618 CHAP.13  Complex Numbers and Functions

11. WRITING PROJECT. Sets in the Complex Plane.
Extend the part of the text on sets in the complex plane
by formulating that part in your own words and
including examples of your own and comparing with
calculus when applicable.

COMPLEX FUNCTIONS AND DERIVATIVES

Function Values. Find Re f and Im f. Also find
their values at the given point z.

12. f =32 -6z +3i, =2+
13. f=2dE+ 1.z=4 — 5i
4. f =1 —2),z=3+3%i
15s. f=12 =1+

Continuity. Find out (and give reason) whether
f(z) is continuous at £ = 0 if f(0) = 0 and for z # O the
function f is equal to:
16. [Re (zH)]/|<?
18. [2]? Re (1/2)

Derivative. Differentiate

20. (2 =N+ D) 21, (23 + 0)?
22. (3z + 4i)/(1.5iz — 2)  23.i/(1 — 2)?
24. 22z + 0)?

17. [Im (z®)]/|7|
19. (Im2)/(1 — |z

25. CAS PROJECT. Graphing Functions. Find and
graph Re f. Im f. and |f| as surfaces over the -plane.
Also graph the two families of curves Re f(2) = const
and Im f(2) = const in the same figure, and the curves
If(z)| = const in another figure, where (a) f(z) = 22,
(b) fl) = 1/z, () flz) = z*

26. TEAM PROJECT. Limit, Continuity, Derivative
(a) Limit. Prove that (1) is equivalent to the pair of
relations

lim Re f(z) = Rel, lim Im f(z) = Im L.

Z—>2q Z—DZO

(b) Limit. If lim f(2) exists, show that this limit is
z—2q

unique.
(¢} Continuity. If 7, 25, - - - are complex numbers for
which lim z, = g, and if f(g) is continuous at

H~—C0O
z = a, show thatnlin;f(;n) = f(a).
(d) Continuity. If f(z) is differentiable at 3¢. show that
f(2) is continuous at Zq.
(e) Differentiability. Show that f(z) = Rez = x is
not differentiable at any z. Can you find other such
functions?
(f) Differentiability. Show that f(z) = |[z]? is
differentiable only at z = 0; hence it is nowhere analytic.

13.4 Cauchy—Riemann Equations.

Laplace’s Equation

The Cauchy—Riemann equations are the most important equations in this chapter and
one of the pillars on which complex analysis rests. They provide a criterion (a test) for
the analyticity of a complex function

w = f(z) = u(x, v) + iv(x, v).

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and
v satisfy the two Cauchy—Riemann equations®

ey Uy =

w U, = —Uy

4The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians
BERNHARD RIEMANN (1826-1866) and KARL WEIERSTRASS (1815 -1897: see also Sec. 15.5) are the
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Gottingen. where
he also raught until he died, when he was only 39 years old. He introduced the concept of the integral as it is
used in basic calculus courses. and made important contributions to differential equations. number theory. and
mathematical physics. He also developed the so-called Riemannian geometry. which is the mathematical
foundation of Einstein’'s theory of relativity; see Ref. [GR9] in App. 1.
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THEOREM 1

PROOF

everywhere in D; here u, = du/ox and u,, = du/dy (and similarly for v) are the usual
notations for partial derivatives. The precise formulation of this statement is given in
Theorems 1 and 2.

Example: {(z) = 2Z=x2- _\’2 + 2ixy is analytic for all ; (see Example 3 in Sec. 13.3),

and u = x% — y? and v = 2xy satisfy (1), namely, u, = 2x = vyaswellasu, = —2v = —uv,.
More examples will follow.

Cauchy—-Riemann Equations

Let f(z) = u(x, ¥) + iv(x, ¥) be defined and continuous in some neighborhood of a
point = = x + iy and differentiable at  itself. Then at that point, the first-order
partial derivatives of u and v exist and satisfy the Caucliy—Riemann equations (1).

Hence if f(2) is analvtic in a domain D, those partial derivatives exist and satisfy
(1) at all points of D.

By assumption, the derivative f'(Z) at £ exists. It is given by

fz + Az) — f(2)
Az '

@ f'@ = lim

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3)
we can let A: approach zero along any path in a neighborhood of z. Thus we may choose
the two paths I and II in Fig. 332 and equate the results. By comparing the real parts we
shall obtain the first Cauchy—Riemann equation and by comparing the imaginary parts the
second. The technical details are as follows.

We write Az = Ay + iAy. Then £ + Az = x + Ax + (v + Ay), and in terms of « and
v the derivative in (2) becomes

[t(x + Ax, v + Ay) + iv(x + Ax, y + Ay)] — [u(x, v) + iv(x, v)]
Ax + iAy

® 1@ = pim,

We first choose path [ in Fig. 332. Thus we let Ay — 0 first and then Ax — 0. After Ay
is zero, Az = Ax. Then (3) becomes, if we first write the two u-terms and then the two
v-terms,

u(x + Ax, v) — u(x, v) S v+ Ax y) — v, Y)
+ i lim
A_\ Ax—0 A_\

ey 1
) _\l:lcTO

Fig. 332. Paths in (2)
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EXAMPLE 1

THEOREM 2

CHAP. 13 Complex Numbers and Functions

Since f’(z) exists, the two real limits on the right exist. By definition, they are the partial
derivatives of u and v with respect to x. Hence the derivative f'(z) of f(z) can be written

(4) (@) = u, + iv,.

Similarly, if we choose path II in Fig. 332. we let Ax — 0 first and then Ay — 0. After
Ax is zero, Az = iAy, so that from (3) we now obtain

' Loouy +AY) —u(x,y) 0 vl y + Ay) - ux, ¥)
-y = + 1 .
e _\lylg]o iAy IA;TO iAy

Since f'(z) exists, the limits on the right exist and give the partial derivatives of « and v
with respect to y; noting that 1/i = —i, we thus obtain

(5) '@ = —iy, + v,

The existence of the derivative f'(z) thus implies the existence of the four partial
derivatives in (4) and (5). By equating the real parts i1, and v, in (4) and (5) we obtain
the first Cauchy—Riemann equation (1). Equating the imaginary parts gives the other. This
proves the first statement of the theorem and implies the second because of the definition
of analyticity. |

Formulas (4) and (5) are also quite practical for calculating derivatives f "(2), as we shall
see.

Cauchy—Riemann Equations

flo=:21is analytic for all 2. It follows that the Cauchy—Riemann equations must be satisfied (as we have
verified above).

For f(2) = Z = x — iv we have 1 = x, v = —¥ and see that the second Cauchy-Riemann equation is satisfied.
uy, = —v, = 0. but the first is not: u; = 1 # v, = —1. We conclude that f(2) = I is not analytic. confirming
Example 4 of Sec. 13.3. Note the savings in calculation! [ |

The Cauchy-Riemann equations are fundamental because they are not only necessary
but also sufficient for a function to be analytic. More precisely, the following theorem
holds.

Cauchy—Riemann Equations

If two real-valued continuous functions u(x. ¥) and v(x. y) of two real variables x
and v have continuous first partial derivatives that satisfy the Caucliv—Riemann
equations in some domain D, then the complex function f(z) = u(x, y) + iv(x, y) is
analvtic in D.

The proof is more involved than that of Theorem 1 and we leave it optional (see App. 4).

Theorems 1 and 2 are of great practical importance, since by using the
Cauchy—Riemann equations we can now easily find out whether or not a given complex
function is analytic.
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EXAMPLE 2

EXAMPLE 3

Cauchy—Riemann Equations. Exponential Function

Is f(2) = n(x. ¥) + iv(x, ¥) = e™(cos ¥ + i sin v) analytic?

Solution. We have u = ¢ cos y, v = ¢” sin y and by differentiation
1, = e cos y. vy = €* cos ¥

[ - T
1, = —e" siny, U, = € siny.

We see that the Cauchy—Riemann equations are satisfied and conclude that f(2) is analytic for all 2. (£(2) will
be the complex analog of ¢* known from calculus.) |

An Analytic Function of Constant Absolute Value Is Constant

The Cauchy—Riemann equations also help in deriving general properties of analytic functions.
For instance, show that it f(2) is analytic in a domain D and |f(z)| = k = const in D, then f(2) = const in
D. (We shall make crucial use of this in Sec. 18.6 in the proof of Theorem 3.)

Solution. By assumption, |_I'|2 =|u+ iv|2 =42+ 0% =K% By differentiation,

i, + VU, = 0,

uiy, + vu, = 0.
Now use v, = —n,, in the first equation and v, = i, in the second. to get

(a) wuu,; — Uity = 0,
(3]
(by i, + vu, = 0.

To get rid of «,,. multiply (6a) by u and (6b) by v and add. Similarly. to eliminate u,. multiply (6a) by —v and
(6b) by u and add. This vields

(u2 + 112)11:r =0.

(u2 + Uz)uy =0.
k2 =u?+ 12 =0.thenu = v = 0; hence f = 0. k% = u® + 12 # 0. then iy = uy = 0. Hence. by

the Cauchy-Riemann equations, also vy = vy = 0. Together this implies # = const and v = const; hence

f = const. |

We mention that if we use the polar form z = r(cos8 + i sin6) and set
f@) = ulr, 6) + iv(r, 6), then the Cauchy—Riemann equations are (Prob. 11)

N r > 0).

Laplace’s Equation. Harmonic Functions

The great importance of complex analysis in engineering mathematics results mainly from
the fact that both the real part and the imaginary part of an analytic function satisfy
Laplace’s equation, the most important PDE of physics. which occurs in gravitation,
electrostatics, fluid tlow, heat conduction, and so on (see Chaps. 12 and 18).



