

12-2 The Small Open Economy Under Floating Exchange Rates

Before analyzing the impact of policies in an open economy, we must specify the international monetary system in which the country has chosen to operate. That is, we must consider how people engaged in international trade and finance can convert the currency of one country into the currency of another.

We start with the system relevant for most major economies today: **floating exchange rates**. Under a system of floating exchange rates, the exchange rate is set by market forces and is allowed to fluctuate in response to changing economic conditions. In this case, the exchange rate *e* adjusts to achieve simultaneous equilibrium in the goods market and the money market. When something happens to change that equilibrium, the exchange rate is allowed to move to a new equilibrium value.

Let's now consider three policies that can change the equilibrium: fiscal policy, monetary policy, and trade policy. Our goal is to use the Mundell–Fleming model to show the impact of policy changes and to understand the economic forces at work as the economy moves from one equilibrium to another.

Fiscal Policy

Suppose that the government stimulates domestic spending by increasing government purchases or by cutting taxes. Because such expansionary fiscal policy increases planned expenditure, it shifts the *IS** curve to the right, as in Figure 12-4. As a result, the exchange rate appreciates, while the level of income remains the same.

Notice that fiscal policy has very different effects in a small open economy than it does in a closed economy. In the closed-economy IS-LM model, a fiscal expansion raises income, whereas in a small open economy with a floating exchange rate, a fiscal expansion leaves income at the same level. Mechanically, the difference arises because the LM^* curve is vertical, while the LM curve we used to study a closed economy is upward sloping. But this explanation is not very satisfying. What are the economic forces that lie behind the different outcomes? To answer this question, we must think through what is happening to the international flow of capital and the implications of these capital flows for the domestic economy.

The interest rate and the exchange rate are the key variables in the story. When income rises in a closed economy, the interest rate rises, because higher income increases the demand for money. That is not possible in a small open economy because, as soon as the interest rate starts to rise above the world interest rate r^* , capital quickly flows in from abroad to take advantage of the higher return. As this capital inflow pushes the interest rate back to r^* , it also has another effect: because foreign investors need to buy the domestic currency to invest in the domestic economy, the capital inflow increases the demand for the domestic currency in the market for foreign-currency exchange, bidding up the value of the domestic currency. The appreciation of the domestic currency makes domestic goods expensive relative to foreign goods, reducing net exports. The fall in net exports exactly offsets the effects of the expansionary fiscal policy on income.

Why is the fall in net exports so great that it renders fiscal policy powerless to influence income? To answer this question, consider the equation that describes the money market:

$$M/P = L(r, Y).$$

In both closed and open economies, the quantity of real money balances supplied M/P is fixed by the central bank (which sets M) and the assumption of sticky prices (which fixes P). The quantity demanded (determined by r and Y) must equal this fixed supply. In a closed economy, a fiscal expansion causes the equilibrium interest rate to rise. This increase in the interest rate (which reduces the quantity of money demanded) implies an increase in equilibrium income (which raises the quantity of money demanded); these two effects together maintain equilibrium in the money market. By contrast, in a small open economy, r is fixed at r^* , so there is only one level of income that can satisfy this equation, and this level of income does not change when fiscal policy changes. Thus, when the government increases spending or cuts taxes, the appreciation of the currency and the fall in net exports must be large enough to offset fully the expansionary effect of the policy on income.

Monetary Policy

Suppose now that the central bank increases the money supply. Because the price level is assumed to be fixed, the increase in the money supply means an increase in real money balances. The increase in real balances shifts the LM^* curve to the right, as in Figure 12-5. Hence, an increase in the money supply raises income and lowers the exchange rate.

Although monetary policy influences income in an open economy, as it does in a closed economy, the monetary transmission mechanism is different. Recall that in a closed economy an increase in the money supply increases spending because it lowers the interest rate and stimulates investment. In a small open economy, this channel of monetary transmission is not available because the interest rate is fixed by the world interest rate. So how does monetary policy

influence spending? To answer this question, we once again need to think about the international flow of capital and its implications for the domestic economy.

The interest rate and the exchange rate are again the key variables. As soon as an increase in the money supply starts putting downward pressure on the domestic interest rate, capital flows out of the economy, as investors seek a higher return elsewhere. This capital outflow prevents the domestic interest rate from falling below the world interest rate r^* . It also has another effect: because investing abroad requires converting domestic currency into foreign currency, the capital outflow increases the supply of the domestic currency in the market for foreigncurrency exchange, causing the domestic currency to depreciate in value. This depreciation makes domestic goods inexpensive relative to foreign goods, stimulating net exports and thus total income. Hence, in a small open economy, monetary policy influences income by altering the exchange rate rather than the interest rate.

Trade Policy

Suppose that the government reduces the demand for imported goods by imposing an import quota or a tariff. What happens to aggregate income and the exchange rate? How does the economy reach its new equilibrium?

Because net exports equal exports minus imports, a reduction in imports means an increase in net exports. That is, the net-exports schedule shifts to the right, as in Figure 12-6. This shift in the net-exports schedule increases planned expenditure and thus moves the IS^* curve to the right. Because the LM^* curve is vertical, the trade restriction raises the exchange rate but does not affect income.

The economic forces behind this transition are similar to the case of expansionary fiscal policy. Because net exports are a component of GDP, the rightward shift in the net-exports schedule, other things equal, puts upward pressure on income Y; an increase in Y, in turn, increases money demand and puts upward pressure on the interest rate r. Foreign capital quickly responds by flowing into the domestic economy, pushing the interest rate back to the world interest rate r^* and causing the domestic currency to appreciate in value. Finally, the appreciation of the currency makes domestic goods more expensive relative to foreign goods, which decreases net exports NX and returns income Y to its initial level.

Often a stated goal of policies to restrict trade is to alter the trade balance *NX*. Yet, as we first saw in Chapter 5, such policies do not necessarily have that effect. The same conclusion holds in the Mundell–Fleming model under floating exchange rates. Recall that

$$NX(e) = Y - C(Y - T) - I(r^*) - G.$$

Because a trade restriction does not affect income, consumption, investment, or government purchases, it does not affect the trade balance. Although the shift in the net-exports schedule tends to raise NX, the increase in the exchange rate reduces NX by the same amount. The overall effect is simply *less trade*. The domestic economy imports less than it did before the trade restriction, but it exports less as well.

12-3 The Small Open Economy Under Fixed Exchange Rates

We now turn to the second type of exchange-rate system: **fixed exchange rates.** Under a fixed exchange rate, the central bank announces a value for the exchange rate and stands ready to buy and sell the domestic currency to keep the exchange rate at its announced level. In the 1950s and 1960s, most of the world's major economies, including that of the United States, operated within

the Bretton Woods system—an international monetary system under which most governments agreed to fix exchange rates. The world abandoned this system in the early 1970s, and most exchange rates were allowed to float. Yet fixed exchange rates are not merely of historical interest. More recently, China fixed the value of its currency against the U.S. dollar—a policy that, as we will see, was a source of some tension between the two countries.

In this section we discuss how such a system works, and we examine the impact of economic policies on an economy with a fixed exchange rate. Later in the chapter we examine the pros and cons of fixed exchange rates.

How a Fixed-Exchange-Rate System Works

Under a system of fixed exchange rates, a central bank stands ready to buy or sell the domestic currency for foreign currencies at a predetermined price. For example, suppose the Fed announced that it was going to fix the exchange rate at 100 yen per dollar. It would then stand ready to give \$1 in exchange for 100 yen or to give 100 yen in exchange for \$1. To carry out this policy, the Fed would need a reserve of dollars (which it can print) and a reserve of yen (which it must have purchased previously).

A fixed exchange rate dedicates a country's monetary policy to the single goal of keeping the exchange rate at the announced level. In other words, the essence of a fixed-exchange-rate system is the commitment of the central bank to allow the money supply to adjust to whatever level will ensure that the equilibrium exchange rate in the market for foreign-currency exchange equals the announced exchange rate. Moreover, as long as the central bank stands ready to buy or sell foreign currency at the fixed exchange rate, the money supply adjusts automatically to the necessary level.

To see how fixing the exchange rate determines the money supply, consider the following example. Suppose the Fed announces that it will fix the exchange rate at 100 yen per dollar, but, in the current equilibrium with the current money supply, the market exchange rate is 150 yen per dollar. This situation is illustrated in panel (a) of Figure 12-7. Notice that there is a profit opportunity: an arbitrageur could buy 300 yen in the foreign-exchange market for \$2 and then sell the yen to the Fed for \$3, making a \$1 profit. When the Fed buys these yen from the arbitrageur, the dollars it pays for them automatically increase the money supply. The rise in the money supply shifts the LM^* curve to the right, lowering the equilibrium exchange rate. In this way, the money supply continues to rise until the equilibrium exchange rate falls to the announced level.

Conversely, suppose that when the Fed announces that it will fix the exchange rate at 100 yen per dollar, the equilibrium has a market exchange rate of 50 yen per dollar. Panel (b) of Figure 12-7 shows this situation. In this case, an arbitrageur could make a profit by buying 100 yen from the Fed for \$1 and then selling the yen in the marketplace for \$2. When the Fed sells these yen, the \$1 it receives automatically reduces the money supply. The fall in the money supply shifts the LM^* curve to the left, raising the equilibrium exchange rate rises to the announced level.

It is important to understand that this exchange-rate system fixes the *nominal* exchange rate. Whether it also fixes the real exchange rate depends on the time horizon under consideration. If prices are flexible, as they are in the long run, then the real exchange rate can change even while the nominal exchange rate is fixed. Therefore, in the long run described in Chapter 5, a policy to fix the nominal exchange rate would not influence any real variable, including the real exchange rate. A fixed nominal exchange rate would influence only the money supply and the price level. Yet in the short run described by the Mundell–Fleming model, prices are fixed, so a fixed nominal exchange rate implies a fixed real exchange rate as well.

CASE STUDY

The International Gold Standard

During the late nineteenth and early twentieth centuries, most of the world's major economies operated under the gold standard. Each country maintained a reserve of gold and agreed to exchange one unit of its currency for a specified amount of gold. Through the gold standard, the world's economies maintained a system of fixed exchange rates.

To see how an international gold standard fixes exchange rates, suppose that the U.S. Treasury stands ready to buy or sell 1 ounce of gold for \$100, and the Bank of England stands ready to buy or sell 1 ounce of gold for 100 pounds. Together, these policies fix the rate of exchange between dollars and pounds: \$1 must trade for 1 pound. Otherwise, the law of one price would be violated, and it would be profitable to buy gold in one country and sell it in the other.

For example, suppose that the market exchange rate is 2 pounds per dollar. In this case, an arbitrageur could buy 200 pounds for \$100, use the pounds to buy 2 ounces of gold from the Bank of England, bring the gold to the United States, and sell it to the Treasury for \$200—making a \$100 profit. Moreover, by bringing the gold to the United States from England, the arbitrageur would increase the money supply in the United States and decrease the money supply in England.

Thus, during the era of the gold standard, the international transport of gold by arbitrageurs was an automatic mechanism adjusting the money supply and stabilizing exchange rates. This system did not completely fix exchange rates, because shipping gold across the Atlantic was costly. Yet the international gold standard did keep the exchange rate within a range dictated by transportation costs. It thereby prevented large and persistent movements in exchange rates.³

Fiscal Policy

Let's now examine how economic policies affect a small open economy with a fixed exchange rate. Suppose that the government stimulates domestic spending by increasing government purchases or by cutting taxes. This policy shifts the IS^* curve to the right, as in Figure 12-8, putting upward pressure on the market exchange rate. But because the central bank stands ready to trade foreign and domestic currency at the fixed exchange rate, arbitrageurs quickly respond to the rising exchange rate by selling foreign currency to the central bank, leading to an automatic monetary expansion. The rise in the money supply shifts the LM^* curve to the right. Thus, under a fixed exchange rate, a fiscal expansion raises aggregate income.

Monetary Policy

Imagine that a central bank operating with a fixed exchange rate tries to increase the money supply—for example, by buying bonds from the public. What would happen? The initial impact of this policy is to shift the LM^* curve to the right, lowering the exchange rate, as in Figure 12-9. But, because the central bank is committed to trading foreign and domestic currency at a fixed exchange rate, arbitrageurs quickly respond to the falling exchange rate by selling the domestic

³ For more on how the gold standard worked, see the essays in Barry Eichengreen, ed., *The Gold Standard in Theory and History* (New York: Methuen, 1985).

currency to the central bank, causing the money supply and the LM^* curve to return to their initial positions. Hence, monetary policy as usually conducted is ineffectual under a fixed exchange rate. By agreeing to fix the exchange rate, the central bank gives up its control over the money supply.

A Monetary Expansion Under Fixed Exchange Rates If the Fed tries to increase the money supply—for example, by buying bonds from the public—it will put downward pressure on the exchange rate. To maintain the fixed exchange rate, the money supply and the *LM** curve must return to their initial positions. Hence, under fixed exchange rates, normal monetary policy is ineffectual. A country with a fixed exchange rate can, however, conduct a type of monetary policy: it can decide to change the level at which the exchange rate is fixed. A reduction in the official value of the currency is called a **devaluation**, and an increase in its official value is called a **revaluation**. In the Mundell–Fleming model, a devaluation shifts the LM^* curve to the right; it acts like an increase in the money supply under a floating exchange rate. A devaluation thus expands net exports and raises aggregate income. Conversely, a revaluation shifts the LM^* curve to the left, reduces net exports, and lowers aggregate income.

CASE STUDY

Devaluation and the Recovery From the Great Depression

The Great Depression of the 1930s was a global problem. Although events in the United States may have precipitated the downturn, all of the world's major economies experienced huge declines in production and employment. Yet not all governments responded to this calamity in the same way.

One key difference among governments was how committed they were to the fixed exchange rate set by the international gold standard. Some countries, such as France, Germany, Italy, and the Netherlands, maintained the old rate of exchange between gold and currency. Other countries, such as Denmark, Finland, Norway, Sweden, and the United Kingdom, reduced the amount of gold they would pay for each unit of currency by about 50 percent. By reducing the gold content of their currencies, these governments devalued their currencies relative to those of other countries.

The subsequent experience of these two groups of countries conforms to the prediction of the Mundell–Fleming model. Those countries that pursued a policy of devaluation recovered quickly from the Depression. The lower value of the currency raised the money supply, stimulated exports, and expanded production. By contrast, those countries that maintained the old exchange rate suffered longer with a depressed level of economic activity.⁴

Trade Policy

Suppose that the government reduces imports by imposing an import quota or a tariff. This policy shifts the net-exports schedule to the right and thus shifts the IS^* curve to the right, as in Figure 12-10. The shift in the IS^* curve tends to raise the exchange rate. To keep the exchange rate at the fixed level, the money supply must rise, shifting the LM^* curve to the right.

The result of a trade restriction under a fixed exchange rate is very different from that under a floating exchange rate. In both cases, a trade restriction shifts

⁴ Barry Eichengreen and Jeffrey Sachs, "Exchange Rates and Economic Recovery in the 1930s," *Journal of Economic History* 45 (December 1985): 925–946.

the net-exports schedule to the right, but only under a fixed exchange rate does a trade restriction increase net exports *NX*. The reason is that a trade restriction under a fixed exchange rate induces monetary expansion rather than an appreciation of the currency. The monetary expansion, in turn, raises aggregate income. Recall the accounting identity

$$NX = S - I.$$

When income rises, saving also rises, and this implies an increase in net exports.

Policy in the Mundell-Fleming Model: A Summary

The Mundell–Fleming model shows that the effect of almost any economic policy on a small open economy depends on whether the exchange rate is floating or fixed. Table 12-1 summarizes our analysis of the short-run effects of fiscal, monetary, and trade policies on income, the exchange rate, and the trade balance. What is most striking is that all of the results are different under floating and fixed exchange rates.

To be more specific, the Mundell–Fleming model shows that the power of monetary and fiscal policy to influence aggregate income depends on the exchange-rate regime. Under floating exchange rates, only monetary policy can affect income. The usual expansionary impact of fiscal policy is offset by a rise in the value of the currency and a decrease in net exports. Under fixed exchange rates, only fiscal policy can affect income. The normal potency of monetary policy is lost because the money supply is dedicated to maintaining the exchange rate at the announced level. In summary, the IS curve shows the combinations of the interest rate and the level of income that are consistent with equilibrium in the market for goods and services. The IS curve is drawn for a given fiscal policy. Changes in fiscal policy that raise the demand for goods and services shift the IS curve to the right. Changes in fiscal policy that reduce the demand for goods and services shift the IS curve to the left.

10-2 The Money Market and the *LM* Curve

The *LM* curve plots the relationship between the interest rate and the level of income that arises in the market for money balances. To understand this relationship, we begin by looking at a theory of the interest rate, called the **theory** of liquidity preference.

The Theory of Liquidity Preference

In his classic work *The General Theory*, Keynes offered his view of how the interest rate is determined in the short run. His explanation is called the theory of liquidity preference because it posits that the interest rate adjusts to balance the supply and demand for the economy's most liquid asset—money. Just as the Keynesian cross is a building block for the *IS* curve, the theory of liquidity preference is a building block for the *LM* curve.

To develop this theory, we begin with the supply of real money balances. If M stands for the supply of money and P stands for the price level, then M/P is the supply of real money balances. The theory of liquidity preference assumes there is a fixed supply of real money balances. That is,

$$(M/P)^{s} = \overline{M}/\overline{P}.$$

The money supply M is an exogenous policy variable chosen by a central bank, such as the Federal Reserve. The price level P is also an exogenous variable in this model. (We take the price level as given because the IS-LM model—our ultimate goal in this chapter—explains the short run when the price level is fixed.) These assumptions imply that the supply of real money balances is fixed and, in particular, does not depend on the interest rate. Thus, when we plot the supply of real money balances against the interest rate in Figure 10-9, we obtain a vertical supply curve.

Next, consider the demand for real money balances. The theory of liquidity preference posits that the interest rate is one determinant of how much money people choose to hold. The underlying reason is that the interest rate is the opportunity cost of holding money: it is what you forgo by holding some of your assets as money, which does not bear interest, instead of as interest-bearing bank deposits or bonds. When the interest rate rises, people want to hold less of their wealth in the form of money. We can write the demand for real money balances as

$$(M/P)^{d} = L(r),$$

where the function L() shows that the quantity of money demanded depends on the interest rate. The demand curve in Figure 10-9 slopes downward because higher interest rates reduce the quantity of real money balances demanded.⁵

According to the theory of liquidity preference, the supply and demand for real money balances determine what interest rate prevails in the economy. That is, the interest rate adjusts to equilibrate the money market. As the figure shows, at the equilibrium interest rate, the quantity of real money balances demanded equals the quantity supplied.

How does the interest rate get to this equilibrium of money supply and money demand? The adjustment occurs because whenever the money market is not in equilibrium, people try to adjust their portfolios of assets and, in the process, alter the interest rate. For instance, if the interest rate is above the equilibrium level, the quantity of real money balances supplied exceeds the quantity demanded. Individuals holding the excess supply of money try to convert some of their non-interest-bearing money into interest-bearing bank deposits or bonds. Banks and bond issuers, who prefer to pay lower interest rates, respond to this excess supply of money by lowering the interest rates they offer. Conversely, if the interest rate is below the equilibrium level, so that the quantity of money demanded exceeds the quantity supplied, individuals try to obtain money by selling bonds or making bank withdrawals. To attract now-scarcer funds, banks and bond issuers respond by increasing the interest rates they offer. Eventually,

⁵ Note that *r* is being used to denote the interest rate here, as it was in our discussion of the *IS* curve. More accurately, it is the nominal interest rate that determines money demand and the real interest rate that determines investment. To keep things simple, we are ignoring expected inflation, which creates the difference between the real and nominal interest rates. For short-run analysis, it is often realistic to assume that expected inflation is constant, in which case real and nominal interest rates move together. The role of expected inflation in the *IS*–*LM* model is explored in Chapter 11.

the interest rate reaches the equilibrium level, at which people are content with their portfolios of monetary and nonmonetary assets.

Now that we have seen how the interest rate is determined, we can use the theory of liquidity preference to show how the interest rate responds to changes in the supply of money. Suppose, for instance, that the Fed suddenly decreases the money supply. A fall in M reduces M/P, because P is fixed in the model. The supply of real money balances shifts to the left, as in Figure 10-10. The equilibrium interest rate rises from r_1 to r_2 , and the higher interest rate makes people satisfied to hold the smaller quantity of real money supply. Thus, according to the theory of liquidity preference, a decrease in the money supply raises the interest rate, and an increase in the money supply lowers the interest rate.

CASE STUDY

Does a Monetary Tightening Raise or Lower Interest Rates?

How does a tightening of monetary policy influence nominal interest rates? According to the theories we have been developing, the answer depends on the time horizon. Our analysis of the Fisher effect in Chapter 4 suggests that, in the long run when prices are flexible, a reduction in money growth would lower inflation, and this in turn would lead to lower nominal interest rates. Yet the theory of liquidity preference predicts that, in the short run when prices are sticky, anti-inflationary monetary policy would lead to falling real money balances and higher interest rates.

Both conclusions are consistent with experience. A good illustration occurred during the early 1980s, when the U.S. economy saw the largest and quickest reduction in inflation in recent history.

Here's the background: By the late 1970s, inflation in the U.S. economy had reached the double-digit range and was a major national problem. In 1979 consumer prices were rising at a rate of 11.3 percent per year. In October of that year, only two months after becoming the chairman of the Federal Reserve, Paul Volcker decided that it was time to change course. He announced that monetary policy would aim to reduce the rate of inflation. This announcement began a period of tight money that, by 1983, brought the inflation rate down to about 3 percent.

Let's look at what happened to nominal interest rates. If we look at the period immediately after the October 1979 announcement of tighter monetary policy, we see a fall in real money balances and a rise in the interest rate—just as the theory of liquidity preference predicts. Nominal interest rates on three-month Treasury bills rose from 10 percent just before the October 1979 announcement to 12 percent in 1980 and 14 percent in 1981. Yet these high interest rates were only temporary. As Volcker's change in monetary policy lowered inflation and expectations of inflation, nominal interest rates gradually fell, reaching 6 percent in 1986.

This episode illustrates a general lesson: to understand the link between monetary policy and nominal interest rates, we need to keep in mind both the theory of liquidity preference and the Fisher effect. A monetary tightening leads to higher nominal interest rates in the short run and lower nominal interest rates in the long run.

Income, Money Demand, and the LM Curve

Having developed the theory of liquidity preference as an explanation for how the interest rate is determined, we can now use the theory to derive the LM curve. We begin by considering the following question: how does a change in the economy's level of income Y affect the market for real money balances? The answer (which should be familiar from Chapter 4) is that the level of income affects the demand for money. When income is high, expenditure is high, so people engage in more transactions that require the use of money. Thus, greater income implies greater money demand. We can express these ideas by writing the money demand function as

$$(M/P)^{d} = L(r, Y).$$

The quantity of real money balances demanded is negatively related to the interest rate and positively related to income.

Using the theory of liquidity preference, we can figure out what happens to the equilibrium interest rate when the level of income changes. For example, consider what happens in Figure 10-11 when income increases from Y_1 to Y_2 . As panel (a) illustrates, this increase in income shifts the money demand curve to the right. With the supply of real money balances unchanged, the interest rate must rise from r_1 to r_2 to equilibrate the money market. Therefore, according to the theory of liquidity preference, higher income leads to a higher interest rate.

The *LM* curve shown in panel (b) of Figure 10–11 summarizes this relationship between the level of income and the interest rate. Each point on the *LM* curve represents equilibrium in the money market, and the curve illustrates how

the equilibrium interest rate depends on the level of income. The higher the level of income, the higher the demand for real money balances, and the higher the equilibrium interest rate. For this reason, the *LM* curve slopes upward.

How Monetary Policy Shifts the LM Curve

The *LM* curve tells us the interest rate that equilibrates the money market at any level of income. Yet, as we saw earlier, the equilibrium interest rate also depends on the supply of real money balances M/P. This means that the *LM* curve is drawn for a *given* supply of real money balances. If real money balances change—for example, if the Fed alters the money supply—the *LM* curve shifts.

We can use the theory of liquidity preference to understand how monetary policy shifts the LM curve. Suppose that the Fed decreases the money supply from M_1 to M_2 , which causes the supply of real money balances to fall from M_1/P to M_2/P . Figure 10-12 shows what happens. Holding constant the amount of income and thus the demand curve for real money balances, we see that a reduction in the supply of real money balances raises the interest rate that equilibrates the money market. Hence, a decrease in the money supply shifts the LM curve upward.

In summary, the LM curve shows the combinations of the interest rate and the level of income that are consistent with equilibrium in the market for real money balances. The LM curve is drawn for a given supply of real money balances. Decreases in the supply of real money balances shift the LM curve upward. Increases in the supply of real money balances shift the LM curve downward.

10-3 Conclusion: The Short-Run Equilibrium

We now have all the pieces of the *IS-LM* model. The two equations of this model are

$$Y = C(Y - T) + I(r) + G \qquad IS,$$
$$M/P = L(r, Y) \qquad LM.$$

The model takes fiscal policy G and T, monetary policy M, and the price level P as exogenous. Given these exogenous variables, the *IS* curve provides the combinations of r and Y that satisfy the equation representing the goods market, and the *LM* curve provides the combinations of r and Y that satisfy the equation representing the money market. These two curves are shown together in Figure 10-13.

The equilibrium of the economy is the point at which the IS curve and the LM curve cross. This point gives the interest rate r and the level of income Y that satisfy conditions for equilibrium in both the goods market and the money market. In other words, at this intersection, actual expenditure equals planned expenditure, and the demand for real money balances equals the supply.

As we conclude this chapter, let's recall that our ultimate goal in developing the *IS*–*LM* model is to analyze short-run fluctuations in economic activity. Figure 10-14 illustrates how the different pieces of our theory fit together.

In this chapter we developed the Keynesian cross and the theory of liquidity preference as building blocks for the *IS*–*LM* model. As we see more fully in the next chapter, the *IS*–*LM* model helps explain the position and slope of

The aggregate demand curve is part of the model of aggregate supply and aggregate demand, which economists use to explain short-run fluctuations in economic activity.

the aggregate demand curve. The aggregate demand curve, in turn, is a piece of the model of aggregate supply and aggregate demand, which economists use to explain the short-run effects of policy changes and other events on national income.

Summary

- 1. The Keynesian cross is a basic model of income determination. It takes fiscal policy and planned investment as exogenous and then shows that there is one level of national income at which actual expenditure equals planned expenditure. It shows that changes in fiscal policy have a multiplied impact on income.
- 2. Once we allow planned investment to depend on the interest rate, the Keynesian cross yields a relationship between the interest rate and national income. A higher interest rate lowers planned investment, and this in turn lowers national income. The downward-sloping *IS* curve summarizes this negative relationship between the interest rate and income.
- **3.** The theory of liquidity preference is a basic model of the determination of the interest rate. It takes the money supply and the price level as exogenous and assumes that the interest rate adjusts to equilibrate the supply and demand for real money balances. The theory implies that increases in the money supply lower the interest rate.
- 4. Once we allow the demand for real money balances to depend on national income, the theory of liquidity preference yields a relationship between income and the interest rate. A higher level of income raises the demand for real money balances, and this in turn raises the interest rate. The upward-sloping *LM* curve summarizes this positive relationship between income and the interest rate.
- **5.** The *IS*–*LM* model combines the elements of the Keynesian cross and the elements of the theory of liquidity preference. The *IS* curve shows the points that satisfy equilibrium in the goods market, and the *LM* curve shows the points that satisfy equilibrium in the money market. The intersection of the *IS* and *LM* curves shows the interest rate and income that satisfy equilibrium in both markets for a given price level.

KEY CONCEPTS

IS–LM model IS curve LM curve Keynesian cross Government-purchases multiplier Tax multiplier Theory of liquidity preference

QUESTIONS FOR REVIEW

- **1.** Use the Keynesian cross to explain why fiscal policy has a multiplied effect on national income.
- **2.** Use the theory of liquidity preference to explain why an increase in the money supply lowers the

interest rate. What does this explanation assume about the price level?

- 3. Why does the IS curve slope downward?
- 4. Why does the *LM* curve slope upward?

PROBLEMS AND APPLICATIONS

- **1.** Use the Keynesian cross to predict the impact on equilibrium GDP of
 - a. An increase in government purchases.
 - b. An increase in taxes.
 - c. Equal-sized increases in both government purchases and taxes.
- 2. In the Keynesian cross, assume that the consumption function is given by

$$C = 200 + 0.75 (Y - T)$$

Planned investment is 100; government purchases and taxes are both 100.

- a. Graph planned expenditure as a function of income.
- b. What is the equilibrium level of income?
- c. If government purchases increase to 125, what is the new equilibrium income?
- d. What level of government purchases is needed to achieve an income of 1,600?
- 3. Although our development of the Keynesian cross in this chapter assumes that taxes are a fixed amount, in many countries (including the United States) taxes depend on income. Let's represent the tax system by writing tax revenue as

$$T = \overline{T} + tY,$$

where \overline{T} and t are parameters of the tax code. The parameter t is the marginal tax rate: if income rises by \$1, taxes rise by $t \times 1 .

- a. How does this tax system change the way consumption responds to changes in GDP?
- b. In the Keynesian cross, how does this tax system alter the government-purchases multiplier?
- c. In the *IS*–*LM* model, how does this tax system alter the slope of the *IS* curve?
- **4.** Consider the impact of an increase in thriftiness in the Keynesian cross. Suppose the consumption function is

$$C = \overline{C} + c(Y - T),$$

where \overline{C} is a parameter called *autonomous consumption* and *c* is the marginal propensity to consume.

- a. What happens to equilibrium income when the society becomes more thrifty, as represented by a decline in \overline{C} ?
- b. What happens to equilibrium saving?
- c. Why do you suppose this result is called the *paradox of thrifi*?
- d. Does this paradox arise in the classical model of Chapter 3? Why or why not?

5. Suppose that the money demand function is $(M/P)^d = 1,000 - 100r,$

where r is the interest rate in percent. The money supply M is 1,000 and the price level P is 2.

- a. Graph the supply and demand for real money balances.
- b. What is the equilibrium interest rate?
- c. Assume that the price level is fixed. What happens to the equilibrium interest rate if the supply of money is raised from 1,000 to 1,200?
- d. If the Fed wishes to raise the interest rate to 7 percent, what money supply should it set?

Aggregate Demand II: Applying the *IS-LM* Model

Science is a parasite: the greater the patient population the better the advance in physiology and pathology; and out of pathology arises therapy. The year 1932 was the trough of the great depression, and from its rotten soil was belatedly begot a new subject that today we call macroeconomics.

-Paul Samuelson

n Chapter 10 we assembled the pieces of the *IS*–*LM* model as a step toward understanding short-run economic fluctuations. We saw that the *IS* curve represents the equilibrium in the market for goods and services, that the *LM* curve represents the equilibrium in the market for real money balances, and that the *IS* and *LM* curves together determine the interest rate and national income in the short run when the price level is fixed. Now we turn our attention to applying the *IS*–*LM* model to analyze three issues.

First, we examine the potential causes of fluctuations in national income. We use the IS-LM model to see how changes in the exogenous variables (government purchases, taxes, and the money supply) influence the endogenous variables (the interest rate and national income) for a given price level. We also examine how various shocks to the goods market (the IS curve) and the money market (the LM curve) affect the interest rate and national income in the short run.

Second, we discuss how the *IS*–*LM* model fits into the model of aggregate supply and aggregate demand we introduced in Chapter 9. In particular, we examine how the *IS*–*LM* model provides a theory to explain the slope and position of the aggregate demand curve. Here we relax the assumption that the price level is fixed and show that the *IS*–*LM* model implies a negative relationship between the price level and national income. The model can also tell us what events shift the aggregate demand curve and in what direction.

Third, we examine the Great Depression of the 1930s. As this chapter's opening quotation indicates, this episode gave birth to short-run macroeconomic theory, for it led Keynes and his many followers to argue that aggregate demand was the key to understanding fluctuations in national income. With the benefit of hindsight, we can use the *IS*–*LM* model to discuss the various explanations