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7. 
-6 + 5; 

3i 

2 + 3; 
8. 5 + 4i 

[9-151 PRINCIPAL ARGUMENT 

Determine the principal value of the argument. 

9. - I - i 10. - 20 + ;, - 20 - ; 

11. 4 ::':: 3; 

13. 7 ::':: 7; 

IS. (9 + 9;)3 

12. -7T2 

14. (l + i)12 

116-20 I CONVERSION TO X + iy 
Represent in the form x + iy and graph it in the complex 
plane. 

16. COS!7T + ; sin (::'::!7T) 

18. 4(COS!7T ::':: ; sin !7T) 

20. 12(cos ~7T + ; sin ~7T) 

121-251 ROOTS 

17. 3(cos 0.2 + ; sin 0.2) 

19. cos (-I) + ; sin (-I) 

Find and graph all roots in the complex plane. 

21. V-i 22. {Y] 

23. ~ 24. ~ 3 + 4; 

2S.~ 

26. TEAM PROJECT. Square Root. (a) Show that 
w = ~ has the values 

}\'1 = Vi- [cos ~ + ; sin ~ ] ' 

(b) Obtain from (8) the often more practical formula 

(19) V~ = ::,::[v'~ (1.;:1 +x) + (signy)iv'~ (izl +x)j 

where sign y = I if y ~ 0, sign y = -I if y < 0, 
and all square roots of positive numbers are taken 
with positive sign. Hint: Use (10) in App. A3.1 with 
x = 012. 

(e) Find the square roots of 4;, 16 - 30i, and 
9 + 8 v7 i by both (18) and (19) and comment on the 
work involved. 

(d) Do some further examples of your own and apply 
a method of checking your results. 

127-301 EQUATIONS 

Solve and graph all solutions, showing the details: 

27. ::2 - (8 - 5i)::; + 40 - 20; = 0 (Use (19).) 

28. ::4 + (5 - 14i)::2 - (24 + Wi) = 0 

29. 8::;2 - (36 - 6i)z + 42 - I Ii = 0 

30. Z4 + 16 = O. Then use the solutions to factor Z4 + 16 
into quadratic factors with real coefficients. 

31. CAS PROJECT. Roots of Unity and Their Graphs. 
Write a program for calculating these roots and for 
graphing them as poims on the unit circle. Apply the 
program to z n = 1 with n = 2, 3. . . . , 10. Then extend 
the program to one for arbitrary roots. using an idea 
near the end of the text, and apply the program to 
examples of your choice. 

132-351 INEQUALITIES AND AN EQUATION 

Verify or prove as indicated. 

32. (Re and 1m) Prove IRe zl ~ Izl, lIm zl ~ Izl· 

33. (parallelogram equality) Prove 

1::1 + 2212 + 1.:::1 - ::;212 = 2(h12 + IZ212). 

Explain the name. 

34. (Triangle inequality) Verify (6) for ZI = 4 + 7i. 
::2 = 5 + 1;. 

35. (Triangle inequality) Prove (6). 

13.3 Derivative. Analytic Function 
Our study of complex functions will involve point sets in the complex plane. Most 
important will be the following ones. 

Circles and Disks. Half-Planes 
The unit circle Izl = 1 (Fig. 327) has already occurred in Sec. 13.2. Figure 328 shows a 
general circle of radius p and center a. Its equation is 

Iz - al = p 
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Fig. 127. Unit circle 
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Fig. 128. Circle in the 
complex plane 
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Fig. 129. Annulus in the 
complex plane 

because it is the set of all : whose distance Iz - al from the center 1I equals p. Accordingly, 
its interior ("open circular disk") is given by Iz - al < p, its interior plus the circle itself 
("closed circular disk") by Iz - al ~ p, and its exterior by Iz - al > p. As an example, 
sketch this for a = 1 + i and P = 2, to make sure that you understand these inequalities. 

An open circular disk Iz - 1I1 < P is also called a neighborhood of a or, more precisely, 
a p-neighborhood of 1I. And 1I has infinitely many of them. one fur each value of 
P (> 0), and a is a point of each of them, by definition! 

In modem literature any set containing a p-neighborhood of a is also called a 
neighborhood of a. 

Figure 329 shows an open annulus (circular ring) PI < Iz - al < P2, which we shall 
need later. This is the set of all z whose distance Iz - al from 1I is greater than PI but less 
than P2. Similarly, the closed annulus PI ~ Iz - al ~ P2 includes the two circles. 

Half-Planes. By the (open) upper half-plane we mean the set of all points: = x + iy 
such that y > O. Similarly, the condition y < 0 defines the lower half-plane, x > 0 the 
right half-plane, and x < 0 the left half-plane. 

For Reference: Concepts on Sets in the 
Complex Plane 
To Our discussion of special sets let us add some general concepts related to sets that we 
shall need throughout Chaps. 13-18: keep in mind that you can find them here. 

By a point set in the complex plane we mean any sort of collection of finitely many 
or infinitely many points. Examples are the solutions of a quadratic equation, the points 
of a line, the points in the interior of a circle as well as the sets discussed just before. 

A set S is called open if every point of S has a neighborhood consisting entirely of 
points that belong to S. For example, the points in the interior of a circle or a square form 
an open set, and so do the points of the right half-plane Re z = x > O. 

A set S is called connected if any two of its points can be joined by a broken line of 
finitely many straight-line segments all of whose points belong to S. An open and connected 
set is called a domain. Thus an open disk and an open annulus are domains. An open 
square with a diagonal removed is not a domain since this set is not connected. (Why?) 

The complement of a set S in the complex plane is the set of all points of the complex 
plane that do 1I0t belo1lg to S. A set S is called closed if its complement is open. For 
example, the points on and inside the unit circle form a closed set ("closed unit disk") 
since its complement Izl > I is open. 

A boundary point of a set S is a point every neighborhood of which contains both 
points that belong to S and points that do not belong to S. For example, the boundary 
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points of an annulus are the points on the two bounding circles. Clearly, if a set S is open. 
then no boundary point belongs to S; if S is closed, then every boundary point belongs to 
S. The set of all boundary points of a set S is called the boundary of S. 

A region is a set consisting of a domain plus, perhaps, some or all of it'> boundary 
points. WARNING! "Domain" is the modem term for an open connected set. 
Nevertheless, some authors still call a domain a "region" and others make no distinction 
between the two terms. 

Complex Function 
Complex analysis is concerned with complex functions that are differentiable in some 
domain. Hence we should first say what we mean by a complex function and then define 
the concepts of limit and derivative in complex. This discussion will be similar to that in 
calculus. Nevertheless it needs great attention because it will show interesting basic 
differences between real and complex calculus. 

Recall from calculus that a real function f defined on a set S of real numbers (usually 
an interval) is a rule that assigns to every x in S a real number f(x), called the value of 
f at x. Now in complex, S is a set of complex numbers. And a function f defined on S is 
a rule that assigns to every.::: in S a complex number lV, called the vallie of fat.:::. We write 

w = f(.:::). 

Here z varies in S and is called a complex variable. The set S is called the domain of 
definition of f or, briefly, the domain of f. (In most cases S will be open and connected, 
thus a domain as defined just before.) 

Example: w = fez) = Z2 + 3.::: is a complex function defined for all z; that is, its domain 
S is the whole complex plane. 

The set of all values of a function f is called the range qf f. 
w is complex, and we write w = u + iv, where u and v are the real and imaginary 

parts, respectively. Now H' depends on .::: = x + iy. Hence u becomes a real function of x 
and y. and so does v. We may thus write 

w = fez) = u(x, y) + iv(x, y). 

This shows thaI a complex function f(z) is equivalent to a pair of real functions u(x, v) 
and vex, y), each depending on the two real variables x and y. 

E X AMP L E 1 Function of a Complex Variable 

Let w = 1(:) = ;;:2 + 3::. Find II and v and calculate the value of I at :: = I + 3i. 

Solutio1l. /I = Re 1(:::) = x 2 
- .\"2 + 3~ and v = 2~y + 3y. Also. 

1(1 + 3i) = (I + 3i)2 + 30 + 3i) = I - 9 + 6i + 3 + 9i = - 5 + 15i. 

This shows that 11(1. 3) = -5 and vO. 3) = 15. Check this by using the expressions for II and v. • 

E X AMP L E 2 Function of a Complex Variable 

Let w = f(:;:) = 2iz + 6z. Find u and v and the vallie of f at z = ~ + 4i. 

Solution. 1(;::) = 2i(x + iy) + 6(x - iy) gives Lt(x. y) = 6x - 2)" and vex. y) = 2.< - 6.\". Also, 

I(! + 4i) = 2i(~ + 4i) + 6(! - 4i) = i - 8 + 3 - 24i = -5 - 23;. 

Check thIS a~ III Example I. • 
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Remarks on Notation and Terminology 

1. Strictly speaking, fez) denotes the value of f at z, but it is a convenient abuse of 
language to talk about the junction fez) (instead of the junction f), thereby exhibiting the 
notation for the independent variable. 

2. We assume all functions to be sillgle-valued relatiolls, as usual: to each.: in S there 
corresponds but one value w = f(.:) (but. of course, several z. may give the same value 
tv = fez), just as in calculus). Accordingly, we shall not lise the term "multi valued 
function" (used in some books on complex analysis) for a multivalued relation. in which 
to a.: there corresponds more than one w. 

Limit, Continuity 
A function f(;:.) is said to have the limit I as ;:. approaches a point ':0, written 

(1) lim fez) = I, 
z-Z'o 

if f is defined in a neighborhood of ':0 (except perhaps at Zo itself) and if the values 
of f are "close" to I for all z. "close" to Zo; in precise terms, if for every positive real E 

we can find a positive real 0 such that for all z * ':0 in the disk Iz - 201 < 0 (Fig. 330) 
we have 

(2) If(z) - II < E; 

geometrically. if for every.::: * ':0 in that 8-disk the value of f lies in the disk (2). 

Formally, this definition is similar to that in calculus. but there is a big difference. 
Whereas in the real case, x can approach an Xo only along the real line. here, by definition. 
z may approach Zofrolll allY direction in the complex plane. This will be quite es~ential 
in what follows. 

If a limit exists, it is unique. (See Team Project 26.) 

A function fez) is said to be continuous at z = ':0 if f(.:o) is defined and 

(3) lim f(.:) = f(;:.o)· 
Z-Zo 

Note that by definition of a limit this implies that fez) is defined in some neighborhood 
of ':0' 

f(;:.) is said to be continuous in a domain if it is continuous at each point of this domain. 

y v 

,,.---- ........ , 
--.1_ , " ---- " I --"-0 , 
, f(z) I 
I E~l , 
,.....------ I 
, I 

, " U 
.... " x 

' .... _---,,. 
Fig. :no. Limit 
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Derivative 
The derivative of a complex function f at a point ':0 is written J' (~o) and is defined by 

(4) 

provided this limit exists. Then f is said to be differentiable at zoo If we write b.z = :: - ':0, 

we have z = '::0 + .1.: and (4) takes the fonn 

(4') 
fez) - f(zo) 

f' (zo) = lim 
2-20 Z - 20 

Now comes an important point. Remember that, by the definition of limit. f(.::) is defined 
in a neighborhood of Zo and z in (4') may approach Zo from any direction in the complex 
plane Hence differentiability at '::0 means that. along whatever path.:: approaches ':0' the 
quotient in (4') always approaches a certain value and all these values are equal. This is 
important and should be kept in mind. 

E X AMP L E 1 Differentiability. Derivative 

The function I(;:;) = ~2 is differentiable for all.: and has the derivative I'(.:) = 2.: because 

• 
The differentiation rules are the same as in real calculus, since their proofs are literally 
the same. Thus for any analytic functions f and g and constants c we have 

(cf)' = cJ', (f + g)' = J' + g', (fg)' = f'g + fg', (;)' = 

as well as the chain rule and the power rule (:::n)' = 11Z
n - 1 (11 integer). 

J'g - fg' 

If 

Also, if f(.::) is differentiable at zoo it is continuous at '::0' (See Team Project 26.) 

E X AMP L E 4 i not Differentiable 

It may come as a surprise that there are many complex functions that do not have a derivative at any point. For 

instance. II.:) = ;: = f - iy is such a function. To ~ee this. we write .l:: = .l" + ;.ly and obtain 

(5) 
I(~ + .l::) - I(::) 

Cl.:: 

(z + j.::) - ;: 

Cl.7 

Cl.x - iCl.y 

Cl.x + iCl.y 

If .ly = O. thi, i, + I. If j.x = O. this is - I. Thu, (5) approaches + I along path I in Fig. 331 but -I along 

path H. Hence. by definition. the limit of (5) as .l: -> 0 does not exist at any.:. • 

y 

x 

Fig. 331. Paths in (5) 
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DEFINITION 

Surprising as Example 4 may be. it merely illustrates that differentiability of a compler 
function is a rather severe requirement. 

The idea of proof (approach of z. from different directions) is basic and will be used 
again as the crucial argument in the next section. 

Analytic Functions 
Complex analysis is concerned with the theory and application of "analytic functions," 
that is. functions that are differentiable in some domain. so that we can do "calculus in 
complex." The definition is as follows. 

Analyticity 

A function f(::.) is said to be allalytic ill a domaill D if f(~) is defined and 
differentiable at all points of D. The function f(z.) is said to be analytic at a point 
Z. = Zo in D if fez) is analytic in a neighborhood of zoo 

Also, by an analytic function we mean a function that is analytic in some domain. 

Hence analyticity of fez) at :0 means that fez) has a derivative at every point in some 
neighborhood of Zo (including Zo itself since, by definition, Zo is a point of all its 
neighborhoods). This concept is motivated by the fact that it is of no practical interest if 
a function is differentiable merely at a single point ::'0 but not throughout some 
neighborhood of zoo Team Project 26 gives an example. 

A more modem term for analytic in D is bolomorphic in D. 

E X AMP L E 5 Polynomials, Rational Functions 

The nonnegative integer powers I, z, ::.2 •••• are analytic in the entire complex plane. and so are polynomials, 
that is, functions of the form 

where Co • •••• Cn are complex constants. 
The quotient of two polynomials g(::.) and h(;;:), 

g(::.) 
I(:) = he:) , 

is called a rational function. This I is analytic except at the points where /i(::;) = 0: here we assume that common 
factors of .Ii and h have been canceled. 

Many further analytic functions will be considered in the next sections and Chapters. • 
The concepts discussed in this section extend familiar concepts of calculus. Most important 
is the concept of an analytic function, the exclusive concern of complex analysis. Although 
many simple functions are not analytic, the large variety of remaining functions will yield 
a most beautiful branch of mathematics that is very useful in engineering and physics. 

11-101 CURVES AND REGIONS OF 
PRACTICAL INTEREST 

Find and sketch or graph the sets in the complex plane given 
by 

1. Iz - 3 - 2il = ~ 2. 1 ~ Iz - I + 4il ~ 5 

3. 0 < Iz - 11 < 1 

5. 1m Z2 = 2 

7. Iz + 11 = Iz - 11 
9. Re z 21m.:: 

4. -7r<Re;:<7r 

6.Rez>-I 

8. IArg zl ~ ~7r 
10. Re (1/:) < 1 
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11. WRITING PROJECT. Sets in the Complex Plane. 
Extend the part of the text on sets in the complex plane 
by fonnulating that part in your own words and 
including examples of your own and comparing with 
calculus when applicable. 

COMPLEX FUNCTIONS AND DERIVATIVES 

112-151 Function Values. Find Re I and 1m f. Also find 
their values at the given point :::. 

12. f = 3::: 2 
- 6::: + 3i, z = 2 + 

13. f .:::/(z + I), z = 4 - 5i 

14. f 1/( I - :::), ::: = l + !i 
15. f 1/:::2, ::: = I + ; 

116-191 Continuity. Find out (and give reason) whether 
.f(z) is continuous at ::: = 0 if I(O) = 0 and for z =1= 0 the 
function I is equal to: 

16. [Re (::2)]/ld2 

18. 1z12 Re (1/::) 

17. [1m (::2)]/1z1 

19. (1m ::)/(1 

120-241 Derivative. Differentiate 

20. (.:::2 - 9)/(:::2 + I) 21. (:3 + ;)2 

22. (3:: + 4i)/( 1.5;: - 2) 23. i/(l - ;::)2 

24. ::2/(: + ;)2 

1:::1) 

25. CAS PROJECT. Graphing Functions. Find and 
graph Re f. 1m f. and If I as surfaces over the ::-plane. 
Also graph the two families of curves Re Ie::) = COllSt 

and 1m if:::) = COllst in the same figure, and the curves 
If(zli = COIlS! in anoth€r figure, where (a) fez) = ::2, 

(b) I(z) = liz, (c) fez) = Z4. 

26. TEAM PROJECT. Limit, Continuity, Derivative 
(a) Limit. Prove that (I) is equivalent to the pair of 
relations 

lim Re i(z) = Re t, lim 1m Ie::) = 1m l. 
2-----;"2'0 Z-Zo 

(b) Limit. If lim I(:::) exists, show that this limit is 
unique. 

z-zo 

(e) Continuity. If:::}o ::2' ... are complex numbers for 
which lim ::" = a, and if i(:) is continuous at 

'it_CO 

z = a, show that lim i(::n) = i(a). 
n-----'""x 

(d) Continuity. If if:::) is differentiable at :::0' show that 
if:::) is continuous at :::0' 

(e) Differentiability. Show that if::) = Re z = x is 
not differentiable at any z. Can you find other such 
functions? 

(l) Differentiability. Show that if::) = 1:::12 is 
differentiable only at:: = 0; hence it is nowhere analytic. 

13.4 Cauchy-Riemann Equations. 
Laplace's Equation 

Tlte Cauchy-Riemall1l equatiolls are tile most importallt equatiolls ill tltis chapter and 
one of the pillars on which complex analysis rests. They provide a criterion (a test) for 
the analyticity of a complex function 

w = fez) = u(x, y) + iv(x, y). 

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and 
v satisfy the two Cauchy-Riemann equations4 

(1) 

4 The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians 
BERNHARD RIEMANN (l1l26-Hl66) and KARL WEIERSTRASS (1815 ·1897: see also Sec. 15.5) are the 
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Gilttingen. where 
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is 
used in basic calculus courses. and made important contributions to differential equations. number theory. and 
mathematical physics. He also developed the s(}-called Riemannian geometry. which is the mathematical 
foundation of Einstein's theory of relativity; see Ref. [GR9] in App. I. 


