOF

Convolution

The convolution f * g of functions f and g is defined by
11 hx) = (f * g)x) = J fp)gx — pydp = J flx — p)g(p) dp.

The purpose is the same as in the case of Laplace transforms (Sec. 6.5): taking the
convolution of two functions and then taking the transform of the convolution is the same
as multiplying the transforms of these functions (and multiplying them by V2 ):

Convolution Theorem

Suppose that f(x) and g(x) are piecewise continuous, bounded, and absolutely
integrable on the x-axis. Then

(12) F(f * &) = V2w F(HF(g).

By the definition,

1 = )
F(fxg = —J J (P)g(x — p) dp €% dx.
f*8) Voo ) ) fpex—pydp
An interchange of the order of integration gives

1 = :
F(f*g) = eV J J f(p)glx — ple = dx dp.

—3oC —oC

Instead of x we now take x — p = ¢ as a new variable of integration. Then x = p + g and
F(f % ) = — J ) f ) f(p)g(@)e™**P dy dp.
27 J—ox Jea

This double integral can be written as a product of two integrals and gives the desired
result

1 e . > .
F(f *g) —\72—; f F(pre™P dp f, gQe ™ dg

1
VP [V2r FHOI[V2r F(g)] = V27 F(HF (). m

By taking the inverse Fourier transform on both sides of (12), writing f= F(f) and
g = F(g) as before, and noting that V27 and 1/V 27 in (12) and (7) cancel each other,
we obtain

oc

13) (f * g)x) = f Fngw)e™® dw,

a formula that will help us in solving partial differential equations (Sec. 12.6).
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Discrete Fourier Transform (DFT),
Fast Fourier Transform (FFT)

In using Fourier series, Fourier transforms, and trigonometric approximations (Sec. 11.6)
we have to assume that a function f(x), to be developed or transformed, is given on some
interval, over which we integrate in the Euler formulas, etc. Now very often a function
f(x) is given only in terms of values at finitely many points, and one is interested in
extending Fourier analysis to this case. The main application of such a “discrete Fourier
analysis” concerns large amounts of equally spaced data, as they occur in
telecommunication, time series analysis, and various simulation problems. In these
situations, dealing with sampled values rather than with functions, we can replace the
Fourier transform by the so-called discrete Fourier transform (DFT) as follows.

Let f(x) be periodic, for simplicity of period 27r. We assume that N measurements of
f(x) are taken over the interval 0 = x = 277 at regularly spaced points

(14) o 27k
X = N )

We also say that f(x) is being sampled at these points. We now want to determine a
complex trigonometric polynomial

N-1 X
(15) g(¥) = D cpe "
n=0

that interpolates f(x) at the nodes (14), that is, g{x;) = f(x). written out, with f;. denoting

Flx),
N-1 X

(16) fe=fa)=qu) =2 cpe" *  k=0,1,---,N— 1
n=0

Hence we must determine the coefficients cg, * - -, cy_1 such that (16) holds. We do this
by an idea similar to that in Sec. 11.1 for deriving the Fourier coefficients by using the
orthogonality of the trigonometric system. Instead of integrals we now take sums. Namely,
we multiply (16) by e~*"® (note the minus!) and sum over k from O to N — 1. Then we
interchange the order of the two summations and insert x;, from (14). This gives

N-1 N—-1N-1 -1 N-1

—ima; in—m)x itn—m)2xnk/N

(17 D fue =2 2 cne =D D e :
k=0 k=0 n=0 n=0 k=0

Now
i, — i(r— k
ez('n. m2uk/N _ [ &t (n—m) 21-rlN] ]

We donote [- - -] by r. For n = m we have r = ¢® = 1. The sum of these terms over k&
equals N, the number of these terms. For n # m we have r # 1 and by the formula for a
geometric sum [(6) in Sec. 15.1 withg = randn = N — 1]
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because r¥ = 1; indeed, since k, m, and » are miegers,

rN = g2k — o5 dk(n — m) + isin2mk(n —m) =1 + 0 = 1.

This shows that the right side of (17) equals ¢,,,N. Writing n for m and dividing by N, we
thus obtain the desired coefficient formula

N—

2 e~ fr

H

(18*) 'n, = = f(xk)’ n= 09 l’

1
N

Since computation of the c,, (by the fast Fourier transform, below) involves successive
halfing of the problem size N, it is practical to drop the factor I/N from c,, and define the
discrete Fourier transform of the given signal f = [f, fn-1]" to be the vector
f= [on s fN_l] with components

N-1
(18) =D fee™™  fr=flu), n=20---,
k=0

This is the frequency spectrum of the signal.
In vector notation, f = Fyf, where the N X N Fourier matrix Fy = [e,,;] has the
entries [given in (18)]

(19) —inT, _— e—Zﬂink/N — PVnk,

€nr — €

wheren, k=0,---, N— 1.

Discrete Fourier Transform (DFT). Sample of N = 4 Values

Let N = 4 measurements (sample values) be given. Then w = e 27N = =72 — _jand thus w™ = (—i)'"k’.

Let the sample values be, say f = [0 1 4 9]T. Then by (18) and (19),

Wl W Wt W 11 1 1o 14
. w? wl w? w3 1 - -1 i 1 -4 + 8i
(20) f=TFyuf = f= _
Wl w2 oWt WS 1 -1 1 -1|]|4 -6
w? w3 w w® 1 i -1 —i 9 —4 — 8i

From the first matrix in (20) it is easy to infer what Fp; looks like for arbitrary N. which in practice may be
1000 or more, for reasons given below.

From the DFT (the frequency spectrum) f= Fyf we can recreate the given signal

— 1
f = Fyy !f, as we shall now prove. Here Fpy and its complex conjugate Fy, = N %] satisfy

Qla) FyFy = FyFy = NI

where I is the N X N unit matrix; hence Fy; has the inverse

1

21b Fyl = — Fy.
(21b) N NN
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We prove (21). By the multiplication rule (row times column) the product matrix
Gy = FyFy = [gx] in (21a) has the entries gj. = Row j of ¥y times Column k of Fy.
That is, writing W = wiwk, we prove that

gir = (W0 + (Wi + - - -+ (Wi !
0 if j#k

:W0+W1+"'+WN_1=
N if =k

Indeed, when j = k, then Wk = (rw)f = (2™Ne=274NE = |k = |_ g0 that the sum
of these N terms equals N; these are the diagonal entries of Gy. Also, when j # k, then
W # 1 and we have a geometric sum (whose value is given by (6) in Sec. 15.1 with
g=Wandn=N-1)

1 —wN

WO+ W+ 4+ wWh-1l=—_— =9
1-Ww

because WY = ()N = (27)i(e 27 = 1. 1F = 1. -

We have seen that f is the frequency spectrum of the signal f(x). Thus the components
fo of f give a resolution of the 27-periodic function f(x) into simple (complex) harmonics.
Here one should use only n’s that are much smaller than N/2, to avoid aliasing. By this we
mean the effect caused by sampling at too few (equally spaced) points, so that. for instance,
in a motion picture, rotating wheels appear as rotating too slowly or even in the wrong sense.
Hence in applications, N is usually large. But this poses a problem. Eq. (18) requires O(N)
operations for any particular n, hence O(N2) operations for, say, all n < N/2. Thus, already
for 1000 sample points the straightforward calculation would involve millions of operations.
However, this difficulty can be overcome by the so called fast Fourier transform (FFT),
for which codes are readily available (e.g. in Maple). The FFT is a computational method
for the DFT that needs only O(V) logs N operations instead of O(N?). It makes the DFT a
practical tool for large N. Here one chooses N = 2% (p integer) and uses the special form
of the Fourier matrix to break down the given problem into smaller problems. For instance.
when N = 1000, those operations are reduced by a factor 1000/logs 1000 = 100.

The breakdown produces two problems of size M = N/2. This breakdown is possible
because for N = 2M we have in (19)

Wi = wop® = (e 27N = ~AmUEMD — 2w _
The given vector f = [fo - - fy_1]" is split into two vectors with M components
each, namely, fo, = [fo f2 --* fn—2]" containing the even components of f, and
foa =1[f1 fs --- Fn—1]" containing the odd components of f. For f,, and f,, we

determine the DFTs

i\'ev = [fev.O fev.Z Tt fev.N—Z]T = FMfev
and

2 2 A 2 T
foq = [fod,l foaz - fod,N—l] = Fyfoa

involving the same M X M matrix Fp;. From these vectors we obtain the components of
the DFT of the given vector f by the formulas

(22) (a) fn = fev.'n + wanod.n n=0,---,M-—1

(b) fn-rM = fev,n - "‘anod,n n= 07 e, M- 1.
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For N = 2P this breakdown can be repeated p — 1 times in order to finally arrive at N/2
problems of size 2 each, so that the number of multiplications is reduced as indicated
above.

We show the reduction from N = 4 to M = N/2 = 2 and then prove (22).

Fast Fourier Transform (FFT). Sample of N = 4 Values

When N = 4. then w = wyy = —i as in Example 4 and M — N/2 = 2_hence w = wp; = e 22 = i

Consequently.
. [fo] [1 1] [fo] [fo + fz]
feo =1 . = Fofey = =
fe 1 1] fe fo—feo
. [ﬁ} [1 1] [h} [fl + fs}
fod = ,. = szod = =
I3 I =11]f3 fi—Ffs

From this and (22a) we obtain
fo=Fovo+ WNOfA'od.o =(fotfatUrtf)=fotfi+tfatfs
1= fova + wn'foar = (fo = fo) = itfy + f3) = fo = iy = fo + ifs.
Similarly. by (22b).

fo = fevo = wn’foan = (fo + f2) — U1 + fa) =fo—htfo—fs
fa = Feva — wn'foal = o — f2) — (—D(fy — fa) = fo + if1 — fo — ifa.

This agrees with Example 4, as can be seen by replacing 0. 1. 4, 9 with fo. f1. fo, f3- |

We prove (22). From (18) and (19) we have for the components of the DFT
N—1
fro=2 wifr.
k=0
Splitting into two sums of M = N/2 terms each gives
M-1 M-1
Fuo= 2 Wl o+ 2w aar.
k=0 k=0

We now use wp® = wy, and pull out wy™ from under the second sum, obtaining

M-1 M—1
N k K
(23) fn=2 wu'f evie T WN" > wyf od. k-
k=0 k=0

The two sums are fe, , and foq 5, the components of the “half-size™ transforms F f,, and
Ff,.

Formula (22a) is the same as (23). In (22b) we have n + M instead of n. This causes
a sign change in (23), namely —wp™ before the second sum because

M —2miMIN _

wyl = e =272 _ _~ai _ -1.

€ € =

This gives the minus in (22b) and completes the proof. |
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1. (Review) Show that 1/i = —i, * + 7™ = 2 cos x,
€% — ¢ ™ = 2j sinx.

2-9| FOURIER TRANSFORMS BY INTEGRATION
Find the Fourier transform of f{x) (without using Table III

CHAP. 11 Fourier Series, Integrals, and Transforms

in Sec. 11.10). Show the details.

2. f) = {

e ifx <0 (k>0

0 x>0

k if -1 <x<1

0 otherwise

x if -1 <x<1

0 otherwise

x if0o<x<1

0 otherwise

xe™® if—-1<x<0
8 fx)= )
0 otherwise
-1 if-1<x<0
9. fx) = 1 if 0<x<1

0 otherwise

OTHER METHODS

10. Find the Fourier transform of f(x) = xe ™ if x > 0 and
0 if x < 0 from formula 5 in Table III and (9) in the
text. Hint: Consider xe ™ and e™".

11. Obtain F(e~*"2) from formula 9 in Table IL

12. Obtain formula 7 in Table III from formula 8.

13. Obtain formula 1 in Table III from formula 2.

14. TEAM PROJECT. Shifting. (a) Show that if f(x)
has a Fourier transform, so does f(x — a), and
F{fx — @)} = e F(f )}

(b) Using (a), obtain formula 1 in Table I1I, Sec. 11.10,
from formula 2.

(¢) Shifting on the w-Axis. Show that if fow) is the
Fourier transform of f(x), then f(w — a) is the Fourier
transform of "% f(x).

(d) Using (c), obtain formula 7 in Table III from 1 and
formula 8 from 2.
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Table I. Fourier Cosine Transforms
See (2) in Sec. 11.8.
; 2 _ o 1
f(.l) fc(w) - 'Jpc(f)
{1 f0<x<a 2 sinaw
] i
0 otherwise ™ w
1 2 T'(a) a
2 x° O<a<l — o COS —/— (T'(a) see App. A3.1.)
T W 2
3 —ax ( > 0) 3 a
€ “ 7 \d® +w?
4 e—lez e—w2/2
1
—ax? —wPN4aa)
5 e (a>0) —\ oo e
6 _n_—ax >0 _3 n! R + iw n+1 Re =
x"e (a ) 7 @+ WAl e (a + iw) Real part
{COS\' if0<x<a 1 I:sina(l—w) sin a(l +w):|
7 +
0 otherwise V2 F—w 1+ w
3 @) > 0) 1 w2 T
co : C _— = —
s (ax (a e 0S y 2
9 in (ax?) @> 0) 1 o (w2 + T
sin (ax a cos | — + —
V2a 4a 4
sin ax T
10 a>0 > U — ulw — a)) (See Sec. 6.3.)
X \/
e *sinx 1
i 11 f Voo arctan 2
2 1
12 Jolax) (a >0) —

-
3

—\/ﬁ (1 — uw — a)) (See Secs. 5.5, 6.3.)
a’ —w
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Fourier Sine Transforms

See (5) in Sec. 11.8.

fsw) = F(1)

J)
{I fo<x<a
1
0 otherwise
2 | Vx
3 1/x32
4 | xe7t O<a<

5 e (a>0)

e
6 " @ >0)
i
7 x"e %t (a>0)
] xe—a:2/2

9 | xe (a>0)

sinx f0<x<a
10
0 otherwise
cos av
11 (a>0)

2a
12 arctan — (a>0)
X

2 [l—cosaw]
T w

UVw

2V

2 T(@ . aw
[— sin ——
T w? 2

AV a® + w?
2 w
— arctan —
T a
2 n!

— ————7 Im(a + iw)™*?!
V 7 (@@ + wi™! )

02
we w2

w

e—w2/4a
Qa)*?

sin a(l + w)

1 [sina(l—vv)
Il —w 1 +w

Vam

E u(w — a)

vV 2

sinhaw __
V2 €

w

(T'(a) see App. A3.1.)

Im =
Imaginary part

]

(See Sec. 6.3))
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Table 1lI.

Fourier Transforms

See (6) in Sec. 11.9.
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)

Ffovy = F(f)

o

6

10

if —b<x<b

otherwise
{1 fb<x<c
0 otherwise
1
EEV

X fo<x<b
2x—b ifhb<x<2b
0 otherwise
e ifx>0
(@a>0
0 otherwise
{em fb<x<c
0 otherwise
{e"‘” if —b<x<b
0 otherwise
{eiaz ifb<x<e
0 otherwise
e (a>0)
sin ax
(a>0)

2 sinbw
n w
e—zbw — T iew

wvV2mT

F el
2

A" a

-1 + 2ezbw — e—zibw

V2 w?

1
V2m(a + iw)

(a—iw)e (a—iwb

€ — €

V2m(a — iw)

E sin b(w — aq)

Y7 w—ada

ezb(a—'w) _ e?c(a—w)

V2w a—w

/n. .
/7 ifjw]<a 0iflw>a
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1. What is a Fourier series? A Fourier sine series? A
half-range expansion?

2. Can a discontinuous function have a Fourier series? A
Taylor series? Explain.

3. Why did we start with period 277? How did we proceed
to functions of any period p?

bl

What is the trigonometric system? Its main property by
which we obtained the Euler formulas?

5. What do you know about the convergence of a Fourier
series?

6. What is the Gibbs phenomenon?

7. What is approximation by trigonometric polynomials?
The minimum square error?

8. What is remarkable about the response of a vibrating
system to an arbitrary periodic force?

9. What do you know about the Fourier integral? Its
applications?

10. What is the Fourier sine transform? Give examples.

FOURIER SERIES

Find the Fourier series of f(x) as given over one period.
Sketch f(x). (Show the details of your work.)

—k if —1<x<0
ll.f(x):[

k if 0<x<

0 if —m2 < x < 7/2

1 if 7/2 <x < 37/2
13, f(x) = x (27 < x<2m
14. f(x) = |x| (-2 <x<2)

x if —1<x<1
15-f(x)=[

2 —x if 1 <x<3

-1 —x if -1 <x<0
16.f(x)=[

1—x if 0<x<1

17. f(x) = [sin 87rx| (—1/8 < x < 1/8)
18. fx) = e (—m < x < )

19. f(x) = x2 (—7/2 < x < 7/2)

20. f(x) = x (0 < x < 27)

Fourier Series, Integrals, and Transforms

TIONS AND PROBLEMS
21-23 Using the answers to suitable odd-numbered
problems, find the sum of
2Ll -3+ -L+ -

1 I 1
22. + +
I3 35 "57 7

231+ 5+ +

24. (Parseval’s identity) Obtain the result of Prob. 23 by
applying Parseval’s identity to Prob. 12.

25. What are the sum of the cosine terms and the sum of
the sine terms in a Fourier series whose sum is f(x)?
Give two examples.

26. (Half-range expansion) Find the half-range sine series
of f() =0f0<x< 72, fx)y=1 72 <x<m
Compare with Prob. 12.

27. (Half-range cosine series) Find the half-range cosine
series of f(x) = x (0 < x < 2). Compare with
Prob. 20.

28-29| MINIMUM SQUARE ERROR

Compute the minimum square errors for the trigonometric
polynomials of degree N =1, - - -, 8:

28. For f(x) in Prob. 12.
29. For f(x) = x (—7m < x < ).

30-31| GENERAL SOLUTION
Solve ¥" + &®y = r(n). where |o| # 0. 1,2, - - -
is 27r-periodic and:

30. r(n) = (7% — t?)

. (1)

(—m<t<m

3. r(t) =12 (—m<t<m
32-37 FOURIER INTEGRALS AND
TRANSFORMS

Sketch the given function and represent it as indicated. If
you have a CAS, graph approximate curves obtained by
replacing = with finite limits; also look for Gibbs
phenomena.

32, f(x) = 1if 1 <x < 2 and O otherwise, by a Fourier
integral

33. f(x) = xif 0 < x < 1 and O otherwise, by a Fourier
integral



Summary of Chapter 11

34.

) =1+x2if 2<x<0, f(x) =1 — x/21if
0 < x < 2, f(x) = 0 otherwise, by a Fourier cosine
integral

L f) = -1 —x2if —2<x<0.f(x)=1— x/2if

0 < x < 2, f(x) = 0 otherwise. by a Fourier sine
integral

Cf) = —4+x2ifF-2<x<0, fx) =4 — £2Zif

0 < x < 2, f(x) = 0 otherwise, by a Fourier sine
integral

37.

38.

39.

40.

533

Fx) =4 — x2if —2 < x < 2, f(x) = 0 otherwise, by
a Fourier cosine integral

Find the Fourier transform of f(x) = k if
a < x < b, f(x) = 0 otherwise.

Find the Fourier cosine transform of f(x) = e~ 2% if
x>0, f(x)=0if x < 0.

Find F,(e~2*) and F(e~2%) by formulas involving
second derivatives

q)

(Sec. 11.2)

@
b,

where n = 1.2, - -+

(1%

(Sec. 11.3).

) =ag + D,

Fourier series concern periodic functions f(x) of period p = 2L, that is. by definition
f(x + p) = f(x) for all x and some fixed p > 0; thus, f(x + np) = f(x) for any
integer n. These series are of the form

nw + b si n
a, CosS — X siIn — X
" L " L

with coefficients, called the Fourier coefficients of f(x), given by the Euler formulas

Y.
g — X X.
LY A,

1

L

. For period 27 we simply have (Sec. 11.1)

) = ap + >, (a,, cos nx + b, sin nx)

n=1

with the Fourier coefficients of f(x) (Sec. 11.1)

1 . I - 1 ™
ag = E f fx dx, a,= ; f_ f(x) cosnxdx, b, = p f_ f(x) sin nx dx.

Fourier series are fundamental in connection with periodic phenomena,
particularly in models involving differential equations (Sec. 11.5, Chap. 12). If f(x)
is even [f(—x) = f(x)] or odd [f(—x) = —f(x)], they reduce to Fourier cosine or
Fourier sine series, respectively (Sec. 11.3). If f(x) is given for 0 = x = L only,
it has two half-range expansions of period 21, namely, a cosine and a sine series

L . nTX
f f(x) sin — dx
_L L

(Sec. 11.2)

1

L nx
a, = T f f(x) cos 7 dx
-L




