
618 CHAP. 13 Complex Numbers and Functions 

11. WRITING PROJECT. Sets in the Complex Plane. 
Extend the part of the text on sets in the complex plane 
by fonnulating that part in your own words and 
including examples of your own and comparing with 
calculus when applicable. 

COMPLEX FUNCTIONS AND DERIVATIVES 

112-151 Function Values. Find Re I and 1m f. Also find 
their values at the given point :::. 

12. f = 3::: 2 
- 6::: + 3i, z = 2 + 

13. f .:::/(z + I), z = 4 - 5i 

14. f 1/( I - :::), ::: = l + !i 
15. f 1/:::2, ::: = I + ; 

116-191 Continuity. Find out (and give reason) whether 
.f(z) is continuous at ::: = 0 if I(O) = 0 and for z =1= 0 the 
function I is equal to: 

16. [Re (::2)]/ld2 

18. 1z12 Re (1/::) 

17. [1m (::2)]/1z1 

19. (1m ::)/(1 

120-241 Derivative. Differentiate 

20. (.:::2 - 9)/(:::2 + I) 21. (:3 + ;)2 

22. (3:: + 4i)/( 1.5;: - 2) 23. i/(l - ;::)2 

24. ::2/(: + ;)2 

1:::1) 

25. CAS PROJECT. Graphing Functions. Find and 
graph Re f. 1m f. and If I as surfaces over the ::-plane. 
Also graph the two families of curves Re Ie::) = COllSt 

and 1m if:::) = COllst in the same figure, and the curves 
If(zli = COIlS! in anoth€r figure, where (a) fez) = ::2, 

(b) I(z) = liz, (c) fez) = Z4. 

26. TEAM PROJECT. Limit, Continuity, Derivative 
(a) Limit. Prove that (I) is equivalent to the pair of 
relations 

lim Re i(z) = Re t, lim 1m Ie::) = 1m l. 
2-----;"2'0 Z-Zo 

(b) Limit. If lim I(:::) exists, show that this limit is 
unique. 

z-zo 

(e) Continuity. If:::}o ::2' ... are complex numbers for 
which lim ::" = a, and if i(:) is continuous at 

'it_CO 

z = a, show that lim i(::n) = i(a). 
n-----'""x 

(d) Continuity. If if:::) is differentiable at :::0' show that 
if:::) is continuous at :::0' 

(e) Differentiability. Show that if::) = Re z = x is 
not differentiable at any z. Can you find other such 
functions? 

(l) Differentiability. Show that if::) = 1:::12 is 
differentiable only at:: = 0; hence it is nowhere analytic. 

13.4 Cauchy-Riemann Equations. 
Laplace's Equation 

Tlte Cauchy-Riemall1l equatiolls are tile most importallt equatiolls ill tltis chapter and 
one of the pillars on which complex analysis rests. They provide a criterion (a test) for 
the analyticity of a complex function 

w = fez) = u(x, y) + iv(x, y). 

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and 
v satisfy the two Cauchy-Riemann equations4 

(1) 

4 The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians 
BERNHARD RIEMANN (l1l26-Hl66) and KARL WEIERSTRASS (1815 ·1897: see also Sec. 15.5) are the 
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Gilttingen. where 
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is 
used in basic calculus courses. and made important contributions to differential equations. number theory. and 
mathematical physics. He also developed the s(}-called Riemannian geometry. which is the mathematical 
foundation of Einstein's theory of relativity; see Ref. [GR9] in App. I. 



SEC. 13.4 Cauchy-Riemann Equations. Laplace's Equation 619 

THEOREM 1 

everywhere in D; here Ux = alliax and uy = aulay (and ~imilarly for v) are the usual 
notations for partial derivatives. The precise formulation of this statement is given in 
Theorems I and 2. 

Example: fez) = ;:,2 = x2 
- ."2 + 2ixy is analytic for all:: (see Example 3 in Sec. 13.3), 

and II = x 2 
- ."2 and v = 2xy satisfy (1), namely, Ux = 2x = Vy as well as lIy = -2y = -vx . 

More examples will follow. 

Cauchy-Riemann Equations 

Let fez) = lI(X, y) + iv(x, y) be defined and continuous in some neighborhood of a 
point :: = x + iy and d(fferentiable at :: itself. Then at that point, the first-order 
partial derimtil'es of u and v exist and satisfy the Cauchy-Riemann equations (I). 

Hence if ft::) is analytic ill a domain D, those partial deriI'Gtil'es exist and satisfr 
(l) at all points of D. 

PROOF By a~~umption. the derivative f' (.:) at .: exists. It is given by 

(2) f' (z) = lim fez + ilz) - fez) 
!>z~O ilz 

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3) 
we can let S~: approach zero along any path in a neighborhood of ;:.. Thus we may choose 
the two paths I and II in Fig. 332 and equate the results. By comparing the real parts we 
shall obtain the fir.;t Cauchy-Riemann equation and by comparing the imaginary parts the 
second. The technical details are as follows. 

We write .. k = ~x + i:1y. Then.: + .1.: = x + :1x + iCy + :1.\"), and in terms of /I and 
v the derivative in (2) becomes 

[lI(x + ilx, y + ily) + iv(x + ilx, )' + ily)] - [II(X, .1') + iv(x, y)] 
(3) f' (;:.) = lim 

..lz~O .!lx + i.!l y 

We first choose path I in Fig. 332. Thus we let ily ~ 0 first and then ilx ~ O. After ily 
is zero, il:: = ilx. Then (3) becomes. if we first write the two u-tenns and then the two 
v-terms, 

lI(X + .!lx, .r) - lI(X, .r) vex + .lx, r) - vex, r) 
f'(.:) = lim + i lim . . 

..lx~O .1.\ .l.x~O 6..\ 

y 

x 

Fig. 332. Paths in (:2) 
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Since f' (z) exists, the two real limits on the right exist. By definition, they are the partial 
derivatives of u and v with respect to x. Hence the derivative f' (z) of fez) can be written 

(4) 

Similarly, if we choose path II in Fig. 332. we let ~x ~ 0 first and then ~y ~ O. After 
~x is zero, ~:: = i:1y, so that from (3) we now obtain 

II(X, \' + .1,') - u(x, ,.) vex, " + .1 \') - vex, ") f' (::) = lim . . . - + i lim _. -
..ly~O I .1y .ly~O i.ly 

Since f' (.:) exists, the limits on the right exist and give the partial derivatives of u and v 
with respect to y; noting that 1Ii = -i, we thus obtain 

(5) j'(z) = -illy + Vy. 

The existence of the derivative f' (z) thus implies the existence of the four partial 
derivatives in (4) and (5). By equating the real parts liT and Vy in (4) and (5) we obtain 
the first Cauchy-Riemann equation (1). Equating the imaginary parts gives the other. This 
proves the first statement of the theorem and implies the second because of the definition 
of analyticity. • 

FOlmulas (4) and (5) are also quite practical for calculating derivatives f' (z), as we shall 
see. 

E X AMP L E 1 Cauchy-Riemann Equations 

THEOREM 2 

J(~) = ::2 is analytic for all ~. It follow, that the Cauchy-Riemann equation, mu,t be ,atisfied (as we have 
verified abuve). 

For f(::) = :: = x - iy we have /I = X, V = -.1' and see that the second Cauchy-Riemann equation is satisfied. 
/ly = -vx = O. but the tlrst is not: "x = I * Vy = -1. We conclude that f(::) = :: is not analytic. confirming 
Example 4 of Sec. 13.3. Note the savings in calculation! • 

The Cauchy-Riemann equations are fundamental because they are not only necessary 
but also sufficient for a function to be analytic. More precisely, the following theorem 
holds. 

Cauchy-Riemann Equations 

If two real-valued continllolls functions lI(X. y) and vex. y) of two real variables x 
and y have COlltillUOUS first partial derivatives that satisfy the Cauchy-Riemll1ln 
equlItions in some domain D, then the complex jilllctioll fez) = lI(X, y) + iv(x, y) is 
allalytic ill D. 

The proof is more involved than that of Theorem 1 and we leave it optionallsee App. 4). 
Theorems I and 2 are of great practical importance, since by using the 

Cauchy-Riemann equations we can now easily find out whether or not a given complex 
function is analytic. 



SEC. 13.4 Cauchy-Riemann Equations. Laplace's Equation 

E X AMP L E 2 Cauchy-Riemann Equations. Exponential Function 

Is i(:::) = II(X. y) + iv(x, y) = eX(cos y + i sin y) analytic? 

Solution. We have II = eX cos y, v = eX sin y and by differentiation 

ltx = eX cosy. v = eX cos \" y . 

lIy = -ex sin y. x . 
Vx = e smy. 

621 

We see that the Cauchy-Riemann equations are satisfied and conclude that I(~) is analytic for all ~. (f(~) will 
be the complex analog of eX known from calculus.) • 

E X AMP L ElAn Analytic Function of Constant Absolute Value Is Constant 

The Cauchy-Riemann equations also help in deriving geneml properties of analytic functions. 
For instance. show that if I(~) is analytic in a domain D and II(::) I = k = CO/1St in D. then I(:) = COIlst in 

D. (We shall make crucial use of thb in Sec. 18.6 in the proof of Theorem 3.1 

Solutioll. By assumption. IJI2 = lu + ivl2 = I? + v2 
= k2. By differentiation, 

IIllX + vVx = o. 
lllly + VVy = o. 

Now use Vx = -lly in the first equation and Vy = llx in the second. to gel 

(6) 
(a) llllx - Vlly = 0, 

(b) lilly + Vllx = O. 

To get rid of lly. multiply (6a) by II and (6b) by v and add. Similarly. to eliminate llx. multiply (6a) by -v and 
(6b I by II and add. l1lis yields 

(11
2 + V

2 )lIx = O. 

(11
2 + V

2
)lIy = O. 

If k2 = ll2 + v2 
= O. then II = v = 0; hence I = O. If k2 = ll2 + v2 * O. then IIx = lIy = O. Hence. by 

the Cauchy-Riemann equations. also Vx = Vy = O. Together this implies II = COllst and v = canst; hence 
I = canst. • 

We mention that if we use the polar fom1 z = r(cos 6 + i sin 6) and set 
fez) = u(r, 6) + iv(r, 6), then the Cauchy-Riemann equations are (Prob. 11) 

LIT = ve, 
r 

(7) (r> 0). 

v = T LI/I 
r 

Laplace's Equation. Harmonic Functions 
The great importance of complex analysis in engineering mathematics results mainly from 
the fact that both the real part and the imaginary part of an analytic function satisfy 
Laplace's equation, the most important PDE of physics. which Occurs in gravitation, 
electrostatics, fluid flow, heat conduction, and so on (see Chaps. 12 and 18). 


