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The complex conjugate is important because it permits us to switch from complex 

to real. Indeed, by multiplication, zz = x 2 + )'2 (verify!). By addition and subtraction. 

z + Z = 2x. z - z = 2iy. We thus obtain for the real part x and the imaginary part y 
(not iy!) of::: = .\ + iy the important formulas 

I I 
(8) Re z = x = 2 (::: + Z), 1m z = y = --;;: (z - z). 

_I 

If z is real, Z = x, then Z = z by the definition of Z, and conversely. 
Working with conjugates is easy, since we have 

(9) 

E X AMP L E 3 Illustration of (8) and (9) 

Let Zl = 4 + 3i and :2 = 2 + 5i. Then by (8), 

I 3i + 3i 
1m:1 = 2i [(4 + 3i) - (4 - 3i)] = -2-i- = 3. 

Also, the multiplication formula in (9) is verified by 

(':1':2) ~ (4 + 3i)(2 + 5i) = (-7 + 26i) = -7 - 26i. 

Zl::2 = (4 - 3i)(2 - 5;) = -7 - 26i. 

===== --.•. ........ : ... -.-. to. "1-=--
1. (powersofi)Showthari2 = -I, i3 = -i, i4 = I, 

;5 = i .... and IIi = -i. Ili2 = -I. lIi3 = i ..... 

2. (Rotation) \1ultiplication by i is geometrically a 
counterclockwise rotation through rr12 (90°). Verify 
this by graphing <. and iz and the angle of rotarian for 
z = 2 + 2i, : = -I - 5i, z = 4 - 3i. 

3. (Dhision) Verify the calculation in (7). 

4. (Multiplication) If the product of two complex numbers 
is zero, show that at least one factor must be zero. 

13. (4z 1 - :2)2 

15. (Zl + z2)/(zl - Z2) 

116-]2] Let z = x + iy. Find: 

16. Im:3, (1m Z)3 

17. Re (lIZ) 

18. 1m [0 + i)8;;:2] 

19. Re (1/z2) 

• 

S. Show that: = x + iy is pure imaginary if and onJy 
if;: = -:. 

6. (Laws for conjugates) Verify (9) for Zl = 24 + 10i. 

20. (Laws of addition and multiplication) Derive the 
following laws for complex numbers from the 
corresponding laws for real numbers. 

':2 = 4 + 6i. 

17-151 COMPLEX ARITHMETIC 

Let': l = 2 + 3i and Z2 = 4 - 5i. Showing the details 
of your work. find (in the form x + iy): 

7. (5':1 + 3::zf 8. ;:1;:2 

9. Re (1/: 1
2

) 10. Re (:22), (Re 22)2 

(::1 + ':2) + ':3 = ':1 + (:::2 + ':3)' 

(Associative laws) 

(ZlZ2)Z3 = Zl(Z2Z3) 

(Distributive law) 

o + Z = Z + 0 = z, 
Z + (- z) = (- z) + Z = 0, Z' 1 z. 
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13.2 Polar Form of Complex Numbers. 
Powers and Roots 

The complex plane becomes even more useful and gives further insight into the arithmetic 
operations for complex numbers if besides the xy-coordinates we also employ the usual 
polar coordinates r. e defined by 

(1) x = r cos e, y= r sin e. 

We see that then::: = x + iy takes the so-called polar form 

(2) ::: = r(cos e + i sin 8). 

r is called the absolute value or modulus of.: and is denoted by Izl. Hence 

(3) 1::1 = r = V.~ + );2 = V2 . 

Geometrically, Izl is the distance of the point z from the origin (Fig. 320). Similarly, 
1'::1 - :::21 is the distance between Zl and 22 (Fig. 321). 

e is called the argument of z and is denoted by arg z. Thus (Fig. 320) 

(4) 
y e = arg::: = arctan .:.... 
X 

(z *" 0). 

Geometrically, e is the directed angle from the positive x-axis to OP in Fig. 320. Here. as 
in calculus, all angles are measured in radians and positive in the counterclockwise sense. 

For z = 0 this angle e is undefined. (Why?) For a given z *" 0 it is determined only 
up to integer multiples of 27r since cosine and sine are periodic with period 27r. But one 
often wants to specify a unique value of arg ::: of a given::: *" O. For this reason one defines 
the principal value Arg::: (with capital A!) of arg ::: by the double inequality 

(5) -7r < Arg z ~ 7r. 

Then we have Arg z = 0 for positive real.:: = x, which is practical, and Arg z = 7r (not 
-7r!) for negative real :::, e.g., for z = -4. The principal value (5) will be important in 
connection with roots, the complex logarithm (Sec. 13.7), and certain integrals. Obviously, 
for a given z *" 0 the other values of arg ::: are arg::: = Arg::: ± 21l7r (11 = ± I. ±2 ... '). 
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Fig. 320. Complex plane, polar form 

of a complex number 
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Fig. 321. Distance between two 
points in the complex plane 



608 CHAP. 13 Complex Numbers and Functions 

E X AMP L E 1 Polar Form of Complex Numbers. Principal Value Arg z 

y z = I + ; (Fig. 322) has the polar form z = V2 (COS!7T + i sin !7T). Hence we obtain 

1 + i arg::: =!7T:!: 21l7T(1l = D, I." .), and Arg::: =!7T (the principal value). 

Similarly. z = 3 + 3V3i = 6 (cos ~7T + i sin ~7T). Izl = 6. and Arg::: = ~7T. • 
lfl4 

x 
CArTION! [n using (4), we must pay attention to the quadrant in which::: lies, since 
tan 6 has period 7r, so that the arguments of z and -z have the same tangent. Example: 

g. 322. Example 1 for 61 = arg (1 + i) and 62 = arg (-] - i) we have tan 61 = tan 62 = 1. 

A 

Triangle Inequality 
Inequalities such as Xl < X2 make sense for real numbers, but not in complex because 
there is 110 lIatural WllY of ordering complex 11 umbers. However, inequalities between 
absolute values (which are real!), such as IZII < 1:::21 (meaning that ZI is closer to the origin 
than Z2) are of great importance. The daily bread of the complex analyst is the triangle 
inequality 

(6) (Fig. 323) 

which we shall use quite frequently. This inequality follows by noting that the three points 
0, .(;1' and;::1 + ':2 are the vertices of a triangle (Fig. 323) with sides 1z.1, 1.:21, and 1;::1 + 221. 
and one side cannot exceed the sum of the other two sides. A formal proof is left to the 
reader (Prob. 35). (The triangle degenerates if:::l and :::2 lie on the same straight line through 
the origin.) 

Y I -,P" ~"." 
~ 

x 

Fig. 323. Triangle inequality 

By induction we obtain from (6) the generalized triangle inequality 

(6*) 17 + ~ + ... + 7 I :so; Iz I + 17 I + ... + Iz I' -1 ~2 -n - 1 -2 n , 

that is. the absolute value of a SUIIl callnot exceed the sum of the absolute vailies of The 
terms. 

.. 2 Triangle Inequality 

If:::l = I + ; and :::2 = -2 + 3;. then (sketch a figure!) 

1:::1 + :::21 = I-I + 4il = \'17 = 4.123 < \'2 + Vi] = 5.020. • 
Multiplication and Division in Polar Form 
This will give us a "geometrical"' understanding of multiplication and division. Let 

and 
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Multiplication. By (3) in Sec. 13.1 the product is at first 

The addition rules for the sine and cosine [(6) in App. A3.1] now yield 

(7) 

Taking absolute values on both sides of (7), we see that the absolute value of a product 
equals the product of the absolute values of the factors, 

(8) 

Taking arguments in (7) shows that the argument of a product equals the sum of the 
arguments of the factors, 

(9) (up to multiples of 27T). 

Division. We have ~l = (ZlIz2)z2. Hence IZ11 = I (zI 1z2)z21 = IZ11z211z21 and by division 
by 1'<:21 

(10) 

(11) 
Zl 

arg - = arg Z 1 - arg Z2 (up to multiples of 27T). 
22 

Combining (10) and (II) we also have the analog of (7), 

(12) 

To comprehend this formula. note that it is the polar form of a complex number of absolute 
value r1/r2 and argument (it - 82 . But these are the absolute value and argument of zl lz2 , 

as we can see from (10). (II), and the polar forms of Zl and Z2. 

E X AMP L E 3 Illustration of Formulas (8)-(11) 

Let Zl = -2 + 2; and::2 = 3i. Then ~IZ2 = -6 - 6i, zl fz2 = 213 + (213);. Hence (make a sketch) 

and for the argumems we obtain Arg::1 = 3m4, Arg;:2 = 7[12, 

37[ 
Arg (::1::2) = - 4 = Arg;:1 + Arg::2 - 27[, Arg (::/<:2) = ; = Arg Z1 - Arg ;:2· • 
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E X AMP L E 4 Integer Powers of z. De Moivre's Formula 

From (8) and (9) with ~1 = ~2 = Z we obtain by induction for 11 = O. 1,2 .... 

(13) Z,n = rn (COS ne + i sin I/e). 

Similarly. (l~) with::1 = I and::2 = :" gives (I3)for 11 = - I, -2 ..... For 1::1 = r = I, tormula (13) becomes 
De Moivre's formula3 

(13*) (cos e + i sin e)'" = cos I/e + i sin nfl. 

We can use this to express cos 118 and sin lI8 in terms of powers of cos 8 and sin 8. For instance, for II = 2 we 
have on the left cos2 0 + 2; cos 0 sin 0 - sin2 O. Taking the real and imaginary parts on both sides of (13"') 
with /I = 2 gives the familiar formulas 

cos 28 = cos2 0 - sin2 8, sin 20 = 2 cos 0 sin O. 

This shows that complex methods often simplify the derivation of real formulas. Try /I = 3. • 
Roots 
If ;: = w" (n = 1. 2, .. '). then to each value of w there corresponds olle value of ;:. We 
shall immediately see that, conversely, to a given z =1= 0 there correspond precisely 11 
distinct values of w. Each of these values is called an nth root of ;:, and we write 

(14) 
~nf 

W = V z. 

Hence this symbol is l1lultivalued, namely, n-va/ued. The 11 values of ~ can be obtained 
as follows. We write;: and w in polar form 

z = r(cos e + i sin tJ) and w = R(cos c/J + i sin c/J). 

Then the equation w" = z becomes. by De Moivre's formula (with c/J instead of e) 

w" = R"(cos Ilc/J + i sin 11c/J) = .: = r(cos e + i sin e). 

The absolute values on both sides must be equal: thus. R n = r. so that R = Vr , where 
~"f v r is positive real (an absolute value must be nonnegative!) and thus uniquely determined. 
Equating the arguments 11c/J and e and recalling that e is determined only up to integer 
multiples of 21T, we obtain 

e 2k1T 
11c/J = e + 2k1T, thus c/J= + 

11 n 

where k is an integer. For k = O. I, .... n - I we get 11 distinct values of w. Further 
integers of k would give values already obtained. For instance, k = n gives 2k7r1n = 271", 

3 ABRAHAM DE MOIVRE (1667-1754), French mathematician. who pioneered the use of complex numbers 
in trigonometry and also contributed to probability theory (see Sec. 24.8). 
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hence the w corresponding to k = 0, etc. Consequently, Vz, for z *- 0, has the 11 distinct 
values 

(15) 
~nl ~nl ( () + 2k7r .' () + 2k7r) v z = v r cos + 1 Sin ----

11 11 

~nl 
where k = 0, I, ... , 11 - 1. These n values lie on a circle of radius v r with center at 
the origin and constitute the vertices of a regular polygon of 11 sides. The value of Vz 
obtained by taking the principal value of arg z and k = 0 in (15) is called the principal 

~"I value of w = v .:: . 
Taking.:: = I in (15), we have Izl = r = I and Arg::: = O. Then (15) gives 

(16) 
~nr. 2br 2br 
v 1 = cos -- + i sin -- , k = 0, 1, .... n - 1. 

n n 

These 11 values are called the nth roots of unity. They lie on the circle of radius I and 
center 0, briefly called the unit circle (and used quite frequently!). Figures 324-326 show 
~3r.1 - I _1 + 1~ r;;3 .... V11 - + I +' d ~5r.l v I - , 2 - 2 V .:j I., - - • _I, an VI. 

If w denotes the value corresponding to k = I in (6). then the 11 value" of VI can be 
written as 

More generally, if WI is any nth root of an arbitrary complex number z (*- 0), then the 

II values of Vz in (15) are 

(17) 

because multiplying ~~'! by wk corresponds to increasing the argument of WI by 2k7r/n. 
Formula (17) motivates the introduction of roots of unity and shows their usefulness. 

y 

OJ 

x 

Fig. 324. Vl 

11-81 POLAR FORM 

Do these problems very carefully since polar forms will be 
needed frequently. Represent in polar form and graph in 
the complex plane as in Fig. 322 on p. 608. (Show the 
details of your work.) 

y 

OJ 

Fig. 325. ~l 

L 3 - 3i 

3. -5 

1 + 
5. 

1 - ; 

:r 

y 

OJ 

Fig. 326. "\ll 

2. 2i. -2; 

4. ~ + ~1Ti 

6. 3V2 + 2i 

-VI - (2/3); 

x 
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7. 
-6 + 5; 

3i 

2 + 3; 
8. 5 + 4i 

[9-151 PRINCIPAL ARGUMENT 

Determine the principal value of the argument. 

9. - I - i 10. - 20 + ;, - 20 - ; 

11. 4 ::':: 3; 

13. 7 ::':: 7; 

IS. (9 + 9;)3 

12. -7T2 

14. (l + i)12 

116-20 I CONVERSION TO X + iy 
Represent in the form x + iy and graph it in the complex 
plane. 

16. COS!7T + ; sin (::'::!7T) 

18. 4(COS!7T ::':: ; sin !7T) 

20. 12(cos ~7T + ; sin ~7T) 

121-251 ROOTS 

17. 3(cos 0.2 + ; sin 0.2) 

19. cos (-I) + ; sin (-I) 

Find and graph all roots in the complex plane. 

21. V-i 22. {Y] 

23. ~ 24. ~ 3 + 4; 

2S.~ 

26. TEAM PROJECT. Square Root. (a) Show that 
w = ~ has the values 

}\'1 = Vi- [cos ~ + ; sin ~ ] ' 

(b) Obtain from (8) the often more practical formula 

(19) V~ = ::,::[v'~ (1.;:1 +x) + (signy)iv'~ (izl +x)j 

where sign y = I if y ~ 0, sign y = -I if y < 0, 
and all square roots of positive numbers are taken 
with positive sign. Hint: Use (10) in App. A3.1 with 
x = 012. 

(e) Find the square roots of 4;, 16 - 30i, and 
9 + 8 v7 i by both (18) and (19) and comment on the 
work involved. 

(d) Do some further examples of your own and apply 
a method of checking your results. 

127-301 EQUATIONS 

Solve and graph all solutions, showing the details: 

27. ::2 - (8 - 5i)::; + 40 - 20; = 0 (Use (19).) 

28. ::4 + (5 - 14i)::2 - (24 + Wi) = 0 

29. 8::;2 - (36 - 6i)z + 42 - I Ii = 0 

30. Z4 + 16 = O. Then use the solutions to factor Z4 + 16 
into quadratic factors with real coefficients. 

31. CAS PROJECT. Roots of Unity and Their Graphs. 
Write a program for calculating these roots and for 
graphing them as poims on the unit circle. Apply the 
program to z n = 1 with n = 2, 3. . . . , 10. Then extend 
the program to one for arbitrary roots. using an idea 
near the end of the text, and apply the program to 
examples of your choice. 

132-351 INEQUALITIES AND AN EQUATION 

Verify or prove as indicated. 

32. (Re and 1m) Prove IRe zl ~ Izl, lIm zl ~ Izl· 

33. (parallelogram equality) Prove 

1::1 + 2212 + 1.:::1 - ::;212 = 2(h12 + IZ212). 

Explain the name. 

34. (Triangle inequality) Verify (6) for ZI = 4 + 7i. 
::2 = 5 + 1;. 

35. (Triangle inequality) Prove (6). 

13.3 Derivative. Analytic Function 
Our study of complex functions will involve point sets in the complex plane. Most 
important will be the following ones. 

Circles and Disks. Half-Planes 
The unit circle Izl = 1 (Fig. 327) has already occurred in Sec. 13.2. Figure 328 shows a 
general circle of radius p and center a. Its equation is 

Iz - al = p 


