CHAPTER 5

Transportation Model
and Its Variants

Chapter Guide. The transportation model is a special class of linear programs that
deals with shipping a commodity from sources (e.g., factories) to destinations (e.g.,
warehouses). The objective is to determine the shipping schedule that minimizes the
total shipping cost while satisfying supply and demand limits. The application of the
transportation model can be extended to other areas of operation, including inventory
control, employment scheduling, and personnel assignment.

As you study the material in this chapter, keep in mind that the steps of the trans-
portation algorithm are precisely those of the simplex method. Another point is that
the transportation algorithm was developed in the early days of OR to enhance hand
computations. Now, with the tremendous power of the computer, such shortcuts may
not be warranted and, indeed, are never used in commercial codes in the strict manner
presented in this chapter. Nevertheless, the presentation shows that the special trans-
portation tableau is useful in modeling a class of problems in a concise manner (as op-
posed to the familiar LP model with explicit objective function and constraints). In
particular, the transportation tableau format simplifies the solution of the problem by
Excel Solver. The representation also provides interesting ideas about how the basic
theory of linear programming is exploited to produce shortcuts in computations.

You will find TORA’s tutorial module helpful in understanding the details of the
transportation algorithm. The module allows you to make the decisions regarding the
logic of the computations with immediate feedback.

This chapter includes a summary of 1 real-life application, 12 solved examples, 1
Solver model, 4 AMPL models, 46 end-of-section problems, and 5 cases. The cases are in
Appendix E on the CD.The AMPL/Excel/Solver/TORA programs are in folder ch5Files.

Real-life Application—Scheduling Appointments at Australian Trade Events

The Australian Tourist Commission (ATC) organizes trade events around the world to
provide a forum for Australian sellers to meet international buyers of tourism prod-
ucts, including accommodation, tours, and transport. During these events, sellers are
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FIGURE 5.1
Representation of the transportation model with nodes and arcs

stationed in booths and are visited by buyers according to scheduled appointments. Be-
cause of the limited number of time slots available in each event and the fact that the
number of buyers and sellers can be quite large (one such event held in Melbourne in
1997 attracted 620 sellers and 700 buyers), ATC attempts to schedule the seller-buyer
appointments in advance of the event in a manner that maximizes preferences. The
model has resulted in greater satisfaction for both the buyers and sellers. Case 3 in
Chapter 24 on the CD provides the details of the study.

5.1 DEFINITION OF THE TRANSPORTATION MODEL

The general problem is represented by the network in Figure 5.1. There are m
sources and n destinations, each represented by a node. The arcs represent the
routes linking the sources and the destinations. Arc (i, j) joining source i to destina-
tion j carries two pieces of information: the transportation cost per unit, ¢;;, and the
amount shipped, x;;. The amount of supply at source i is a; and the amount of de-
mand at destination j is b;. The objective of the model is to determine the unknowns
x;; that will minimize the total transportation cost while satisfying all the supply and
demand restrictions.

Example 5.1-1

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution
centers in Denver and Miami. The capacities of the three plants during the next guarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400
cars. The mileage chart between the plants and the distribution centers is given in Table 5.1.

The trucking company in charge of transporting the cars charges 8 cents per mile per cat.
The transportation costs per car on the different routes, rounded to the closest dollar, are given

'~ in Table 5.2.
The LP model of the problem is given as

Minimize zZ = SOXH + 215x12 + 1OOX21 + 108122 + 102)’.’31 + GSX32
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TABLE 5.1 Mileage Chart

Denver Miami
Los Angeles 1000 2690
Detroit 1250 1350
New Orleans 1275 850

TABLE 5.2 Transportation Cost per Car

Denver (1) Miami (2)
Los Angeles (1) $80 $215
Detroit (2) $100 $108
New Orleans (3) $102 $68

subject to
Xy + xqpp = 1000 (Los Angeles)
Xy + xp = 1500 (Detroit)
+ X3+ x3 = 1200 (New Oreleans)
X + x5 + X3) = 2300 (Denver)
xpp + Xy + x33 = 1400 (Miami)

x,-j-:—'-O,i= 1,2,3,j= 1,2

These constraints are all equations because the total supply from the three sources (= 1000 +
1500 + 1200 = 3700 cars) equals the tota] demand at the two destinations (= 2300 + 1400 =
3700 cars). ‘

The LP model can be solved by the simplex method. However, with the special structure of
the constraints we can solve the problem more conveniently using the transportation tableau
shown in Table 5.3.

TABLE 5.3 MG Transportation Model

Denver Miami
Los Angeles | 80 T 215
Xy X1z
Detroit 100 108
X3i X2z
New Orleans 102 68
X3t X3z |

Demand 2300 1400

Supply
1000

1500

LR R T

e R
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FIGURE 5.2 1200
Optimal solution of MG Auto model New Orleans

The optimal solution in Figure 5.2 (obtained by TORA!) calls for shipping 1000 cars from
Los Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from
New Orleans to Miami. The associated minimum transportation cost is computed as 1000 x $80 +
1300 X $100 + 200 X $108 + 1200 X $68 = $313,200.

Balancing the Transportation Model. The transportation algorithm is based on the
assumption that the model is balanced, meaning that the total demand equals the total
supply. If the model is unbalanced, we can always add a dummy source or a dummy
destination to restore balance.

Example 5.1-2

In the MG model, suppose that the Detroit plant capacity is 1300 cars (instead of 1500). The total
supply (= 3500 cars) is less than the total demand (= 3700 cars), meaning that part of the de-
mand at Denver and Miami will not be satisfied.

Because the demand exceeds the supply, a dumnmy source (plant) with a capacity of 200 cars
(= 3700 — 3500) is added to balance the transportation model. The unit transportation costs
from the dummy plant to the two destinations are zero because the plant does not exist.

Table 5.4 gives the balanced model together with its optimum solution. The solution shows
that the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of
satisfying its demand of 1400 cars.

We can make sure that a specific destination does not experience shortage by assigning a
very high unit transportation cost from the dummy source to that destination. For example, a
penalty of $1000 in the dummy-Miami cell will prevent shortage at Miami. Of course, we cannot
use this “trick” with all the destinations, because shortage must occur somewhere in the system.

The case where the supply exceeds the demand can be demonstrated by assuming that the
demand at Denver is 1900 cars only. In this case, we need to add a dummy distribution center to
“receive” the surplus supply. Again, the unit transportation costs to the dummy distribution cen-
ter are zero, unless we require a factory to “ship out” completely. In this case, we must assign a
high unit transportation cost from the designated factory to the dummy destination.

"To use TORA, from ;Main Menu; select ‘Trinsportation Model . From the SOLVE/MODIFY' menu, select
Solve. = Finalsolution’ to obtain a summary of the optimum solution. A detailed description of the itera-
tive solution of the transportation model is given in Section 5.3.3.
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TABLE 5.4 MG Model with Dummy Plant

Denver Miami Supply

80 215
Los Angeles
1000 1000
100 108
Detroit
1300 1300
102 68
New Qrleans
1200 1200
Dummy Plant
0 200

Demand 2300 1400

TABLE 5.5 MG Model with Dummy Destinaticn

Denver Miami Dummy
R 215 [
Los Angeles
1000 1000
100 108
Detroit
900 200 1500
102 68
New Orleans
1200 1200
Demand 1900 1400 400

Table 5.5 gives the new model and its optimal solution (obtained by TORA). The solution
shows that the Detroit plant will have a surplus of 400 cars.

PROBLEM SET 5.1A2

1. True or False?

(a) To balance a transportation model, it may be necessary to add both a dummy source
and a dummy destination.

(b) The amounts shipped to a dummy destination represent surplus at the shipping
source.

(c) The amounts shipped from a dummy source represent shortages at the receiving
destinations.

’In this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta-
tion problem will be introduced at the end of Section 3.3.2.
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2. n each of the following cases, determine whether a dummy source or a dummy destina-
tion must be added to balance the model.
(a) Supply:a; = 10,ay =35, a3 =4 a, = 6

Demand: bl = 10, bg = 5, b3 = 7,b4 =9
(b) Supply:a; = 30,a;, = 44

Demand: b, = 25, b; = 30, b3 = 10

3. In Table 5.4 of Example 5.1-2, where a dummy plant is added, what does the solution
mean when the dummy plant “ships” 150 cars to Denver and 50 cars to Miami?

4. In Table 5.5 of Example 5.1-2, where a dummy destination is added, suppose that the De-
troit plant must ship out all its production. How can this restriction be implemented in
the model?

5. In Example 5.1-2, suppose that for the case where the demand exceeds the supply
(Table 5.4), a penalty is levied at the rate of $200 and $300 for each undelivered car at
Denver and Miami, respectively. Additionally, no deliveries are made from the Los
Angeles plant to the Miami distribution center. Set up the model, and determine the
optimal shipping schedule for the problem.

6. Three electric power plants with capacities of 25,40, and 30 million kWh supply electrici-
ty to three cities. The maximum demands at the three cities are estimated at 30,35, and 25
million kWh. The price per million kWh at the three cities is given in Table 5.6.

During the month of August, there is a 20% increase in demand at each of the three
cities, which can be met by purchasing electricity from another network at a premium
rate of $1000 per million kWh. The aetwork is not linked to city 3, however. The utility
company wishes to determine the most economical plan for the distribution and pur-
chase of additional energy.

(a) Formulate the problem as a transportation model.
(b) Determine an optimal distribution plan for the utility company.
(¢) Determine the cost of the additional power purchased by each of the three cities.

7. Solve Problem 6, assuming that there is 2 10% power transmission loss through the net-
work.

8. Three refineries with daily capacities of 6,5, and 8 million gallons, respectively, supply
three distribution areas with daily demands of 4,8, and 7 million gallons, respectively.
Gasoline is transported to the three distribution areas through a network of pipelines.
The transportation cost is 10 cents per 1000 gallons per pipeline mile. Table 5.7 gives the
mileage between the refineries and the distribution areas. Refinery 1 is not connected to
distribution area 3.

(a) Construct the associated transportation model.
(b) Determine the optimum shipping schedule in the network.

TABLE 5.6 Price/Million kWh for Problem 6

City
1 2 3

] $600 $700 $400
Plant 2 $320 $300 $350
3 $500 $480 $450
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TABLE 5.7 Mileage Chart for Problem 8

Distribution area
1 2 3

1 120 180 —
Refinery 2 300 100 80
3 200 250 120

*9. In Problem 8, suppose that the capacity of refinery 3 is 6 million gallons only and that
distribution area 1 must receive all its demand. Additionally, any shortages at areas 2 and
3 will incur a penalty of 5 cents per gallon.

(a) Formulate the problem as a transportation model.
(b) Determine the optimum shipping schedule.

10. In Problem 8, suppose that the daily demand at area 3 drops to 4 million gallons. Surplus
production at refineries 1 and 2 is diverted to other distribution areas by truck. The trans-
portation cost per 100 gallons is $1.50 from refinery 1 and $2.20 from refinery 2. Refinery
3 can divert its surplus production to other chemical processes within the plant.

(a) Formulate the problem as a transportation model.
{(b) Determine the optimum shipping schedule.

11. Three orchards supply crates of oranges to four retailers. The daily demand amounts at
the four retailers are 150, 150,400, and 100 crates, respectively. Supplies at the three or-
chards are dictated by available regular labor and are estimated at 150, 200, and 250
crates daily. However, both orchards 1 and 2 have indicated that they could supply more
crates, if necessary, by using overtime labor. Orchard 3 does not offer this option. The
transportation costs per crate from the orchards to the retailers are given in Table 5.8.
(a) Formulate the problem as a transportation model.

(b) Solve the problem.
(¢) How many crates should orchards 1 and 2 supply using overtime labor?

12. Cars are shipped from three distribution centers to five dealers. The shipping cost is
based on the mileage between the sources and the destinations, and is independent of
whether the truck makes the trip with partial or full loads. Table 5.9 summarizes the
mileage between the distribution centers and the dealers together with the monthly sup-
ply and demand figures given in number of cars. A full truckload includes 18 cars. The
transportation cost per truck mile is $25.

(a) Formulate the associated transportation model.

(b} Determine the optimal shipping schedule.

TABLE 5.8 Transportation Cost/Crate for Problem 11

Retatiler
1 2 3 4

1 $1 32 $3 $2
Orchard 2 $2 34 L3 32
3 $1 $3 35 $3
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TABLE 5.9 Mileage Chart and Supply and Demand for Problem 12

Dealer
1 2 3 4 5 Supply

1 100 150 200 140 35 400
Center 2 50 70 60 65 80 200
3 40 90 100 150 130 150

Demand 100 200 150 160 140

13. MG Auto, of Example 5.1-1, produces four car models: M1, M2, M3, and M4.The Detroit .

plant produces models M1, M2, and M4. Models M1 and M2 are also produced in New
Orleans. The Los Angeles plant manufactures models M3 and M4. The capacities of the
various plants and the demands at the distribution centers are given in Table 5.10.

The mileage chart is the same as given in Example 5.1-1, and the transportation rate
remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a per-
centage of the demand for some models from the supply of others according to the speci-
fications in Table 5.11.

(a) Formulate the corresponding transportation model.

(b) Determine the optimum shipping schedule.

(Hint: Add four new destinations corresponding to the new combinations [M1, M2}, [M3,
M4}, [M1, M2], and [M2, M4). The demands at the new destinations are determined from
the given percentages.)

TABLE 5.10 Capacities and Demands for Problem 13

Model

M1 M2 M3 M4 Totals

Plant
Los Angeles — — 700 300 1000
Detroit 500 600 — 400 1500
New Orleans 800 400 — — 1200
Distribution center
Denver 700 500 500 600 2300
Miami 600 500 200 100 1400

TABLE 5.11 Interchangeable Models in Problem 13

Distribution center  Percentage of demand  Interchangeable models

Denver 10 M1, M2
20 M3, M4
Miami 10 M1, M2

5 M2, M4

5.2
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NONTRADITIONAL TRANSPORTATION MODELS

The application of the transportation model is not limited to fransporting commeodities
between geographical sources and destinations. This section presents iwo applications
in the areas of production-inventory control and tool sharpening service.

Example 5.2-1 (Production-Inventory Control)

Boralis manufactures backpacks for serious hikers. The demand for its product occurs during
March to June of each year. Boralis estimates the demand for the four months to be 100, 200,
180, and 300 units, respectively. The company uses part-time labor to manufacture the backpacks
and, accordingly, its production capacity varies monthly. It is estimated that Boralis can produce
50, 180, 280, and 270 units in March through June. Because the production capacity and demand
for the different months do not match, a current month’s demand may be satisfied in one of
three ways.

1. Current month’s production.
2. Surplus production in an earlier month.
3. Surplus production in a later month (backordering).

In the first case, the production cost per backpack is $40. The second case incurs an addi-
tional holding cost of $.50 per backpack per month. In the third case, an additional penalty cost
of $2.00 per backpack is incurred for each month delay. Boralis wishes to determine the optimal
production schedule for the four months.

The situation can be modeled as a transportation model by recognizing the following paral-
lels between the elements of the production-inventory problem and the transportation model:

Transportation Production-inventory

1. Source { 1. Production period i

2. Destination j 2.Demand period §

3. Supply amount at source i 3. Production capacity of period i

4.Demand at destination j 4, Demand for period j

5. Unit transportation cost from source { 5. Unit cost {production + inveatory + penalty) in period i
to destination j for period |

The resulting transportation model is given in Table 5.12,

TABLE 5.12 Transportation Model for Example 5.2-1

1 2 3 4 Capacity

$40.00 $40.50 $41.00 $41.50 50
$42.00 $40.00 $40.50 $41.00 180
$44.00 $42.00 $40.00 $40.50 280
$46.00 $44.00 $42.00 $40.00 270

Demand 100 200 180 300 -

EEQE IS Iy NI
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Supply 50 180 280 270
y
Supply period G‘D
e /
’ /
so] 50,7 130| 70,7 180f 30% 270
s s
/ V4 o Y
Demand period 4
Demand 100 200 180 300

FIGURE 5.3
Optimal solution of the production-inventory model

The unit “transportation” cost from period i to period j is computed as

Production cost ini, i = |
¢, = 4 Production cost ini + holding cost fromitoj,i <J
Production cost in i + penaty cost from i to i

For example,
¢;; = $40.00
Coa = $40.00 + ($.50 + $.50) = $41.00
s = $40.00 + ($2.00 + $2.00 + $2.00) = $46.00

mmarized in Figure 5.3. The dashed lines indicate back-ordering,

The optimal solution is su
solid lines show production in a

the dotted lines indicate production for a future period, and the
period for itself. The total cost is $31,455.

Example 5.2-2 (Too! Sharpening)

Arkansas Pacific operates a medium-sized saw mill. The mill prepares different types of wood
that range from soft pine to hard oak according to a weekly schedule. Depending on the type of
wood being milled, the demand for sharp blades varies from day to day according to the follow-

ing 1-week (7-day) data:

Day Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Demand (blades) 24 12 14 20 18 14 22

[ ]



[

5.2 Nontraditional Transportation Models 203

The mill can satisfy the daily demand in the following manner:

1. Buy new blades at the cost of $12 a blade.
2. Use an overnight sharpening service at the cost of $6 a blade.
3. Use a slow 2-day sharpening service at the cost of $3 a blade.

The situation can be represented as a transportation model with eight sources and seven
destinations. The destinations represent the 7 days of the week. The sources of the model are
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme case, can
provide sufficient supply to cover the demand for all 7 days (=24 + 12 + 14 + 20 + 18 +
14 + 22 = 124). Sources 2 to 8 correspond to the 7 days of the week. The amount of supply for
each of these sources equals the number of used blades at the end of the associated day. For ex-
ample, source 2 (i.e., Monday} will have a supply of used blades equal to the demand for Mon-
day. The unit “transportation cost” for the model is $12, $6, or $3, depending on whether the blade
is supplied from new blades, overnight sharpening, or 2-day sharpening. Notice that the overnight
service means that used blades sent at the end of day ¢ will be available for use at the start of day
i + 1 or day { + 2, because the slow 2-day service will not be available until the starf of day
i + 3. The “disposal” column is a dummy destination needed to balance the model. The com-
plete model and its solution are given in Table 5.13.

TABLE 5.13 Tool Sharpening Problem Expressed as a Transportation Model

I-New

3-Tue.

5-Thu.

6-Fri.

7-Sat.

8-Sun.

2-Mon.

4-Wed.

1 2 3 4 5 6 7 8
Mon. Tue. Wed. Thu. Fri. Sat. Sun. Disposal
$12 $12 $12 $12 $12 $12 $12 $0
24 2 98 124

$6 36 $3 $3 $3 $3 $0

$6 36 $3 $3 $3 $0

6 $6 $3 $3 $0

14

36 30
20
$0
4 18
30
14
$0
22 22

24 12 14 20 18 14 22 24
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The problem has alternative optima at a cost of $840 (file toraEx5.2-2.txt). The following table

summarizes one such solution.

Number of sharp blades (Target day)

Perio\:l New Overnight 2-day Disposal
Mon. 24 (Mon.) 10(Tue.) + 8(Wed.) 6 (Thu.) 0
Tues. 2 {Tue.) 6 (Wed.) 6 (¥ri.) 0
Wed. 0 14 (Thu.) 0 0
Thu. 0 12 (Fri) 8 (Sun.) 0
Fri. 0 14 (Sat.) 0 4
Sat. 0 14 (Sun.) 0 0
Sun. 0 0 0 22

Remarks. The model in Table 5.13 1s suitable only for the first week of operation because it
does not take into account the rotational nature of the days of the week, in the sense that this
week’s days can act as sources for next week’s demand. One way to handle this situation is to as-
sume that the very first week of operation starts with all new blades for cach day. From then on,
we use a model consisting of exactly 7 sources and 7 destinations corresponding to the days of
the week. The new model will be similar to Table 5.13 less source “New” and destination “Dis-
posal” Also, only diagonal cells will be blocked (unit cost = M). The remaining cells will have a
unit cost of either $3.00 or $6.00. For example, the unit cost for cell (Sat., Mon.) is $6.00 and that
for cells (Sat., Tue.), (Sat., Wed.), (Sat., Thu.), and (Sat., Fri.) 1s $3.00. The table below gives the
solution costing $372. As expected, the optimum solution wiil always use the 2-day service only.
The problem has alternative optima (see file toraEx5.2-2a.txt).

Weeki+ 1

Week i Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total
Mon. 6 18 24
Tue. 8 4 12
Wed. 12 2 14
Thu. 8 12 20
Fri. 4 14 18
Sat. 14 14
Sun. 10 12 22
Total 24 12 14 20 18 14 22

PROBLEM SET 5.2A%

1. In Example 5.2-1, suppose that the holding cost per unit is period-dependent and is given
by 40, 30, and 70 cents for periods 1,2,and 3, respectively. The penalty and production
costs remain as given in the example. Determine the optimum solution and interpret
the results.

311 this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta-
tion problem will be introduced at the end of Section 5.3.2.
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In Example 5.2-2, suppose that the sharpening service offers 3-day service for $1 a blade
on Monday and Tuesday (days 1 and 2). Reformulate the problem, and interpret the opti-
mum solution.

In Example 5.2-2, if a blade is not used the day it is sharpened, a holding cost of 50 cents
per blade per day is incurred. Reformulate the model. and interpret the optimum sclution.

JoShop wants to assign four different categories of machines to five types of tasks, The
numbers of machines available in the four categories are 25, 30, 20, and 30. The numbers
of jobs in the five tasks are 20, 20, 30, 10, and 25. Machine category 4 cannot be assigned
to task type 4. Table 5.14 provides the unit cost (in dollars) of assigning a machine cate-
gory to a task type. The objective of the problerm is to determine the optimum number of
machines in each category to be assigned to each task type. Solve the problem and inter-
pret the solution.

The demand for a perishable item over the next four months is 400, 300, 420, and 380
tons, respectively. The supply capacities for the same months are 500, 600, 200, and 300
tons. The purchase price per ton varies from month to month and is estimated at $100,
$140, $120, and $150, respectively. Because the item is perishable, a current month’s sup-
ply must be consumed within 3 months (starting with current month). The storage cost
per ton per month is $3. The nature of the item does not allow back-ordering: Solve the
problem as a transportation model and determine the optimum defivery schedule for the
item over the next 4 months.

The demand for a special small engine over the next five quarters is 200, 150, 300, 250,
and 400 units. The manufacturer supplying the engine has different production capacities
estimated at 180, 230, 430, 300, and 300 for the five quarters. Back-ordering is not al-
lowed, but the manufacturer may use overtime to fill the immediate demand, if necessary.
The overtime capacity for each period is half the regular capacity. The production costs
per unit for the five periods are $100, $96, $116, $102, and $106, respectively. The over-
time production cost per engine is 50% higher than the regular production cost. If an en-
gine is produced now for use in later periods, an additional storage cost of $4 per engine
per period is incurred. Formulate the problem as a transportation model. Determine the
optimum number of engines to be produced during regular time and overtime of each
period.

Periodic preventive maintenance is carried out on aircraft engines, where an important
component must be replaced. The numbers of aircraft scheduled for such maintenance
over the next six months are estimated at 200, 180, 300, 198, 230, and 290, respectively. All
maintenance work is done during the first day of the month, where a used component
may be replaced with a new or an overhauled component. The overhauling of used com-
ponents may be done in a local repair facility, where they will be ready for use at the be-
ginning of next month, or they may be sent to a central repair shop, where a delay of

TABLE 5.14 Unit Costs for Problem 4

Task type
1 2 3 4 5
1 10 2 3 15 9
Machine category § 1? 12 ii 3 1451
4 20 15 13 - 8
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TABLE 5.15 Bids per Acre for Problem 8

Location
1 2 3
1 | gs20  s210  $570
ol ss10 %495
Bidder 5 | ges0 —  $240
4 | $180 s430  $710

3 months (including the month in which maintenance occurs) is expected. The repair cost
in the local shop is $120 per component. At the central facility, the cost is only $35 per
component. An overhauled component used in a later month will incur an additional
storage cost of $1.50 per unit per month. New components may be purchased at $200
each in month 1, with a 5% price increase every 2 months. Formulate the problem as a
transportation model, and determine the optimal schedule for satisfying the demand for
the component over the next six months.

8. The National Parks Service is receiving four bids for logging at three pine forests in
Arkansas. The three locations include 10,000,20,000, and 30,000 acres. A single bidder
can bid for at most 50% of the total acreage available. The bids per acre at the three loca-

tions are given in Table 5.15. Bidder 2 does not wish to bid on location 1, and bidder 3
cannot bid on location 2.

(a) Inthe present situation, we need to maximize the total bidding revenue for the
Parks Service. Show how the problem can be formulated as a transportation model.
(b) Determine the acreage that should be assigned to each of the four bidders.

THE TRANSPORTATION ALGORITHM

The transportation algorithm follows the exact steps of the simplex method (Chapter 3).
However, instead of using the regular simplex tableau, we take advantage of the spe-
cial structure of the transportation model to organize the computations in a more con-
venient form.

The special transportation algorithm was developed early on when hand compu-
tations were the norm and the shortcuts were warranted. Today, we have powerful
computer codes that can solve a transportation model of any size as a regular LP* Nev-
ertheless, the transportation algorithm, aside from its historical significance, does pro-
vide insight into the use of the theoretical primal-dual relationships (introduced in
Section 4.2) to achieve a practical end result, that of improving hand computations. The
exercise is theoretically intriguing.

The details of the algorithm are explained using the following numeric example.

41 fact, TORA handles all necessary computations in the background using the regular simplex method and
uses the transportation model format only as a screen “yeneer.”
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TABLE 5.16  SunRay Transportation Model

Mill
1 2 3 4 Supply
10 2 20 11
1
X1 Xyz X X4 15
12 7 9 20
Silo2
Xz X2z X3 Xag 25
4 14 16 18
3
X3 X3z X33 X34 10

Demand 5 15 15 15

Example 5.3-1 (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply
(in truckloads) and the demand (also in truckloads) together with the unit transportation costs
per truckload on the different routes are summarized in the transportation model in Table 5.16.
The unit transportation costs, ¢;;, (shown in the northeast corner of each box) are in hundreds of
dollars. The model seeks the minimum-cost shipping schedule x;; between silo i and mill j
(i=1,2,3j=1,2,3,4).

Summary of the Transportation Algorithm. The steps of the transportation algorithm
are exact parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the
entering variable from among all the nonbasic variables. If the optimality
condition is satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving
varigble from among all the current basic variables, and find the new basic so-
lution. Return to step 2.

Determination of the Starting Solution

A general transportation model with /7 sources and n destinations has m + n constraint
equations, one for each source and each destination. However, because the transporta-
tion model is always balanced (sum of the supply = sum of the demand), one of these
equations is redundant. Thus, the model has m + n — 1 independent constraint equa-
tions, which means that the starting basic solution consists of m -+ n — 1 basic variables.
Thus, in Example 5.3-1, the starting solution has 3 + 4 — 1 = 6 basic variables.

LR LU
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The special structure of the transportation problem allows securing a nonartifi-
cial starting basic solution using one of three methods:®

1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

“The three methods differ in the “quality” of the starting basic solution they produce, in
the sense that a better starting solution yields a smaller objective value. In general,
though not always, the Vogel method yields the best starting basic solution, and the
northwest-corner method yields the worst. The tradeoff is that the northwest-corner
method involves the least amount of computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (route) of
the tableau (variable x;3).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated
amounts of supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no
further assignments can be made in that row or column. If both a row and a
column net to zero simultaneously, cross out one only, and leave a zero sup-
ply (demand) in the uncrossed-out TOW (column).

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to
the cell to the right if a column has just been crossed out or below if a row has
been crossed out. Go to step 1.

Example 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution
in Table 5.17. The arrows show the order in which the allocated amounts are generated.
The starting basic solution is

xyp = 5, %12 = 10
Xy = 5, X3 = 15, %24 = 5
xy = 10
The associated cost of the schedule is

z=5X10+10X2+5X7+15X9+5X20+10X18=$520

Least-Cost Method. The least-cost method finds a better starting solution by
concentrating on the cheapest routes. The method assigns as much as possible to the
cell with the smallest unit cost (ties are broken arbitrarily). Next, the satisfied row or
column is crossed out and the amounts of supply and demand are adjusted accordingly.

51l three methods are featured in TORA’s tutorial module. See the end of Section 5.3.3.
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TABLE 5.17 Northwest-Corner Starting Solution

1 2 3 4 Supply
10 2 20 i1
1 : H e 15
2 25
4 14
3 10
Demand 5 15 15 15

If both a row and a column are satisfied simultaneously, only one is crossed out, the
same as in the northwest-corner method. Next, look for the uncrossed-out cell with
the smallest unit cost and repeat the process until exactly one row or column is left
uncrossed out.

Example 5.3-3

The least-cost method is applied to Example 5.3-1 in the following manner:

1. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped
through (1,2) is x; = 15 truckloads, which happens to satisfy both row 1 and column 2 si-
multaneously. We arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3,1) has the smallest uncrossed-out unit cost (= $4). Assign x3, = 5, and cross out
column 1 because it is satisfied, and adjust the demand of row 3 to 10 — 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckloads to cell (2, 3),
0 truckloads to cell (1, 4), 5 truckloads to cell (3, 4), and 10 truckloads to cell (2, 4)
(verify!).

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allocations are made. The starting solution (consisting of 6 basic variables) is
X2 = 15,x14 = 0, xpn = 15, x59 = 10, x3; = 5, x34 = 5. The associated objective value is

2=15X24+0X11+15X9+10X20+5%x4+5x18 = 8%475

The quality of the least-cost starting solution is better than that of the northwest-
corner method (Example 5.3-2) because it yields a smaller value of z ($475 versus $520
in the northwest-corner method).

Vogel Approximation Method (VAM). VAM is an improved version of the least-cost
method that generally, but not always, produces better starting solutions.

Step 1. For each row (column), determine a penalty measure by subtracting the
smallest unit cost element in the row (column) from the next smallest unit
cost element in the same row (column).
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TABLE 5.18 Least-Cost Starting Solution

1 2 3 4 Supply
10 | (start) 2
1 o 15
/
12|/ 7
2 /(ht : 25
/ 4 14 16 | 18
Demand 5 15 15 15

Step 2. Identify the row or column with the largest penalty. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the se-
lected row or column. Adjust the supply and demand, and cross out the satis-
fied row or column. If a row and a column are satisfied simultaneously, only
one of the two is crossed out, and the remaining row (column) is assigned
zero supply (demand).

Step 3. (a) If exactly one row or column with zero supply or demand remains un-

crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed
out, determine the basic variables in the row (column) by the least-cost
method. Stop.

(c) If all the uncrossed out rows and columns have (remaining) zero supply
and demand, determine the zero basic variables by the least-cost
method. Stop.

(d) Otherwise, go to step 1.

Example 5.3-4

VAM is applied to Example 5.3-1. Table 5.19 computes the first set of penalties.

Because row 3 has the largest penalty (= 10) and cell (3,1) has the smallest unit cost in that
row, the amount 5 is assigned to x3;. Column 1 is now satisfied and must be crossed out. Next,
new penaities are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penalty (= 9). Hence, we assign the maximum
amount possible to cell (1,2), which yields x;; = 15 and simultaneously satisfies both row 1 and
column 2. We arbitrarily cross out column 2 and adjust the supply in row 1 to zero.

Continuing in the same manner, row 2 will produce the highest penalty (=11), and we as-
sign x» = 15, which crosses out column 3 and leaves 10 units in row 2. Only column 4 is left, and
it has a positive supply of 15 units. Applying the least-cost method to that column, we successively
assign Xy4 = 0, X3y = 5, and x¢ = 10 (verify!). The associated objective value for this solution is

z=1S><2+0><11+15x9+10x20+5x4+5><18=$475

This solution happens to have the same objective value as in the least-cost method.
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TABLE 5.19 Row and Column Penalties in VAM

1 2 3 4 Row penalty
10 2 20 11 10-2=8
1 15
12 7 9 20 9-7=12
2 25
4 14 16 18 14 — 4 =0
3 5 ) 10
5 15 15 15
Column penalty 10 - 4 7-2 16 -9 18— 11
=6 =5 =17 =7

TABLE 5.20 First Assignment in VAM (x5 = 5)

1 2 3 4 Row penalty
1 2 20 11 o
15
2 7 9 20 2
25
3 14 16 18 2
10
15 15
Column penalty o 5 7 7

PROBLEM SET 5.3A

1. Compare the starting solutions obtained by the northwest-comer, least-cost, and Vogel
methods for each of the following models:

*(a) (b) (©
0 2 116 1 2 6| 7 5 1 8 |12
2 1 517 0 4 2|12 2 4 0 (14
2 4 3|7 3 1 5111 3 6 71 4
5 5 10 10 10 10 9 10 11

5.3.2 Iterative Computations of the Transportation Algorithm

After determining the starting solution (using any of the three methods in Section 5.3.1),
we use the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable as the
current nonbasic variable that can improve the solution. If the optlmallty con-
dition is satisfied, stop. Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibiliry condition. Change
the basis, and return to step 1.
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The optimality and feasibility conditions do not involve the familiar row opera-
tions used in the simplex method. Instead, the special structure of the transportation
model allows simpler computations.

Example 5.3-5

Solve the transportation model of Example 5.3-1, starting with the northwest-corner solution.

Table 5.21 gives the northwest-corner starting solution as determined in Table 5.17, Ex-
ample 5.3-2.

The determination of the entering variable from among the current nonbasic variables
(those that are not part of the starting basic solution) is done by computing the nonbasic coeffi-
cients in the z-row, using the method of multipliers (which, as we show in Section 5.3.4,is rooted
in LP duality theory).

In the method of multipliers, we associate the multipliers &; and v; with row ¢ and column j
of the transportation tableau. For each current basic variable x;;, these multipliers are shown in
Section 5.3.4 to satisfy the following equations:

u; + v; = ¢y, foreach basic x;;

As Table 5.21 shows, the starting solution has 6 basic variables, which leads to 6 equations in 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily setting any
u; = 0, and then solving for the remaining variables as shown below.

Basic variable (i, v} Equation Solution
Xy u +v; =10 Setyy =0—v, =10
X vy, =2 wy=0—rv,=2
Xon u2+V2=7 V2=2——)u2=5
X3 u, +v3 =9 =5->v;=4
X4 u, + vy =20 uy =5-v,=15
X34 U3+V4=18 V4=15—)u3=3

To summarize, we have
up =0,up = 5,u3=3
v = 10,2, = 2,03 = 4,94 = 15
Next, we use i; and v; to evaluate the nonbasic variables by computing

w + v Gy for each nonbasic x;;

TABLE 5.21 Starting [teration

1 2 3 4 Supply
) 10 2 20 i1
5 10 15
) 12 7 9 20
5 15 5 25
4 14 16 18
L 10 10

Demand 5 15 15 i5
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The results of these evaluations are shown in the following table:

Nonbasic variable u + v — gy
X3 wmtvi—ec;=0+4-20=-16
X4 uytvy—cu=0+15-11 =4
X wtvi—cy=5+1W0-12=3
X3 u3+V1_C3l=3+1O"'4=9
X3z u3+V2_C32=3+2'_14=_9
X3 Uy +v3—cp=3+4-16=-9

The preceding information, together with the fact that u; + v; — ¢; = 0 for each basic x;;, is

actually equivalent to computing the z-row of the simplex tableau, as the following summary shows.

Basic X X12 13 X14 X2 X2 X3 X24

z 0 0 —-16 4 3 0 0 0

Because the transportation model seeks to minimize cost, the entering variable is the one hav-
ing the most positive coefficient in the z-row. Thus, x5, is the entering variable.

The preceding computations are usually done directly on the transportation tableau as
shown in Table 5.22, meaning that it is not necessary really to write the (i, v}-equations explicitly.
Instead, we start by setting u#; = 0.° Then we can compute the v-values of all the columns that
have basic variables in row 1—namely, ; and v,. Next, we compute u; based on the (i, v)-equation
of basic x5;. Now, given u,, we can compute vy and v,. Finally, we determine 5 using the basic
equation of x33. Once all the &’s and v’s have been determined, we can evaluate the nonbasic
variables by computing u; + v; — ¢;; for each nonbasic x;. These evaluations are shown in
Table 5.22 in the boxed southeast corner of each cell.

Having identified x5; as the entering variable, we need to determine the leaving variable.
Remember that if x3; enters the solution to become basic, one of the current basic variables must
leave as nonbasic (at zero level).

TABLE 5.22 Tteration 1 Calculations

v, = 10 v, =2 v; =4 vy =15 Supply
10 2 20 11
u =0 5 10 15
_16 [4]
12 7 9 20
=5 5 15 5 25
[5]
4 14 16 18
u =3 i 10 10
-9 | -9
Demand 5 15 15 15

The tutorial module of TORA is designed to demonstrate that assigning a zero initial value to any & or v
does not affect the optimization results. See TORA Moment on page 216,
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The selection of xs; as the entering variable means that we want to ship through this route
because it reduces the total shipping cost. What is the most that we can ship through the new
route? Observe in Table 5.22 that if route (3, 1) ships @ units (i.e., X33 = 8), then the maximum
value of @ is determined based on two conditions.

1. Supply limits and demand requirements remain satisfied.
2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of 6 and the leaving variable in the fol-
lowing manner. First, construct a closed loop that starts and ends at the entering variable cell, (3,
1). The loop consists of connected horizontal and vertical segments only (no diagonals are al-
lowed).” Except for the entering variable cell, each corner of the closed loop must coincide with
a basic variable. Table 5.23 shows the loop for xa;. Exactly one loop exists for a given entering
variable.

Next, we assign the amount 6 to the entering variable cell (3, 1). For the supply and demand
limits to remain satisfied, we must alternate between subtracting and adding the amount 6 at the
successive corners of the loop as shown in Table 5.23 (it is immaterial whether the loop is traced
in a clockwise or counterclockwise direction). For 8 = 0, the new values of the variables then re-
main nonnegative if

X1 = 5_620
5—6=0
10-0=0

]

B %)

1l

X3

The corresponding maximum value of @is 5, which occurs when both x1 and xy, reach zero level.
Because only one current basic variable must leave the basic solution, we can choose cither xq;
or Xy as the leaving variable. We arbitrarily choose xyy to leave the solution.

The selection of x5, {= 5) as the entering variable and x;; as the leaving variable requires
adjusting the values of the basic variables at the corners of the closed loop as Table 5.24
shows. Because each unit shipped through route (3, 1) reduces the shipping cost by
$9 (= us + v, — ¢3), the total cost associated with the new schedule is $9 X 5 = §45 less
than in the previous schedule. Thus, the new cost is $520 — $45 = $475.

TABLE 5.23 Determination of Closed Loop for x3;

v, =10 vy =4 Supply
15
-16
------ i3 25
10
=9

Demand 5

TTORA’s tutorial module allows you to determine the cells of the closed loop interactively with immediate
feedback regarding the validity of your selections. See TORA Moment on page 216.
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TABLE 5.24 Iteration 2 Calculations

vy =1 v, = 2 v, =4 Supply
10 2 20
=0 . 15
l -16 |
9
Uy = 5 25
18
us = 3 10
Demand 15 15
TABLE 5.25 Iteration 3 Calculations (Optimal)
v =-3 v, =2 vy =4 vy =11 Supply
10 2 20 u
wm =0 5 10 15
| —13 —16
12 7 9 20
U, =5 10 15 25
| =10 I —4
4 14 16 18
Uy =7 5 5 10
l =5 | =5
Demand 5 15 15 15
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Given the new basic solution, we repeat the computation of the multipliers # and v, as Table 5.24

shows. The entering variable is x4. The closed loop shows that x,, = 10 and that the leaving

variable is x4.

The new solution, shown in Table 5.25, costs $4 X 10 = $40 less than the preceding one,
thus yielding the new cost $475 — $40 = $435. The new u; + v; — ¢;; are now negative for aft
nonbasic x;. Thus, the solution in Table 5.25 is optimal.

The following table summarizes the optimum solution.

From silo

To mill

Number of truckloads

LW NN e

P N S I

5
10
10
15

5

=

]

Optimal cost = $435




