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(1) slnz = 

It is quite remarkable that here in complex. functions come together that are unrelated in 
real. This is not an isolated incident but is typical of the general situation and shows the 
advantage of working in complex. 

Furthermore, as in calculus we define 

sin z 
(2) tanz = 

cos z 
cos z 

cot;:: = 
sin z 

and 

I 
(3) sec z = 

cos z 
csc z = 

sin z 

Since eZ is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they 
are analytic except at the points where cos;:. is zero; and cot z and csc z are analytic except 
where sin z is zero. Formulas for the derivatives follow readily from (~)' = eZ and (1)-(3); 

dS in calculus, 

(4) (cos ;:.)' -sin?. (sin z)' = cos z. (tan z)' = sec2 z, 

etc. Equation (I) also shows that Euler's formula is valid ill complex: 

(5) eiz = cos;:. + i sin z for all z. 

The real and imaginary parts of cos z and sin z are needed in computing values, and 
they also help in displaying properties of our functions. We illustrate this with a typical 
example. 

E X AMP L E 1 Real and Imaginary Parts. Absolute Value. Periodicity 

Show that 

(a) cos ~ = cos x cosh Y - i sin x sinh y 
(6) 

(b) sin z. = sin x cosh y + i cos x sinh y 

and 

(a) Icos :12 = cos2 x + sinh2 y 
(7) 

Ib) 

and give some applications of these forrnula~. 

Solution. From (1). 

cos z = ~(ei(x+iYJ + e -i(x+iYJ) 

= ~e -Y(cos x + i sin x) + ~eY(cos X - i sin xl 

= ~(eY + e-Y) cos x - ~i(eY - e-Y) sinx. 

This yields (6a) since. as is known fonn calculus, 

(8) 
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(6b) is obtained similarly. From (6a) and cosh2 y = I + sinh2 y we obtain 

Icos zl2 ~ (cos2 x) (I + sinh2 y) + sin2 x sinh2 y. 

Since sin2 x + cos2 x = I, this gives (7a). and (7bl is obtained similarly. 
For instance, cos (2 + 3i) = cos 2 cosh 3 - i sin 2 sinh 3 = -4.190 - 9.109i. 
From (6) we see that cos z and sin z are periodic with period 2n, just as in real. Periodicity of tan;: and 

cot z with period 7r now follows. 
Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas 

Icos xl ~ I and Isin xl ~ I, the complex co~ine and sine functions are 110 10llger boullded but approach infinity 
in absolute value as y --'> x, since then sinh y ~ 00 in (7). • 

E X AMP L E 2 Solutions of Equations. Zeros of cos z and sin z 

Solve la) cos z = 5 (wluch has no real solution!), (b) cos z = 0, (e) sin z = o. 
Solution. (a) e2iz - 10iz + I = 0 from (1) by multiplication by eiz . This is a quadratic equation in eiz

, 

with solutions (rounded off to 3 decimals) 

i z = e -y+ix = 5 :':: V25=""l ~ 9.899 and 0.1O\. 

Thus e-Y = 9.899 or 0.\01, eix = I, Y = :'::2.292, x = 2wTi". AilS. Z ~ ±21l7r ± 2.292i (11 = 0, 1,2, .. '). 
Can you obtain this from (6a)? 
(b) cos x = 0, sinh y = 0 by (7a), y = O. Ans. z = ::':~(2n + 1)7r (11 = 0, 1,2, .. '). 
(C) sin x = 0, sinh y = 0 by (7b). Ans. z = :'::1l7r (11 = 0, I, 2, .. '). Hence the only zeros of cos z and 

sin;: are those of the real cosine and sine functions. • 

General formulas for the real trigonometric functions continue to hold for complex 
values. This follows immediately from the definitions. We mention in particular the 
addition rules 

(9) 

and the fOilliula 

(10) 

cos (Zl ± Z2) = cos Zl cos Z2 =+= sin Zl sin Z2 

sin (Zl ± Z2) = sin Zl cos Z2 ± sin Z2 cos Z] 

cos2 
Z + sin2 

Z = 1. 

Some further useful formulas are included in the problem set. 

Hyperbolic Functions 
The complex hyperbolic cosine and sine are defined by the formulas 

(11) 

This is suggested by the familiar definitions for a real variable [see (8)]. These functions 
are entire, with derivatives 

(12) (cosh z)' = sinh z, (sinh z)' = cosh z, 

as in calculus. The other hyperbolic functions are defined by 
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tanh z = 
sinh.: 

cosh z 
coth z = 

cosh z 
sinh .: 

(13) 
1 

sech z = 
cosh z 

, csch z = 
sinh z 

Complex Trigonometric alld Hyperbolic FUllctions Are Related. If in (11), we replace 
z by iz and then use (1), we obtain 

(14) cosh iz = cos z;, sinh iz = i sin z. 

Similarly, if in (1) we replace z by i;:. and then use (II), we obtain conversely 

(15) cos iz = cosh z, sin iz = i sinh z. 

Here we have another case of unrelated real functions that have related complex analogs. 
pointing again to the advantage of working in complex in order to get both a more unified 
formalism and a deeper understanding of special functions. This is one of the main reasons 
for the importance of complex analysis to the engineer and physicist. 

1. Prove that cos z, sin z, cosh z, sinh Z are entire 
functions. 

2. Verify by differentiation that Re cos z and 1m sin z are 
harmonic. 

13-61 FORMULAS FOR HYPERBOLIC FUNCTIONS 

Show that 

3. cosh z = cosh x cos Y + i sinh x sin y 

sinh z = sinh x cos y + i cosh x sin y. 

4. cosh (ZI + Z2) = cosh ZI cosh Z2 + sinh ZI sinh Z2 

sinh (ZI + Z2) = sinh Zl cosh Z2 + cosh ZI sinh Z2' 

5. cosh2 Z - sinh2 z. = 1 

6. cosh2 Z + sinh2 Z = cosh 2z 

17-151 Function Values. Compute (in the form u + iv) 

7. cos(l + i) 8. sin(1 + i) 

9. sin 5i, cos 5i 10. cos 37Ti 

11. cosh (-2 + 3i), cos (-3 - 2i) 

12. - i sinh (- 7T + 2i), sin (2 + 7Ti) 

13. cosh (2n + 1)7Tl, n = 1,2, ... 

14. sinh (4 - 3i) 15. cosh (4 - 67Ti) 

16. (Real and imaginary parts) Show that 

sin x cos x 
Re tan z = --=-------,=-­

cos2 X + sinh2 y , 

sinhy coshy 
1m tan z = --=--'---'-=-­

cos2 X + sinh2 y . 

117-211 Equations. Find all solutions of the following 
equations. 

17. cosh z = 0 18. sin z = 100 

19. cos Z = 2i 

21. sinh z = 0 

20. cosh z = - 1 

22. Find all z for which (a) cos z, (b) sin z has real values. 

123-25] Equations and Inequalities. Using the 
definitions, prove: 

23. cos z is even. cos (-z) = cos z, and sin z is odd, 
sin (-z) = -sin z. 

24. Isinh yl ~ lcos zl ~ cosh y, Isinh yl ~ Isin zl ~ cosh y. 
Conclude that the complex cosine and sine are not 
bounded in the whole complex plane. 

25. sin ZI cos Z2 = H sin (ZI + Z2) + sin (Zl - Z2)] 
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13.7 Logarithm. General Power 
We finally introduce the complex logarithm, which is more complicated than the real 
logarithm (which it includes as a special case) and historically puzzled mathematicians 
for some time (so if you first get puzzled-which need not happen!-be patient and work 
through this section with extra care). 

The natural logarithm of z = x + iy is denoted by In z (sometimes also by log z) and 
is defined as the inverse of the exponential function; that is, W = In z is defined for 
z =1= 0 by the relation 

(Note that z = 0 is impossible, since eW =1= 0 for all w; see Sec. 13.5.) [f we set 
w = u + iv and:: = reifl

, this becomes 

Now from Sec. 13.5 we know that eu +iv has the absolute value eU and the argument v. 
These must be equal to the absolute value and argument on the right: 

v = 8. 

eU = r gives u = In r, where In r is the familiar real natural logarithm of the positive 
number r = Izi. Hence w = u + iv = In z is given by 

(1) In:: = In,. + i8 (r = Izl > 0, 8 = arg z). 

Now comes an important point (without analog in real calculus). Since the argument of 
z is determined only up to integer mUltiples of 271", the complex 1latural logarithm In z 
(z * 0) is i1lfi1litely many-valued. 

The value of In:: conesponding to the principal value Arg z (see Sec. 13.2) is denoted 
by Ln :: (Ln with capital L) and is called the principal value of In::. Thus 

(2) Ln z = In Izl + i Arg z (z =1= 0). 

The uniqueness of Arg z for given z (=1= 0) implies that Ln z is single-valued, that is, a 
function in the usual sense. Since the other values of arg :: differ by integer multiples of 
271", the other values of In:: are given by 

(3) In z = Ln z ::'::: 2n71"i (n = 1. 2 .... ). 

They all have the same real part, and their imaginary paJ1s differ by integer multiples of 271". 

If:: is positive real, then Arg z = 0, and Ln z becomes identical with the real natural 
logarithm known from calculus. If z is negative real (so that the natural logarithm of 
calculus is not defined!), then Arg z = 71" and 

Ln z = In Izi + 71"i (z negative real). 
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From (l) and e1n 
r = r for positive real r we obtain 

(4a) 

as expected, but since arg (eZ
) = y ± 2nn is multi valued. so is 

(4b) In (c) = Z ± 21lni, n = 0, I,···. 

E X AMP L E 1 Natural Logarithm. Principal Value 

In 1 = 0, ±2wi, ±4wi, ... 

In 4 = 1.386 294 ± 211wi 

In (-1) = ± m, ±3w;. ±Swi, .. 

In (-4) = 1.386294 ± (211 + I)wi 

In i = wil2. - 3 w/2. S wi12 . .•. 

In 4; = 1.386294 + wi/2 ± 21lwi 

In (-4i) = 1.386294 - wi/2 ± 21lwi 

In (3 - 4i) = In S + i arg (3 - 4i) 

= 1.609438 - 0.927 29Si ± 21171'i 

v 

-0.9 + 6n 

-0.9 + 4n 

Ln 1= 0 

Ln 4 = 1.386294 

Ln (-I) = wi 

Ln (-4) = 1.386294 + wi 

Ln i = wi/2 

Ln 4; = 1.386 294 + wil2 

Ln (-4i) = 1.386 294 - wi/2 

Ln (3 - 4i) = 1.609438 - 0.927 29S; 

1 

• 1 
1 , 
1 

(Fig. 334) 

-0.9 + 2n + 
o I---....I....----il--'--

-0.9 + 2 u 
1 • 1 

-0.9 - 2n 

Fig. 334. Some values of In (3 - 4;) in Example 1 

• 

The familiar relations for the natural logarithm continue to hold for complex values, 
that is. 

(5) (a) In (~1::2) = In Zl + In ':2, 

but these relations are to be understood in the sense that each value of one side is also 
contained among the values of the other side: see the next example. 

E X AMP L E 2 Illustration of the Functional Relation (5) in Complex 

Let 

;:1=;:2=e"1Ti=-1. 

If we take the principal values 

Ln;::1 = LnZ2 = wi. 

then (Sa) holds provided we write In (:1:::2) = In I = 2wi; however. it is not true for the principal value, 
Ln (ZIZ2) = Ln 1 = O. • 
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THE 0 REM 1 Analyticity of the Logarithm 

For el'ery n = 0, ::t::: 1, ::t:::2, ... formula (3) defines a function, which is analytic, 
except at 0 and 011 the Ilegarire real axis, alld has the derivative 

(6) 
, I 

(ln~) =­
z. 

(z not 0 or negative real). 

PROOF We show that the Cauchy-Riemann equations are satisfied. From (I )-(3) we have 

In z = In r + ice + c) = .!. In (x2 + v2
) + i(arctan I. + c) 

2' x 

where the constant c is a multiple of 27r. By differentiation, 

x 
ux = 2 2=V= 2 

X + y y 1 + (ylx) x 

Hence the Cauchy-Riemann equations hold. [Confirm this by using these equations in 
polar form. which we did not use since we proved them only in the problems (to 
Sec. 13.4).j Formula (4) in Sec. 13.4 now gives (6). 

(- ;~) = 
x - iy 

x2 + y2 • z 

Each of the infinitely many functions in (3) is called a branch of the logarithm. The 
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 335. 
The branch for 11 = 0 is called the principal branch of In z. 

Fig. 335. Branch cut for In z 

General Powers 
General powers of a complex number z = x + iy are defined by the formula 

(7) (c complex, z oF 0). 

Since In z is infinitely many-valued, ZC will, in general, be multi valued. The particular 
value 

is called the principal value of zC. 


