
SEC. 13.4 Cauchy-Riemann Equations. Laplace's Equation 

E X AMP L E 2 Cauchy-Riemann Equations. Exponential Function 

Is i(:::) = II(X. y) + iv(x, y) = eX(cos y + i sin y) analytic? 

Solution. We have II = eX cos y, v = eX sin y and by differentiation 

ltx = eX cosy. v = eX cos \" y . 

lIy = -ex sin y. x . 
Vx = e smy. 
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We see that the Cauchy-Riemann equations are satisfied and conclude that I(~) is analytic for all ~. (f(~) will 
be the complex analog of eX known from calculus.) • 

E X AMP L ElAn Analytic Function of Constant Absolute Value Is Constant 

The Cauchy-Riemann equations also help in deriving geneml properties of analytic functions. 
For instance. show that if I(~) is analytic in a domain D and II(::) I = k = CO/1St in D. then I(:) = COIlst in 

D. (We shall make crucial use of thb in Sec. 18.6 in the proof of Theorem 3.1 

Solutioll. By assumption. IJI2 = lu + ivl2 = I? + v2 
= k2. By differentiation, 

IIllX + vVx = o. 
lllly + VVy = o. 

Now use Vx = -lly in the first equation and Vy = llx in the second. to gel 

(6) 
(a) llllx - Vlly = 0, 

(b) lilly + Vllx = O. 

To get rid of lly. multiply (6a) by II and (6b) by v and add. Similarly. to eliminate llx. multiply (6a) by -v and 
(6b I by II and add. l1lis yields 

(11
2 + V

2 )lIx = O. 

(11
2 + V

2
)lIy = O. 

If k2 = ll2 + v2 
= O. then II = v = 0; hence I = O. If k2 = ll2 + v2 * O. then IIx = lIy = O. Hence. by 

the Cauchy-Riemann equations. also Vx = Vy = O. Together this implies II = COllst and v = canst; hence 
I = canst. • 

We mention that if we use the polar fom1 z = r(cos 6 + i sin 6) and set 
fez) = u(r, 6) + iv(r, 6), then the Cauchy-Riemann equations are (Prob. 11) 

LIT = ve, 
r 

(7) (r> 0). 

v = T LI/I 
r 

Laplace's Equation. Harmonic Functions 
The great importance of complex analysis in engineering mathematics results mainly from 
the fact that both the real part and the imaginary part of an analytic function satisfy 
Laplace's equation, the most important PDE of physics. which Occurs in gravitation, 
electrostatics, fluid flow, heat conduction, and so on (see Chaps. 12 and 18). 
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THEOREM 3 

CHAP. 13 Complex Numbers and Functions 

Laplace's Equation 

If fez) = u(x, y) + iv(x, y) is lInalytic in II d0111l1in D. then both II and v sati.~f\' 

Laplace's equation 

(8) 

(V2 read "nabla squared") and 

(9) 

in D and h(lI'e continuous second partial derivatives in D. 

PROOF Differentiating Ux = Vy with respect to x and u y = -vx with respect to y, we have 

(10) 

Now the derivative of an analytic function is itself analytic. as we shall prove later (in 
Sec. 14.4). This implies that u and v have continuous partial derivatives of all orders: in 
particular, the mixed second derivatives are equal: vYT = vXY ' By adding (10) we thus 
obtain (8). Similarly, (9) is obtained by differentiating Ux = Vy with respect to y and 
lty = -vx with respect to x and subtracting, using uxy = uyx' • 

Solutions of Laplace's equation having conti1luous second-order partial derivatives 
are called harmonic functions and their theory is calIed potential theory (see also 
Sec. 12.10). Hence the real and imaginary parts of an analytic function are harmonic 
functions. 

If two harmonic functions u and v satisfy the Cauchy-Riemann equations in a domain 
D, they are the real and imaginary parts of an analytic function f in D. Then v is said to 
be a harmonic conjugate function of u in D. (Of course, this has absolutely nothing to 
do with the use of "conjugate" for z.) 

E X AMP L E 4 How to Find a Harmonic Conjugate Function by the Cauchy-Riemann Equations 

Verify that 1/ = x2 
- \,2 - Y is harmonic in the whole complex plane and find a harmonic conjugate function 

v of 1/. 

Solution. ,21/ = 0 by direct calculation. Now lIx = 2x and lIy = - 2.1' - I. Hence because of the 
Cauchy-Riemann equations a conjugate v of 1/ must satisfy 

Vy = lIx = 2x, v ~ -1/ ~ 2,· + 1. x y _ 

Integrating the first equation with respect to )' and differentiating the result with respect to .t. we obtain 

v = 2.\)' + h(x). 
dh 

Vx = 2y + dx . 

A comparison with the second equation shows that dh/dr: = 1. This gives hex) = x + c. Hence v = 2.\)' + X + c 
(c any real constant) is the most general hannonic conjugate of the given II. The conesponding analytic function is 

I(::.) = II + iv ~ x 2 
- )'2 - )' + ;(2.\)' + X + c) = ~2 + ;: + ;e. • 
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Example 4 illustrates that a conjugate of a given harmonic function is uniquelv determilled 
up to an arbitrary real additive constant. 

The Cauchy-Riemann equations are the most important equations in this chapter. Their 

relation to Laplace's equation opens wide ranges of engineering and physical applications, 

as we shall show in Chap. 18 . 

. ........ ~ 
CAUCHY-RIEMANN EQUATIONS 

Are the following functions analytic? [Use (1) or (7).] 

1. f(:;.) = :;.4 2. f(::.) = 1m (:;.2) 

3. e2x(cos y + i sin y) 4. f(:;.) = I/O - :;.4) 

5. e-X(cos y - i sin y) 6. fez) = Arg 7TZ. 

7. f(z) = Re z + 1m z 8. f(z.) = In Izl + i Arg z 

9. f(:;.) = i/::.8 10. f(:;.) = ::.2 + I/:;.2 

11. (Cauchy-Riemann equations in polar form) Derive 
(7) from (1). 

112-21/ HARMONIC FUNCTIONS 

Are the following functions harmonic? If your answer is 
yes, find a corresponding analytic function 
f(:;.) = u (x, y) + iv(x, y). 

12. u = x)' 13. v = xy 

14. v - yl(x2 + y2) 

16. v = In Izl 
18. Lt = I/(x2 + )'2) 

20. Lt = cos x cosh y 

15. u = In Izl 
17. II = x 3 - 3xy2 

19. U = (x2 _ )'2)2 

21. l/ = e-x sin 2)' 

122-241 Determine a, b, C such that the given functions 
are harmonic and find a harmonic conjugate. 

22. 3:]; 
U = e co~ ay 23. u = sin x cosh cy 

25. (Harmonic conjugate) Show that if II is harmonic and 
v is a harmonic conjugate of II, then II is a harmonic 
conjugate of -v. 

26. TEAM PROJECT. Conditions for fez) = COllst. Let 
f(:;.) be analytic. Prove that each of the following 
conditions is sutIicient for f(:;.) = COllst. 

(a) Re fez) = comt 

(b) [m f(:;.) = COIUT 

(c) f' (z) = 0 

(d) If(z)1 = COllst (see Example 3) 

27. (Two further formulas for the derivative). Formulas 
(4). (5), and (J I) (below) are needed from time to time. 
Derive 

(II) J'(;:;) = Ux - illy, f' (z) = Vy + iv x ' 

28. CAS PROJECT. Equipotential Lines. Write a 
program for graphing equipotential lines II = comt of 
a harmonic function II and of its conjugate v on the 
same axes. Apply the program to (a) II = x 2 - )'2, 

U = 2xy, (b) u = x 3 - 3xy2, U = 3x2y _ y3, 

(c) U = eX cos )', v = eX sin y. 

13.5 Exponential Function 
In the remaining sections of this chapter we discuss the basic elementary complex 
functions, the exponential function, trigonometric functions. logarithm, and so on. They 

will be counterparts to the familiar functions of calculus, to which they reduce when 

z = x is real. They are indispensable throughout applications, and some of them have 
interesting properties not shared by their real counterparts. 

We begin with one of the most important analytic functions, the complex exponential 
function 

also written exp Z. 

The definition of eZ in terms of the real functions eX, cos y, and sin y is 

(1) 


