THEOREM 1

Analyticity of the Logarithm

For every $n=0,\pm 1,\pm 2,\cdots$ formula (3) defines a function, which is analytic, except at 0 and on the negative real axis, and has the derivative

(6)
$$(\ln z)' = \frac{1}{z}$$
 (z not 0 or negative real).

PROOF We show that the Cauchy–Riemann equations are satisfied. From (1)–(3) we have

$$\ln z = \ln r + i(\theta + c) = \frac{1}{2} \ln (x^2 + y^2) + i \left(\arctan \frac{y}{x} + c\right)$$

where the constant c is a multiple of 2π . By differentiation,

$$u_x = \frac{x}{x^2 + y^2} = v_y = \frac{1}{1 + (y/x)^2} \cdot \frac{1}{x}$$

$$u_y = \frac{y}{x^2 + y^2} = -v_x = -\frac{1}{1 + (y/x)^2} \left(-\frac{y}{x^2}\right).$$

Hence the Cauchy–Riemann equations hold. [Confirm this by using these equations in polar form, which we did not use since we proved them only in the problems (to Sec. 13.4).] Formula (4) in Sec. 13.4 now gives (6),

$$(\ln z)' = u_x + iv_x = \frac{x}{x^2 + y^2} + i \frac{1}{1 + (y/x)^2} \left(-\frac{y}{x^2} \right) = \frac{x - iy}{x^2 + y^2} = \frac{1}{z} . \quad \blacksquare$$

Each of the infinitely many functions in (3) is called a **branch** of the logarithm. The negative real axis is known as a **branch cut** and is usually graphed as shown in Fig. 335. The branch for n = 0 is called the **principal branch** of $\ln z$.

Fig. 335. Branch cut for $\ln z$

General Powers

General powers of a complex number z = x + iy are defined by the formula

(7)
$$z^{c} = e^{c \ln z} \qquad (c \text{ complex}, z \neq 0).$$

Since $\ln z$ is infinitely many-valued, z^c will, in general, be multivalued. The particular value

$$z^c = e^{c \ln z}$$

is called the **principal value** of z^c .

If $c = n = 1, 2, \dots$, then z^n is single-valued and identical with the usual *n*th power of z. If $c = -1, -2, \dots$, the situation is similar.

If c = 1/n, where $n = 2, 3, \dots$, then

$$z^{c} = \sqrt[n]{z} = e^{(1/n) \ln z} \qquad (z \neq 0),$$

the exponent is determined up to multiples of $2\pi i l n$ and we obtain the n distinct values of the nth root, in agreement with the result in Sec. 13.2. If c = p l q, the quotient of two positive integers, the situation is similar, and z^c has only finitely many distinct values. However, if c is real irrational or genuinely complex, then z^c is infinitely many-valued.

EXAMPLE 3 General Power

$$i^{i} = e^{i \ln i} = \exp(i \ln i) = \exp\left[i\left(\frac{\pi}{2}i \pm 2n\pi i\right)\right] = e^{-(\pi/2) \mp 2n\pi}.$$

All these values are real, and the principal value (n = 0) is $e^{-\pi i/2}$. Similarly, by direct calculation and multiplying out in the exponent,

$$(1+i)^{2-i} = \exp\left[(2-i)\ln(1+i)\right] = \exp\left[(2-i)\left\{\ln\sqrt{2} + \frac{1}{4}\pi i \pm 2n\pi i\right\}\right]$$
$$= 2e^{\pi/4 \pm 2n\pi} \left[\sin\left(\frac{1}{2}\ln 2\right) + i\cos\left(\frac{1}{2}\ln 2\right)\right].$$

It is a *convention* that for real positive z = x the expression z^c means $e^{c \ln x}$ where $\ln x$ is the elementary real natural logarithm (that is, the principal value $\operatorname{Ln} z$ (z = x > 0) in the sense of our definition). Also, if z = e, the base of the natural logarithm, $z^c = e^c$ is *conventionally* regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

$$a^z = e^{z \ln a}.$$

We have now introduced the complex functions needed in practical work, some of them $(e^z, \cos z, \sin z, \cosh z, \sinh z)$ entire (Sec. 13.5), some of them $(\tan z, \cot z, \tanh z, \coth z)$ analytic except at certain points, and one of them $(\ln z)$ splitting up into infinitely many functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

1–9 Principal Value Ln z. Find Ln z when z equals:

$$1. -10$$

2.
$$2 + 2i$$

3.
$$2-2i$$

4.
$$-5 \pm 0.1i$$

5.
$$-3 - 4i$$

7.
$$0.6 \pm 0.8i$$

9.
$$1 - i$$

and graph some of them in the complex plane.

11.
$$\ln (-1)$$

14.
$$\ln (4 + 3i)$$

15.
$$\ln(-e^{-i})$$

16.
$$\ln{(e^{3i})}$$

17. Show that the set of values of $\ln(i^2)$ differs from the set of values of $2 \ln i$.

18–21 Equations. Solve for *z*:

18.
$$\ln z = (2 - \frac{1}{2}i)\pi$$

19.
$$\ln z = 0.3 + 0.7i$$

20.
$$\ln z = e - \pi i$$

21.
$$\ln z = 2 + \frac{1}{4}\pi i$$

22-28 General Powers. Showing the details of your work, find the principal value of:

22.
$$i^{2i}$$
, $(2i)^i$

23.
$$4^{3+i}$$

24.
$$(1-i)^{1+i}$$

25.
$$(1+i)^{1-i}$$

26.
$$(-1)^{1-2i}$$

27.
$$i^{1/2}$$

28.
$$(3-4i)^{1/3}$$

- 29. How can you find the answer to Prob. 24 from the answer to Prob. 25?
- 30. TEAM PROJECT. Inverse Trigonometric and Hyperbolic Functions. By definition, the inverse sine $w = \arcsin z$ is the relation such that $\sin w = z$. The inverse cosine $w = \arccos z$ is the relation such that $\cos w = z$. The inverse tangent, inverse cotangent, inverse hyperbolic sine, etc., are defined and denoted in a similar fashion. (Note that all these relations are multivalued.) Using $\sin w = (e^{iw} - e^{-iw})/(2i)$ and similar representations of cos w, etc., show that

(a)
$$\arccos z = -i \ln (z + \sqrt{z^2 - 1})$$

(b)
$$\arcsin z = -i \ln (iz + \sqrt{1 - z^2})$$

(c)
$$\operatorname{arccosh} z = \ln (z + \sqrt{z^2 - 1})$$

(d)
$$\arcsin z = \ln(z + \sqrt{z^2 + 1})$$

(e)
$$\arctan z = \frac{i}{2} \ln \frac{i+z}{i-z}$$

(f)
$$\arctan z = \frac{1}{2} \ln \frac{1+z}{1-z}$$

(g) Show that $w = \arcsin z$ is infinitely many-valued, and if w_1 is one of these values, the others are of the form $w_1 \pm 2n\pi$ and $\pi - w_1 \pm 2n\pi$, $n = 0, 1, \cdots$. (The principal value of $w = u + iv = \arcsin z$ is defined to be the value for which $-\pi/2 \le u \le \pi/2$ if $v \ge 0$ and $-\pi/2 < u < \pi/2$ if v < 0.)

CHAPTER 3 REVIEW QUESTIONS AND PROBLEMS

- 1. Add, subtract, multiply, and divide 26 7i and 3 + 4i as well as their complex conjugates.
- 2. Write the two given numbers in Prob. 1 in polar form. Find the principal value of their arguments.
- 3. What is the triangle inequality? Its geometric meaning? Its significance?
- **4.** If you know the values of $\sqrt[6]{1}$, how do you get from them the values of $\sqrt[6]{z}$ for any z?
- 5. State the definition of the derivative from memory. It looks similar to that in calculus. But what is the big difference?
- 6. What is an analytic function? How would you test for analyticity?
- 7. Can a function be differentiable at a point without being analytic there? If yes, give an example.
- **8.** Are |z|, \bar{z} , Re z, Im z analytic? Give reason.
- 9. State the definitions of e^z , $\cos z$, $\sin z$, $\cosh z$, $\sinh z$ and the relations between these functions. Do these relations have analogs in real?
- 10. What properties of e^z are similar to those of e^x ? Which one is different?
- 11. What is the fundamental region of e^z ? Its significance?
- 12. What is an entire function? Give examples.
- 13. Why is $\ln z$ much more complicated than $\ln x$? Explain from memory.
- **14.** What is the principal value of $\ln z$?
- 15. How is the general power z^c defined? Give examples.

Complex Numbers. Find, in the form x + iv, 16-21 showing the details:

16.
$$(1 + i)^{12}$$

17.
$$(-2 + 6i)^2$$

18.
$$1/(3 - 7i)$$

19.
$$(1-i)/(1+i)^2$$

20.
$$\sqrt{-5-12i}$$

21.
$$(43 - 19i)/(8 + i)$$

22–26 Polar Form. Represent in polar form, with the principal argument:

22.
$$1 - 3i$$

23.
$$-6 + 6i$$

24.
$$\sqrt{20}/(4+2i)$$

25.
$$-12i$$

26.
$$2 + 2i$$

27-30 Roots. Find and graph all values of

27.
$$\sqrt{8i}$$

28.
$$\sqrt[4]{256}$$

29.
$$\sqrt[4]{-1}$$

30.
$$\sqrt{32-24i}$$

Analytic Functions. Find f(z) = u(x, y) + iv(x, y)with \overline{u} or v as given. Check for analyticity.

31.
$$u = x/(x^2 + y^2)$$

32.
$$v = e^{-3x} \sin 3y$$

33.
$$u = x^2 -$$

33.
$$u = x^2 - 2xy - y^2$$
 34. $u = \cos 2x \cosh 2y$

35.
$$v = e^{x^2 - y^2} \sin 2xy$$

36–39 Harmonic Functions. Are the following functions harmonic? If so, find a harmonic conjugate.

36.
$$x^2y^2$$

38.
$$e^{-x/2} \cos \frac{1}{2} y$$

39.
$$x^2 + y^2$$

40-45 Special Function Values. Find the values of

40.
$$\sin (3 + 4\pi i)$$

41.
$$\sinh 4\pi i$$

42.
$$\cos(5\pi + 2i)$$

43. Ln
$$(0.8 + 0.6i)$$

44.
$$\tan (1 + i)$$

45.
$$\cosh (1 + \pi i)$$

Complex Numbers and Functions

For arithmetic operations with complex numbers

(1)
$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta),$$

 $r = |z| = \sqrt{x^2 + y^2}$, $\theta = \arctan(y/x)$, and for their representation in the complex plane, see Secs. 13.1 and 13.2.

A complex function f(z) = u(x, y) + iv(x, y) is **analytic** in a domain D if it has a **derivative** (Sec. 13.3)

(2)
$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

everywhere in D. Also, f(z) is analytic at a point $z = z_0$ if it has a derivative in a neighborhood of z_0 (not merely at z_0 itself).

If f(z) is analytic in D, then u(x, y) and v(x, y) satisfy the (very important!) Cauchy-Riemann equations (Sec. 13.4)

(3)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

everywhere in D. Then u and v also satisfy Laplace's equation

(4)
$$u_{xx} + u_{yy} = 0, \qquad v_{xx} + v_{yy} = 0$$

everywhere in D. If u(x, y) and v(x, y) are continuous and have *continuous* partial derivatives in D that satisfy (3) in D, then f(z) = u(x, y) + iv(x, y) is analytic in D. See Sec. 13.4. (More on Laplace's equation and complex analysis follows in Chap. 18.)

The complex exponential function (Sec. 13.5)

(5)
$$e^z = \exp z = e^x (\cos y + i \sin y)$$

reduces to e^x if z = x (y = 0). It is periodic with $2\pi i$ and has the derivative e^z . The **trigonometric functions** are (Sec. 13.6)

(6)
$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) = \cos x \cosh y - i \sin x \sinh y$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) = \sin x \cosh y + i \cos x \sinh y$$

and, furthermore,

$$\tan z = (\sin z)/\cos z$$
, $\cot z = 1/\tan z$, etc.

The hyperbolic functions are (Sec. 13.6)

(7)
$$\cosh z = \frac{1}{2}(e^z + e^{-z}) = \cos iz$$
, $\sinh z = \frac{1}{2}(e^z - e^{-z}) = -i \sin iz$

etc. The functions (5)-(7) are **entire**, that is, analytic everywhere in the complex plane.

The natural logarithm is (Sec. 13.7)

(8)
$$\ln z = \ln |z| + i \arg z = \ln |z| + i \operatorname{Arg} z \pm 2n\pi i$$

where $z \neq 0$ and $n = 0, 1, \cdots$. Arg z is the **principal value** of arg z, that is, $-\pi < \text{Arg } z \leq \pi$. We see that $\ln z$ is infinitely many-valued. Taking n = 0 gives the **principal value** Ln z of $\ln z$; thus $\text{Ln } z = \ln |z| + i \text{ Arg } z$.

General powers are defined by (Sec. 13.7)

(9)
$$z^{c} = e^{c \ln z} \qquad (c \text{ complex}, z \neq 0).$$