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Example 4 illustrates that a conjugate of a given harmonic function is uniquelv determilled 
up to an arbitrary real additive constant. 

The Cauchy-Riemann equations are the most important equations in this chapter. Their 

relation to Laplace's equation opens wide ranges of engineering and physical applications, 

as we shall show in Chap. 18 . 

. ........ ~ 
CAUCHY-RIEMANN EQUATIONS 

Are the following functions analytic? [Use (1) or (7).] 

1. f(:;.) = :;.4 2. f(::.) = 1m (:;.2) 

3. e2x(cos y + i sin y) 4. f(:;.) = I/O - :;.4) 

5. e-X(cos y - i sin y) 6. fez) = Arg 7TZ. 

7. f(z) = Re z + 1m z 8. f(z.) = In Izl + i Arg z 

9. f(:;.) = i/::.8 10. f(:;.) = ::.2 + I/:;.2 

11. (Cauchy-Riemann equations in polar form) Derive 
(7) from (1). 

112-21/ HARMONIC FUNCTIONS 

Are the following functions harmonic? If your answer is 
yes, find a corresponding analytic function 
f(:;.) = u (x, y) + iv(x, y). 

12. u = x)' 13. v = xy 

14. v - yl(x2 + y2) 

16. v = In Izl 
18. Lt = I/(x2 + )'2) 

20. Lt = cos x cosh y 

15. u = In Izl 
17. II = x 3 - 3xy2 

19. U = (x2 _ )'2)2 

21. l/ = e-x sin 2)' 

122-241 Determine a, b, C such that the given functions 
are harmonic and find a harmonic conjugate. 

22. 3:]; 
U = e co~ ay 23. u = sin x cosh cy 

25. (Harmonic conjugate) Show that if II is harmonic and 
v is a harmonic conjugate of II, then II is a harmonic 
conjugate of -v. 

26. TEAM PROJECT. Conditions for fez) = COllst. Let 
f(:;.) be analytic. Prove that each of the following 
conditions is sutIicient for f(:;.) = COllst. 

(a) Re fez) = comt 

(b) [m f(:;.) = COIUT 

(c) f' (z) = 0 

(d) If(z)1 = COllst (see Example 3) 

27. (Two further formulas for the derivative). Formulas 
(4). (5), and (J I) (below) are needed from time to time. 
Derive 

(II) J'(;:;) = Ux - illy, f' (z) = Vy + iv x ' 

28. CAS PROJECT. Equipotential Lines. Write a 
program for graphing equipotential lines II = comt of 
a harmonic function II and of its conjugate v on the 
same axes. Apply the program to (a) II = x 2 - )'2, 

U = 2xy, (b) u = x 3 - 3xy2, U = 3x2y _ y3, 

(c) U = eX cos )', v = eX sin y. 

13.5 Exponential Function 
In the remaining sections of this chapter we discuss the basic elementary complex 
functions, the exponential function, trigonometric functions. logarithm, and so on. They 

will be counterparts to the familiar functions of calculus, to which they reduce when 

z = x is real. They are indispensable throughout applications, and some of them have 
interesting properties not shared by their real counterparts. 

We begin with one of the most important analytic functions, the complex exponential 
function 

also written exp Z. 

The definition of eZ in terms of the real functions eX, cos y, and sin y is 

(1) 
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This definition is motivated by the fact the eZ extends the real exponential function eX of 
calculus in a natural fashion. Namely; 

(A) eZ = eX for real z = x because cos Y = 1 and sin y = 0 when y = o. 
(B) eZ is analytic for all z. (Proved in Example 2 of Sec. 13.4.) 

(e) The derivative of eZ is eZ
• that is. 

(2) 

This follows from (4) in Sec. 13.4. 

REMARK. This defInition provides for a relatively simple discussion. We could defme eZ by 
the familiar series I + x + x2/2! + x3/3! + ... with x replaced by Z, but we would then have 
to discuss complex series at this very early stage. (We will show the connection in Sec. 15.4.) 

Further Properties. A function I(::) that is analytic for all :: is called an entire function. 
Thus, eZ is entire. Just as in calculus the fUllctional relation 

(3) 

holds for any 21 = Xl + iYl and Z2 = X2 + iYz. Indeed, by (1), 

Since eX1eX2 = eX1
+

X2 for these real functions, by an application of the addition fonnulas 
for the cosine and sine functions (similar to that in Sec. 13.2) we see that 

as asserted. An interesting special case of (3) is Zl = X, Z2 = iy; then 

(4) 

Furthennore, for Z = iy we have from (1) the so-called Euler formula 

(5) e
iy 

= cosy + i siny. 

Hence the polar form of a complex number, ;:: = r(cos e + i sin 0). may now be written 

(6) 

From (5) we obtain 

(7) 

as well as the important formulas (verify!) 

(8) e7Ti = -1, 
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Another consequence of (5) is 

(9) leiYI = leos y + i sin yl = V cos2 y + sin2 y = 1. 

That is, for pure imaginary exponents the exponential function has absolute value I, a 
result you should remember. From (9) and (1), 

(10) Hence argeZ = y ± 2nn (n = 0, 1,2," .), 

since !ezi = eX shows that (1) is actually ~ in polar form. 
From lezi = eX *- 0 in (0) we see that 

(11) for all z. 

So here we have an entire function that never vanishes, in contrast to (nonconstant) 
polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as 
is proved in algebra. 

Periodicity of eZ with period 27Ti, 

(12) for all z 

is a basic property that follows from (1) and the periodicity of cos y and sin y. Hence all 
the values that w = eZ can assume are already assumed in the horizontal strip of width 
27T 

(13) -n<Y~7T 

This infinite strip is called a fundamental region of eZ
• 

E X AMP L E 1 Function Values. Solution of Equations. 

Computation of values from (I) provides no problem. For instance. verify that 

e1.4 - O.6i = e1.4 tcos 0.6 - i sin 0.6) = 4.055(0.8253 - 0.5646i) = 3.347 - 2.289; 

Arg e1.4 - 0 .6i = -0.6. 

To illustrate (3), take the product of 

e2 + i = e2(cos 1 + i sin I) and 

y 

x 

-Tr: 

Fig. 333. Fundamental region of the 
exponential function eZ in the z-plane 

(Fig. 333). 
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To solve the equation eZ = 3 + 4i, note first that lezi = eX = 5. X = In 5 = 1.609 is the real part of all 
solutions. Now, since eX = 5, 

eX cosy = 3. eX sin v = 4. cosy = 0.6. siny = 0.8. y = 0.927. 

Am. :: = 1.609 + 0.927i::': 211'11'; (n = O. 1.2, ... ). The~e are infinitely many solutions (due to the periodicity 
of eZ

). They lie on the vertical line x = 1.609 at a distance 27i" from their neighbors. • 

To summarize: many properties of eZ = exp z parallel those of eX; an exception is the 
periodicity of £f with 2ni, which suggested the concept of a fundamental region. Keep in 
mind that ~ is an entire function. (Do you still remember what that means?) 

1. Using the Cauchy-Riemann equations, show that eZ is 
entire. 

118-21\ Equations. Find all solutions and graph some of 
them in the complex plane. 

12-81 Values of eZ
• Compute eZ in the form u + iv and 

lezl, where ~ equals: 

2. 3 + 71'i 

4. Vz - !71'i 

6. (l + i)71' 

8. 971'i/2 

3. I + 2i 

5. 771'il2 

7. 0.8 - 5i 

19-121 
9. e-2z 

Real and Imaginary Parts. Find Re and 1m of: 

10. e
z3 

11. ez2 

113-171 
13. Vi 
15. V; 
17. -9 

Polar Form. Write in polar form: 

14. 1 + 
16. 3 + 4i 

18. e3
• = 4 19. eZ = -2 

20. eZ = 0 21. eZ = 4 - 3i 

22. TEAM PROJECT. Further Properties of the 
Exponential Function. (a) Analyticity. Show that c 
is entire. What about el/z? eZ? eX(cos ky + i sin ky)'? 
(Use the Cauchy-Riemann equations.) 

(b) Special values. Find all ;;: such that (i) e Z is real. 
(ii) le-zi < 1, (iii) eZ = 'if. 
(c) Harmonic function. Sho~- that 

u = e XY cos (x 2 /2 - )'2/2) is harmonic and find a 
conjugate. 
(d) Uniqueness. [t is interesting that f(z) = e Z is 
uniquely determined by the two properties 
f(x + iO) = eXand!'(;;:) = f(z).wherefisassumed 
to be entire. Prove this using the Cauchy-Riemann 
equations. 

13.6 Trigonometric and Hyperbolic Functions 
Just as we extended the real eX to the complex eZ in Sec. 13.5. we now want to extend 
the familiar real trigonometric functions to complex trigonometric flillctiollS. We can do 
this by the use of the Euler formulas (Sec. 13.5) 

eix = cos x + i sin x, e-ix = cosx - i sinx. 

By addition and subtraction we obtain for the real cosine and sine 

This suggest,> the following definitions for complex values z = x + iy: 
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(1) slnz = 

It is quite remarkable that here in complex. functions come together that are unrelated in 
real. This is not an isolated incident but is typical of the general situation and shows the 
advantage of working in complex. 

Furthermore, as in calculus we define 

sin z 
(2) tanz = 

cos z 
cos z 

cot;:: = 
sin z 

and 

I 
(3) sec z = 

cos z 
csc z = 

sin z 

Since eZ is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they 
are analytic except at the points where cos;:. is zero; and cot z and csc z are analytic except 
where sin z is zero. Formulas for the derivatives follow readily from (~)' = eZ and (1)-(3); 

dS in calculus, 

(4) (cos ;:.)' -sin?. (sin z)' = cos z. (tan z)' = sec2 z, 

etc. Equation (I) also shows that Euler's formula is valid ill complex: 

(5) eiz = cos;:. + i sin z for all z. 

The real and imaginary parts of cos z and sin z are needed in computing values, and 
they also help in displaying properties of our functions. We illustrate this with a typical 
example. 

E X AMP L E 1 Real and Imaginary Parts. Absolute Value. Periodicity 

Show that 

(a) cos ~ = cos x cosh Y - i sin x sinh y 
(6) 

(b) sin z. = sin x cosh y + i cos x sinh y 

and 

(a) Icos :12 = cos2 x + sinh2 y 
(7) 

Ib) 

and give some applications of these forrnula~. 

Solution. From (1). 

cos z = ~(ei(x+iYJ + e -i(x+iYJ) 

= ~e -Y(cos x + i sin x) + ~eY(cos X - i sin xl 

= ~(eY + e-Y) cos x - ~i(eY - e-Y) sinx. 

This yields (6a) since. as is known fonn calculus, 

(8) 


