investment schedule. At a given world interest rate, investment is now higher. Because saving is unchanged, some investment must now be financed by borrowing from abroad. Because capital flows into the economy to finance the increased investment, the net capital outflow is negative. Put differently, because NX = S - I, the increase in I implies a decrease in NX. Hence, starting from balanced trade, an outward shift in the investment schedule causes a trade deficit.

Evaluating Economic Policy

Our model of the open economy shows that the flow of goods and services measured by the trade balance is inextricably connected to the international flow of funds for capital accumulation. The net capital outflow is the difference between domestic saving and domestic investment. Thus, the impact of economic policies on the trade balance can always be found by examining their impact on domestic saving and domestic investment. Policies that increase investment or decrease saving tend to cause a trade deficit, and policies that decrease investment or increase saving tend to cause a trade surplus.

Our analysis of the open economy has been positive, not normative. That is, our analysis of how economic policies influence the international flows of capital and goods has not told us whether these policies are desirable. Evaluating economic policies and their impact on the open economy is a frequent topic of debate among economists and policymakers.

When a country runs a trade deficit, policymakers must confront the question of whether it represents a national problem. Most economists view a trade deficit not as a problem in itself, but perhaps as a symptom of a problem. A trade deficit could be a reflection of low saving. In a closed economy, low saving leads to low investment and a smaller future capital stock. In an open economy, low saving leads to a trade deficit and a growing foreign debt, which eventually must be repaid. In both cases, high current consumption leads to lower future consumption, implying that future generations bear the burden of low national saving.

Yet trade deficits are not always a reflection of an economic malady. When poor rural economies develop into modern industrial economies, they sometimes finance their high levels of investment with foreign borrowing. In these cases, trade deficits are a sign of economic development. For example, South Korea ran large trade deficits throughout the 1970s, and it became one of the success stories of economic growth. The lesson is that one cannot judge economic performance from the trade balance alone. Instead, one must look at the underlying causes of the international flows.

CASE STUDY

The U.S. Trade Deficit

During the 1980s, 1990s, and 2000s, the United States ran large trade deficits. Panel (a) of Figure 5-6 documents this experience by showing net exports as a percentage of GDP. The exact size of the trade deficit fluctuated over time, but

Panel (b) shows national saving and investment as a percentage of GDP since 1960. The trade balance equals saving minus investment.

Source: U.S. Department of Commerce.

it was large throughout these three decades. In 2007, the trade deficit was \$708 billion, or 5.1 percent of GDP. As accounting identities require, this trade deficit had to be financed by borrowing from abroad (or, equivalently, by selling U.S. assets abroad). During this period, the United States went from being the world's largest creditor to the world's largest debtor.

What caused the U.S. trade deficit? There is no single explanation. But to understand some of the forces at work, it helps to look at national saving and domestic investment, as shown in panel (b) of the figure. Keep in mind that the trade deficit is the difference between saving and investment.

The start of the trade deficit coincided with a fall in national saving. This development can be explained by the expansionary fiscal policy in the 1980s. With the support of President Reagan, the U.S. Congress passed legislation in 1981 that substantially cut personal income taxes over the next three years. Because these tax cuts were not met with equal cuts in government spending, the federal budget went into deficit. These budget deficits were among the largest ever experienced in a period of peace and prosperity, and they continued long after Reagan left office. According to our model, such a policy should reduce national saving, thereby causing a trade deficit. And, in fact, that is exactly what happened. Because the government budget and trade balance went into deficit at roughly the same time, these shortfalls were called the *twin deficits*.

Things started to change in the 1990s, when the U.S. federal government got its fiscal house in order. The first President Bush and President Clinton both signed tax increases, while Congress kept a lid on spending. In addition to these policy changes, rapid productivity growth in the late 1990s raised incomes and, thus, further increased tax revenue. These developments moved the U.S. federal budget from deficit to surplus, which in turn caused national saving to rise.

In contrast to what our model predicts, the increase in national saving did not coincide with a shrinking trade deficit, because domestic investment rose at the same time. The likely explanation is that the boom in information technology caused an expansionary shift in the U.S. investment function. Even though fiscal policy was pushing the trade deficit toward surplus, the investment boom was an even stronger force pushing the trade balance toward deficit.

In the early 2000s, fiscal policy once again put downward pressure on national saving. With the second President Bush in the White House, tax cuts were signed into law in 2001 and 2003, while the war on terror led to substantial increases in government spending. The federal government was again running budget deficits. National saving fell to historic lows, and the trade deficit reached historic highs.

A few years later, the trade deficit started to shrink somewhat, as the economy experienced a substantial decline in housing prices (a phenomenon examined in Chapters 11 and 18). Lower housing prices lead to a substantial decline in residential investment. The trade deficit fell from 5.8 percent of GDP at its peak in 2006 to 4.7 percent in 2008.

The history of the U.S. trade deficit shows that this statistic, by itself, does not tell us much about what is happening in the economy. We have to look deeper at saving, investment, and the policies and events that cause them (and thus the trade balance) to change over time.¹

CASE STUDY

Why Doesn't Capital Flow to Poor Countries?

The U.S. trade deficit discussed in the previous Case Study represents a flow of capital into the United States from the rest of the world. What countries were the source of these capital flows? Because the world is a closed economy, the capital must have been coming from those countries that were running trade surpluses. In 2008, this group included many nations that were far poorer than the United States, such as Russia, Malaysia, Venezuela, and China. In these nations, saving exceeded investment in domestic capital. These countries were sending funds abroad to countries like the United States, where investment in domestic capital exceeded saving.

From one perspective, the direction of international capital flows is a paradox. Recall our discussion of production functions in Chapter 3. There, we established that an empirically realistic production function is the Cobb–Douglas form:

$$F(K,L) = A \ K^{\alpha} L^{1-\alpha},$$

where K is capital, L is labor, A is a variable representing the state of technology, and α is a parameter that determines capital's share of total income. For this production function, the marginal product of capital is

$$MPK = \alpha A (K/L)^{\alpha - 1}.$$

The marginal product of capital tells us how much extra output an extra unit of capital would produce. Because α is capital's share, it must be less than 1, so $\alpha - 1 < 0$. This means that an increase in K/L decreases MPK. In other words, holding other variables constant, the more capital a nation has, the less valuable an extra unit of capital is. This phenomenon of diminishing marginal product says that capital should be more valuable where capital is scarce.

This prediction, however, seems at odds with the international flow of capital represented by trade imbalances. Capital does not seem to flow to those nations where it should be most valuable. Instead of capital-rich countries like the United States lending to capital-poor countries, we often observe the opposite. Why is that?

One reason is that there are important differences among nations other than their accumulation of capital. Poor nations have not only lower levels of capital accumulation (represented by K/L) but also inferior production capabilities (rep-

¹ For more on this topic, see Catherine L. Mann, *Is the U.S. Trade Deficit Sustainable?* Institute for International Economics, 1999.

resented by the variable *A*). For example, compared to rich nations, poor nations may have less access to advanced technologies, lower levels of education (or *human capital*), or less efficient economic policies. Such differences could mean less output for given inputs of capital and labor; in the Cobb–Douglas production function, this is translated into a lower value of the parameter *A*. If so, then capital need not be more valuable in poor nations, even though capital is scarce.

A second reason capital might not flow to poor nations is that property rights are often not enforced. Corruption is much more prevalent; revolutions, coups, and expropriation of wealth are more common; and governments often default on their debts. So even if capital is more valuable in poor nations, foreigners may avoid investing their wealth there simply because they are afraid of losing it. Moreover, local investors face similar incentives. Imagine that you live in a poor nation and are lucky enough to have some wealth to invest; you might well decide that putting it in a safe country like the United States is your best option, even if capital is less valuable there than in your home country.

Whichever of these two reasons is correct, the challenge for poor nations is to find ways to reverse the situation. If these nations offered the same production efficiency and legal protections as the U.S. economy, the direction of international capital flows would likely reverse. The U.S. trade deficit would become a trade surplus, and capital would flow to these emerging nations. Such a change would help the poor of the world escape poverty.²

5-3 Exchange Rates

Having examined the international flows of capital and of goods and services, we now extend the analysis by considering the prices that apply to these transactions. The *exchange rate* between two countries is the price at which residents of those countries trade with each other. In this section we first examine precisely what the exchange rate measures, and we then discuss how exchange rates are determined.

Nominal and Real Exchange Rates

Economists distinguish between two exchange rates: the nominal exchange rate and the real exchange rate. Let's discuss each in turn and see how they are related.

The Nominal Exchange Rate The **nominal exchange rate** is the relative price of the currencies of two countries. For example, if the exchange rate between the U.S. dollar and the Japanese yen is 120 yen per dollar, then you can

² For more on this topic, see Robert E. Lucas, "Why Doesn't Capital Flow from Rich to Poor Countries?" *American Economic Review* 80 (May 1990): 92–96.

exchange one dollar for 120 yen in world markets for foreign currency. A Japanese who wants to obtain dollars would pay 120 yen for each dollar he bought. An American who wants to obtain yen would get 120 yen for each dollar he paid. When people refer to "the exchange rate" between two countries, they usually mean the nominal exchange rate.

Notice that an exchange rate can be reported in two ways. If one dollar buys 120 yen, then one yen buys 0.00833 dollar. We can say the exchange rate is 120 yen per dollar, or we can say the exchange rate is 0.00833 dollar per yen. Because 0.00833 equals 1/120, these two ways of expressing the exchange rate are equivalent.

This book always expresses the exchange rate in units of foreign currency per dollar. With this convention, a rise in the exchange rate—say, from 120 to 125 yen per dollar—is called an *appreciation* of the dollar; a fall in the exchange rate is called a *depreciation*. When the domestic currency appreciates, it buys more of the foreign currency; when it depreciates, it buys less. An appreciation is sometimes called a *strengthening* of the currency, and a depreciation is sometimes called a *weakening* of the currency.

The Real Exchange Rate The **real exchange rate** is the relative price of the goods of two countries. That is, the real exchange rate tells us the rate at which we can trade the goods of one country for the goods of another. The real exchange rate is sometimes called the *terms of trade*.

To see the relation between the real and nominal exchange rates, consider a single good produced in many countries: cars. Suppose an American car costs \$10,000 and a similar Japanese car costs 2,400,000 yen. To compare the prices of the two cars, we must convert them into a common currency. If a dollar is worth 120 yen, then the American car costs 1,200,000 yen. Comparing the price of the American car (1,200,000 yen) and the price of the Japanese car (2,400,000 yen), we conclude that the American car costs one-half of what the Japanese car costs. In other words, at current prices, we can exchange 2 American cars for 1 Japanese car.

We can summarize our calculation as follows:

 $\frac{\text{Real Exchange}}{\text{Rate}} = \frac{(120 \text{ yen/dollar}) \times (10,000 \text{ dollars/American Car})}{(2,400,000 \text{ yen/Japanese Car})}$ $= 0.5 \frac{\text{Japanese Car}}{\text{American Car}}.$

At these prices and this exchange rate, we obtain one-half of a Japanese car per American car. More generally, we can write this calculation as

$$\frac{\text{Real Exchange}}{\text{Rate}} = \frac{\text{Nominal Exchange Rate × Price of Domestic Good}}{\text{Price of Foreign Good}}$$

The rate at which we exchange foreign and domestic goods depends on the prices of the goods in the local currencies and on the rate at which the currencies are exchanged.

This calculation of the real exchange rate for a single good suggests how we should define the real exchange rate for a broader basket of goods. Let e be the nominal exchange rate (the number of yen per dollar), P be the price level in the United States (measured in dollars), and P^* be the price level in Japan (measured in yen). Then the real exchange rate ϵ is

RealNominalRatio ofExchange = Exchange
$$\times$$
PriceRateRateLevels ϵ e \times (P/P*).

The real exchange rate between two countries is computed from the nominal exchange rate and the price levels in the two countries. If the real exchange rate is high, foreign goods are relatively cheap, and domestic goods are relatively expensive. If the real exchange rate is low, foreign goods are relatively expensive, and domestic goods are relatively cheap.

The Real Exchange Rate and the Trade Balance

What macroeconomic influence does the real exchange rate exert? To answer this question, remember that the real exchange rate is nothing more than a relative price. Just as the relative price of hamburgers and pizza determines which you choose for lunch, the relative price of domestic and

foreign goods affects the demand for these goods.

Suppose first that the real exchange rate is low. In this case, because domestic goods are relatively cheap, domestic residents will want to purchase fewer imported goods: they will buy Fords rather than Toyotas, drink Coors rather than Heineken, and vacation in Florida rather than Italy. For the same reason, foreigners will want to buy many of our goods. As a result of both of these actions, the quantity of our net exports demanded will be high.

The opposite occurs if the real exchange rate is high. Because domestic goods are expensive relative to foreign goods, domestic residents will want to buy many imported goods, and foreigners will want to buy few of our goods. Therefore, the quantity of our net exports demanded will be low.

"How about Nebraska? The dollar's still strong in Nebraska."

We write this relationship between the real exchange rate and net exports as

$$NX = NX(\epsilon)$$

This equation states that net exports are a function of the real exchange rate. Figure 5-7 illustrates the negative relationship between the trade balance and the real exchange rate.

The Determinants of the Real Exchange Rate

We now have all the pieces needed to construct a model that explains what factors determine the real exchange rate. In particular, we combine the relationship between net exports and the real exchange rate we just discussed with the model of the trade balance we developed earlier in the chapter. We can summarize the analysis as follows:

- The real exchange rate is related to net exports. When the real exchange rate is lower, domestic goods are less expensive relative to foreign goods, and net exports are greater.
- The trade balance (net exports) must equal the net capital outflow, which in turn equals saving minus investment. Saving is fixed by the consumption function and fiscal policy; investment is fixed by the investment function and the world interest rate.

Figure 5-8 illustrates these two conditions. The line showing the relationship between net exports and the real exchange rate slopes downward because a low real exchange rate makes domestic goods relatively inexpensive. The line representing the excess of saving over investment, S - I, is vertical because neither saving nor investment depends on the real exchange rate. The crossing of these two lines determines the equilibrium real exchange rate.

Figure 5-8 looks like an ordinary supply-and-demand diagram. In fact, you can think of this diagram as representing the supply and demand for foreign-currency exchange. The vertical line, S - I, represents the net capital outflow and thus the supply of dollars to be exchanged into foreign currency and invested abroad. The downward-sloping line, $NX(\epsilon)$, represents the net demand for dollars coming from

foreigners who want dollars to buy our goods. At the equilibrium real exchange rate, the supply of dollars available from the net capital outflow balances the demand for dollars by foreigners buying our net exports.

How Policies Influence the Real Exchange Rate

We can use this model to show how the changes in economic policy we discussed earlier affect the real exchange rate.

Fiscal Policy at Home What happens to the real exchange rate if the government reduces national saving by increasing government purchases or cutting taxes? As we discussed earlier, this reduction in saving lowers S - I and thus NX. That is, the reduction in saving causes a trade deficit.

Figure 5-9 shows how the equilibrium real exchange rate adjusts to ensure that NX falls. The change in policy shifts the vertical S - I line to the left, lowering the supply of dollars to be invested abroad. The lower supply causes the equilibrium real exchange rate to rise from ϵ_1 to ϵ_2 —that is, the dollar becomes more valuable. Because of the rise in the value of the dollar, domestic goods become more expensive relative to foreign goods, which causes exports to fall and imports to rise. The change in exports and the change in imports both act to reduce net exports.

Fiscal Policy Abroad What happens to the real exchange rate if foreign governments increase government purchases or cut taxes? This change in fiscal policy reduces world saving and raises the world interest rate. The increase in the world interest rate reduces domestic investment *I*, which

raises S - I and thus NX. That is, the increase in the world interest rate causes a trade surplus.

Figure 5-10 shows that this change in policy shifts the vertical S - I line to the right, raising the supply of dollars to be invested abroad. The equilibrium real

The Impact of Expansionary Fiscal Policy Abroad on the Real Exchange Rate

Expansionary fiscal policy abroad reduces world saving and raises the world interest rate from r_1^* to r_2^* . The increase in the world interest rate reduces investment at home, which in turn raises the supply of dollars to be exchanged into foreign currencies. As a result, the equilibrium real exchange rate falls from ϵ_1 to ϵ_2 . exchange rate falls. That is, the dollar becomes less valuable, and domestic goods become less expensive relative to foreign goods.

Shifts in Investment Demand What happens to the real exchange rate if investment demand at home increases, perhaps because Congress passes an investment tax credit? At the given world interest rate, the increase in investment demand leads to higher investment. A higher value of I means lower values of S - I and NX. That is, the increase in investment demand causes a trade deficit.

Figure 5-11 shows that the increase in investment demand shifts the vertical S - I line to the left, reducing the supply of dollars to be invested abroad. The

equilibrium real exchange rate rises. Hence, when the investment tax credit makes investing in the United States more attractive, it also increases the value of the U.S. dollars necessary to make these investments. When the dollar appreciates, domestic goods become more expensive relative to foreign goods, and net exports fall.

The Effects of Trade Policies

Now that we have a model that explains the trade balance and the real exchange rate, we have the tools to examine the macroeconomic effects of trade policies. Trade policies, broadly defined, are policies designed to influence directly the amount of goods and services exported or imported. Most often, trade policies take the form of protecting domestic industries from foreign competition—either by placing a tax on foreign imports (a tariff) or restricting the amount of goods and services that can be imported (a quota).

As an example of a protectionist trade policy, consider what would happen if the government prohibited the import of foreign cars. For any given real exchange rate, imports would now be lower, implying that net exports (exports minus imports) would be higher. Thus, the net-exports schedule shifts outward, as in Figure 5-12. To see the effects of the policy, we compare the old equilibrium and the new equilibrium. In the new equilibrium, the real exchange rate is higher, and net exports are unchanged. Despite the shift in the net-exports schedule, the equilibrium level of net exports remains the same, because the protectionist policy does not alter either saving or investment.

This analysis shows that protectionist trade policies do not affect the trade balance. This surprising conclusion is often overlooked in the popular debate over trade policies. Because a trade deficit reflects an excess of imports over exports, one might guess that reducing imports—such as by prohibiting the import of foreign cars—would reduce a trade deficit. Yet our model shows that protectionist policies lead only to an appreciation of the real exchange rate. The increase in the price of domestic goods relative to foreign goods tends to lower net exports by stimulating imports and depressing exports. Thus, the

appreciation offsets the increase in net exports that is directly attributable to the trade restriction.

Although protectionist trade policies do not alter the trade balance, they do affect the amount of trade. As we have seen, because the real exchange rate appreciates, the goods and services we produce become more expensive relative to foreign goods and services. We therefore export less in the new equilibrium. Because net exports are unchanged, we must import less as well. (The appreciation of the exchange rate does stimulate imports to some extent, but this only partly offsets the decrease in imports due to the trade restriction.) Thus, protectionist policies reduce both the quantity of imports and the quantity of exports.

This fall in the total amount of trade is the reason economists almost always oppose protectionist policies. International trade benefits all countries by allowing each country to specialize in what it produces best and by providing each country with a greater variety of goods and services. Protectionist policies diminish these gains from trade. Although these policies benefit certain groups within society—for example, a ban on imported cars helps domestic car producers—society on average is worse off when policies reduce the amount of international trade.

The Determinants of the Nominal Exchange Rate

Having seen what determines the real exchange rate, we now turn our attention to the nominal exchange rate—the rate at which the currencies of two countries trade. Recall the relationship between the real and the nominal exchange rate:

RealNominalRatio ofExchange = Exchange
$$\times$$
PriceRateRateLevels ϵ = e \times (P/P*).

We can write the nominal exchange rate as

$$e = \epsilon \times (P^*/P)$$

This equation shows that the nominal exchange rate depends on the real exchange rate and the price levels in the two countries. Given the value of the real exchange rate, if the domestic price level P rises, then the nominal exchange rate e will fall: because a dollar is worth less, a dollar will buy fewer yen. However, if the Japanese price level P^* rises, then the nominal exchange rate will increase: because the yen is worth less, a dollar will buy more yen.

It is instructive to consider changes in exchange rates over time. The exchange rate equation can be written

% Change in e = % Change in $\epsilon + \%$ Change in $P^* - \%$ Change in P.

The percentage change in ϵ is the change in the real exchange rate. The percentage change in *P* is the domestic inflation rate π , and the percentage change in *P** is the foreign country's inflation rate π *. Thus, the percentage change in the nominal exchange rate is

% Change in e = % Change in ϵ + $(\pi^* - \pi)$ Percentage Change in Nominal Exchange Rate = Percentage Change in Real Exchange Rate + Difference in Inflation Rates.

This equation states that the percentage change in the nominal exchange rate between the currencies of two countries equals the percentage change in the real exchange rate plus the difference in their inflation rates. *If a country has a high rate of inflation relative to the United States, a dollar will buy an increasing amount of the foreign currency over time. If a country has a low rate of inflation relative to the United States, a dollar will buy a decreasing amount of the foreign currency over time.*

This analysis shows how monetary policy affects the nominal exchange rate. We know from Chapter 4 that high growth in the money supply leads to high inflation. Here, we have just seen that one consequence of high inflation is a depreciating currency: high π implies falling *e*. In other words, just as growth in the amount of money raises the price of goods measured in terms of money, it also tends to raise the price of foreign currencies measured in terms of the domestic currency.

CASE STUDY

Inflation and Nominal Exchange Rates

If we look at data on exchange rates and price levels of different countries, we quickly see the importance of inflation for explaining changes in the nominal exchange rate. The most dramatic examples come from periods of very high inflation. For example, the price level in Mexico rose by 2,300 percent from 1983 to 1988. Because of this inflation, the number of pesos a person could buy with a U.S. dollar rose from 144 in 1983 to 2,281 in 1988.

The same relationship holds true for countries with more moderate inflation. Figure 5-13 is a scatterplot showing the relationship between inflation and the exchange rate for 15 countries. On the horizontal axis is the difference between each country's average inflation rate and the average inflation rate of the United States ($\pi^* - \pi$). On the vertical axis is the average percentage change in the exchange rate between each country's currency and the U.S. dollar (percentage change in *e*). The positive relationship between these two variables is clear in this figure. Countries with relatively high inflation tend to have depreciating currencies (you can buy more of them with your dollars over time), and countries with relatively low inflation tend to have appreciating currencies (you can buy less of them with your dollars over time).

As an example, consider the exchange rate between Swiss francs and U.S. dollars. Both Switzerland and the United States have experienced inflation over the past thirty years, so both the franc and the dollar buy fewer goods than they once

did. But, as Figure 5–13 shows, inflation in Switzerland has been lower than inflation in the United States. This means that the value of the franc has fallen less than the value of the dollar. Therefore, the number of Swiss francs you can buy with a U.S. dollar has been falling over time.

The Special Case of Purchasing-Power Parity

A famous hypothesis in economics, called the *law of one price*, states that the same good cannot sell for different prices in different locations at the same time. If a bushel of wheat sold for less in New York than in Chicago, it would be profitable to buy wheat in New York and then sell it in Chicago. This profit opportunity would become quickly apparent to astute arbitrageurs—people who specialize in "buying low" in one market and "selling high" in another. As the arbitrageurs took advantage of this opportunity, they would increase the demand for wheat in New York and increase the supply of wheat in Chicago. Their actions would drive the price up in New York and down in Chicago, thereby ensuring that prices are equalized in the two markets.

The law of one price applied to the international marketplace is called **purchasing-power parity.** It states that if international arbitrage is possible, then a dollar (or any other currency) must have the same purchasing power in every country. The argument goes as follows. If a dollar could buy more wheat domestically than abroad, there would be opportunities to profit by buying wheat domestically and selling it abroad. Profit-seeking arbitrageurs would drive up the domestic price of wheat relative to the foreign price. Similarly, if a dollar could buy more wheat abroad than domestically, the arbitrageurs would buy wheat abroad and sell it domestically, driving down the domestic price relative to the foreign price. Thus, profit-seeking by international arbitrageurs causes wheat prices to be the same in all countries.

We can interpret the doctrine of purchasing-power parity using our model of the real exchange rate. The quick action of these international arbitrageurs implies that net exports are highly sensitive to small movements in the real exchange rate. A small decrease in the price of domestic goods relative to foreign goods—that is, a small decrease in the real exchange rate—causes arbitrageurs to buy goods domestically and sell them abroad. Similarly, a small increase in the relative price of domestic goods causes arbitrageurs to import goods from abroad. Therefore, as in Figure 5-14, the net-exports schedule is very flat at the real exchange rate that equalizes purchasing power among countries: any small movement in the real exchange rate leads to a large change in net exports. This extreme sensitivity of net exports guarantees that the equilibrium real exchange rate is always close to the level that ensures purchasing-power parity.

Purchasing-power parity has two important implications. First, because the net-exports schedule is flat, changes in saving or investment do not influence the real or nominal exchange rate. Second, because the real exchange rate is fixed, all changes in the nominal exchange rate result from changes in price levels.

Is this doctrine of purchasing-power parity realistic? Most economists believe that, despite its appealing logic, purchasing-power parity does not provide a com-

Purchasing-Power Parity The law of one price applied to the international marketplace suggests that net exports are highly sensitive to small movements in the real exchange rate. This high sensitivity is reflected here with a very flat net-exports schedule. pletely accurate description of the world. First, many goods are not easily traded. A haircut can be more expensive in Tokyo than in New York, yet there is no room for international arbitrage because it is impossible to transport haircuts. Second, even tradable goods are not always perfect substitutes. Some consumers prefer Toyotas, and others prefer Fords. Thus, the relative price of Toyotas and Fords can vary to some extent without leaving any profit opportunities. For these reasons, real exchange rates do in fact vary over time.

Although the doctrine of purchasing-power parity does not describe the world perfectly, it does provide a reason why movement in the real exchange rate will be limited. There is much validity to its underlying logic: the farther the real exchange rate drifts from the level predicted by purchasing-power parity, the greater the incentive for individuals to engage in international arbitrage in goods. We cannot rely on purchasing-power parity to eliminate all changes in the real exchange rate, but this doctrine does provide a reason to expect that fluctuations in the real exchange rate will typically be small or temporary.³

CASE STUDY

The Big Mac Around the World

The doctrine of purchasing-power parity says that after we adjust for exchange rates, we should find that goods sell for the same price everywhere. Conversely, it says that the exchange rate between two currencies should depend on the price levels in the two countries.

To see how well this doctrine works, *The Economist*, an international newsmagazine, regularly collects data on the price of a good sold in many countries: the McDonald's Big Mac hamburger. According to purchasing-power parity, the price of a Big Mac should be closely related to the country's nominal exchange rate. The higher the price of a Big Mac in the local currency, the higher the exchange rate (measured in units of local currency per U.S. dollar) should be.

Table 5-2 presents the international prices in 2008, when a Big Mac sold for \$3.57 in the United States (this was the average price in New York, San Francisco, Chicago, and Atlanta). With these data we can use the doctrine of purchasing-power parity to predict nominal exchange rates. For example, because a Big Mac cost 32 pesos in Mexico, we would predict that the exchange rate between the dollar and the peso was 32/3.57, or around 8.96, pesos per dollar. At this exchange rate, a Big Mac would have cost the same in Mexico and the United States.

Table 5-2 shows the predicted and actual exchange rates for 32 countries, ranked by the predicted exchange rate. You can see that the evidence on purchasing-power parity is mixed. As the last two columns show, the actual and predicted exchange rates are usually in the same ballpark. Our theory predicts, for

³ To learn more about purchasing-power parity, see Kenneth A. Froot and Kenneth Rogoff, "Perspectives on PPP and Long-Run Real Exchange Rates," in Gene M. Grossman and Kenneth Rogoff, eds., *Handbook of International Economics*, vol. 3 (Amsterdam: North-Holland, 1995).

TABLE 5-2

	Currency	Price of a Big Mac	Exchange Rate (per US dollar)	
Country			Predicted	Actual
Indonesia	Rupiah	18700.00	5238	9152
South Korea	Won	3200.00	896	1018
Chile	Peso	1550.00	434	494
Hungary	Forint	670.00	188	144
Japan	Yen	280.00	78.4	106.8
Taiwan	Dollar	75.00	21.0	30.4
Czech Republic	Koruna	66.10	18.5	14.5
Thailand	Baht	62.00	17.4	33.4
Russia	Rouble	59.00	16.5	23.2
Norway	Kroner	40.00	11.2	5.08
Sweden	Krona	38.00	10.6	5.96
Mexico	Peso	32.00	8.96	10.20
Denmark	Krone	28.00	7.84	4.70
South Africa	Rand	16.90	4.75	7.56
Hong Kong	Dollar	13.30	3.73	7.80
Egypt	Pound	13.00	3.64	5.31
China	Yuan	12.50	3.50	6.83
Argentina	Peso	11.00	3.08	3.02
Saudi Arabia	Riyal	10.00	2.80	3.75
UAE	Dirhams	10.00	2.80	3.67
Brazil	Real	7.50	2.10	1.58
Poland	Zloty	7.00	1.96	2.03
Switzerland	Franc	6.50	1.82	1.02
Malaysia	Ringgit	5.50	1.54	3.20
Turkey	Lire	5.15	1.44	1.19
New Zealand	Dollar	4.90	1.37	1.32
Canada	Dollar	4.09	1.15	1.00
Singapore	Dollar	3.95	1.11	1.35
United States	Dollar	3.57	1.00	1.00
Australia	Dollar	3.45	0.97	1.03
Euro Area	Euro	3.37	0.94	0.63
United Kingdom	Pound	2.29	0.64	0.50

Big Mac Prices and the Exchange Rate: An Application of Purchasing-Power Parity

Note: The predicted exchange rate is the exchange rate that would make the price of a Big Mac in that country equal to its price in the United States. *Source: The Economist,* July 24, 2008.

instance, that a U.S. dollar should buy the greatest number of Indonesian rupiahs and fewest British pounds, and this turns out to be true. In the case of Mexico, the predicted exchange rate of 8.96 pesos per dollar is close to the actual exchange rate of 10.2. Yet the theory's predictions are far from exact and, in many cases, are off by 30 percent or more. Hence, although the theory of purchasing-power parity provides a rough guide to the level of exchange rates, it does not explain exchange rates completely.

5-3 Conclusion: The United States as a Large Open Economy

In this chapter we have seen how a small open economy works. We have examined the determinants of the international flow of funds for capital accumulation and the international flow of goods and services. We have also examined the determinants of a country's real and nominal exchange rates. Our analysis shows how various policies—monetary policies, fiscal policies, and trade policies affect the trade balance and the exchange rate.

The economy we have studied is "small" in the sense that its interest rate is fixed by world financial markets. That is, we have assumed that this economy does not affect the world interest rate and that the economy can borrow and lend at the world interest rate in unlimited amounts. This assumption contrasts with the assumption we made when we studied the closed economy in Chapter 3. In the closed economy, the domestic interest rate equilibrates domestic saving and domestic investment, implying that policies that influence saving or investment alter the equilibrium interest rate.

Which of these analyses should we apply to an economy such as that of the United States? The answer is a little of both. The United States is neither so large nor so isolated that it is immune to developments occurring abroad. The large trade deficits of the 1980s, 1990s, and 2000s show the importance of international financial markets for funding U.S. investment. Hence, the closed-economy analysis of Chapter 3 cannot by itself fully explain the impact of policies on the U.S. economy.

Yet the U.S. economy is not so small and so open that the analysis of this chapter applies perfectly either. First, the United States is large enough that it can influence world financial markets. For example, large U.S. budget deficits were often blamed for the high real interest rates that prevailed throughout the world in the 1980s. Second, capital may not be perfectly mobile across countries. If individuals prefer holding their wealth in domestic rather than foreign assets, funds for capital accumulation will not flow freely to equate interest rates in all countries. For these two reasons, we cannot directly apply our model of the small open economy to the United States.

When analyzing policy for a country such as the United States, we need to combine the closed-economy logic of Chapter 3 and the small-open-economy logic of this chapter. The appendix to this chapter builds a model of an economy between these two extremes. In this intermediate case, there is international borrowing and lending, but the interest rate is not fixed by world financial markets. Instead, the more the economy borrows from abroad, the higher the interest rate it must offer foreign investors. The results, not surprisingly, are a mixture of the two polar cases we have already examined.

Consider, for example, a reduction in national saving due to a fiscal expansion. As in the closed economy, this policy raises the real interest rate and crowds out domestic investment. As in the small open economy, it also reduces the net capital outflow, leading to a trade deficit and an appreciation of the exchange rate. Hence, although the model of the small open economy examined here does not precisely describe an economy such as that of the United States, it does provide approximately the right answer to how policies affect the trade balance and the exchange rate.

Summary

- **1.** Net exports are the difference between exports and imports. They are equal to the difference between what we produce and what we demand for consumption, investment, and government purchases.
- **2.** The net capital outflow is the excess of domestic saving over domestic investment. The trade balance is the amount received for our net exports of goods and services. The national income accounts identity shows that the net capital outflow always equals the trade balance.
- **3.** The impact of any policy on the trade balance can be determined by examining its impact on saving and investment. Policies that raise saving or lower investment lead to a trade surplus, and policies that lower saving or raise investment lead to a trade deficit.
- **4.** The nominal exchange rate is the rate at which people trade the currency of one country for the currency of another country. The real exchange rate is the rate at which people trade the goods produced by the two countries. The real exchange rate equals the nominal exchange rate multiplied by the ratio of the price levels in the two countries.
- **5.** Because the real exchange rate is the price of domestic goods relative to foreign goods, an appreciation of the real exchange rate tends to reduce net exports. The equilibrium real exchange rate is the rate at which the quantity of net exports demanded equals the net capital outflow.
- **6.** The nominal exchange rate is determined by the real exchange rate and the price levels in the two countries. Other things equal, a high rate of inflation leads to a depreciating currency.

KEY CONCEPTS

Net exports Trade balance Net capital outflow Trade surplus and trade deficit Balanced trade Small open economy World interest rate Nominal exchange rate Real exchange rate Purchasing-power parity

QUESTIONS FOR REVIEW

- **1.** What are the net capital outflow and the trade balance? Explain how they are related.
- **2.** Define the nominal exchange rate and the real exchange rate.
- **3.** If a small open economy cuts defense spending, what happens to saving, investment, the trade balance, the interest rate, and the exchange rate?
- **4.** If a small open economy bans the import of Japanese DVD players, what happens to saving, investment, the trade balance, the interest rate, and the exchange rate?
- **5.** If Japan has low inflation and Mexico has high inflation, what will happen to the exchange rate between the Japanese yen and the Mexican peso?

PROBLEMS AND APPLICATIONS

- 1. Use the model of the small open economy to predict what would happen to the trade balance, the real exchange rate, and the nominal exchange rate in response to each of the following events.
 - a. A fall in consumer confidence about the future induces consumers to spend less and save more.
 - b. The introduction of a stylish line of Toyotas makes some consumers prefer foreign cars over domestic cars.
 - c. The introduction of automatic teller machines reduces the demand for money.
- **2.** Consider an economy described by the following equations:

$$Y = C + I + G + NX,$$

$$Y = 5,000,$$

$$G = 1,000,$$

$$T = 1,000,$$

$$C = 250 + 0.75(Y - T),$$

$$I = 1,000 - 50r,$$

$$NX = 500 - 500\epsilon,$$

$$r = r^* = 5.$$

- a. In this economy, solve for national saving, investment, the trade balance, and the equilibrium exchange rate.
- b. Suppose now that G rises to 1,250. Solve for national saving, investment, the trade balance, and the equilibrium exchange rate. Explain what you find.
- c. Now suppose that the world interest rate rises from 5 to 10 percent. (G is again 1,000.)

Solve for national saving, investment, the trade balance, and the equilibrium exchange rate. Explain what you find.

- **3.** The country of Leverett is a small open economy. Suddenly, a change in world fashions makes the exports of Leverett unpopular.
 - a. What happens in Leverett to saving, investment, net exports, the interest rate, and the exchange rate?
 - b. The citizens of Leverett like to travel abroad. How will this change in the exchange rate affect them?
 - c. The fiscal policymakers of Leverett want to adjust taxes to maintain the exchange rate at its previous level. What should they do? If they do this, what are the overall effects on saving, investment, net exports, and the interest rate?
- 4. In 2005, Federal Reserve Governor Ben Bernanke said in a speech: "Over the past decade a combination of diverse forces has created a significant increase in the global supply of saving—a global saving glut—which helps to explain both the increase in the U.S. current account deficit [a broad measure of the trade deficit] and the relatively low level of long-term real interest rates in the world today." Is this statement consistent with the models you have learned? Explain.
- 5. What will happen to the trade balance and the real exchange rate of a small open economy when government purchases increase, such as during a war? Does your answer depend on whether this is a local war or a world war?

- **6.** A case study in this chapter concludes that if poor nations offered better production efficiency and legal protections, the trade balance in rich nations such as the United States would move toward surplus. Let's consider why this might be the case.
 - a. If the world's poor nations offer better production efficiency and legal protection, what would happen to the investment demand function in those countries?
 - b. How would the change you describe in part (a) affect the demand for loanable funds in world financial markets?
 - c. How would the change you describe in part (b) affect the world interest rate?
 - d. How would the change you describe in part(c) affect the trade balance in rich nations?
- 7. The president is considering placing a tariff on the import of Japanese luxury cars. Discuss the economics and politics of such a policy. In particular, how would the policy affect the U.S. trade deficit? How would it affect the exchange rate? Who would be hurt by such a policy? Who would benefit?
- 8. Suppose China exports TVs and uses the yuan as its currency, whereas Russia exports vodka and uses the ruble. China has a stable money supply and slow, steady technological progress in TV production, while Russia has very rapid growth in the money supply and no technological progress in vodka production. Based on this information, what would you predict for the real exchange rate (measured as bottles of vodka per TV) and the nominal exchange rate (measured as rubles per yuan)? Explain your reasoning. (*Hint:* For the real exchange rate, think about the link between scarcity and relative prices.)

- **9.** Suppose that some foreign countries begin to subsidize investment by instituting an investment tax credit.
 - a. What happens to world investment demand as a function of the world interest rate?
 - b. What happens to the world interest rate?
 - c. What happens to investment in our small open economy?
 - d. What happens to our trade balance?
 - e. What happens to our real exchange rate?
- 10. "Traveling in Mexico is much cheaper now than it was ten years ago," says a friend. "Ten years ago, a dollar bought 10 pesos; this year, a dollar buys 15 pesos." Is your friend right or wrong? Given that total inflation over this period was 25 percent in the United States and 100 percent in Mexico, has it become more or less expensive to travel in Mexico? Write your answer using a concrete example—such as an American hot dog versus a Mexican taco—that will convince your friend.
- **11.** You read in a newspaper that the nominal interest rate is 12 percent per year in Canada and 8 percent per year in the United States. Suppose that the real interest rates are equalized in the two countries and that purchasing-power parity holds.
 - a. Using the Fisher equation (discussed in Chapter 4), what can you infer about expected inflation in Canada and in the United States?
 - b. What can you infer about the expected change in the exchange rate between the Canadian dollar and the U.S. dollar?
 - c. A friend proposes a get-rich-quick scheme: borrow from a U.S. bank at 8 percent, deposit the money in a Canadian bank at 12 percent, and make a 4 percent profit. What's wrong with this scheme?

APPENDIX

The Large Open Economy

When analyzing policy for a country such as the United States, we need to combine the closed-economy logic of Chapter 3 and the small-open-economy logic of this chapter. This appendix presents a model of an economy between these two extremes, called the *large open economy*.

Net Capital Outflow

The key difference between the small and large open economies is the behavior of the net capital outflow. In the model of the small open economy, capital flows freely into or out of the economy at a fixed world interest rate r^* . The model of the large open economy makes a different assumption about international capital flows. To understand this assumption, keep in mind that the net capital outflow is the amount that domestic investors lend abroad minus the amount that foreign investors lend here.

Imagine that you are a domestic investor—such as the portfolio manager of a university endowment—deciding where to invest your funds. You could invest domestically (for example, by making loans to U.S. companies), or you could invest abroad (by making loans to foreign companies). Many factors may affect your decision, but surely one of them is the interest rate you can earn. The higher the interest rate you can earn domestically, the less attractive you would find foreign investment.

Investors abroad face a similar decision. They have a choice between investing in their home country and lending to someone in the United States. The higher the interest rate in the United States, the more willing foreigners are to lend to U.S. companies and to buy U.S. assets.

Thus, because of the behavior of both domestic and foreign investors, the net flow of capital to other countries, which we'll denote as CF_r is negatively related to the domestic real interest rate r. As the interest rate rises, less of our saving flows abroad, and more funds for capital accumulation flow in from other countries. We write this as

$$CF = CF(r).$$

This equation states that the net capital outflow is a function of the domestic interest rate. Figure 5-15 illustrates this relationship. Notice that *CF* can be either positive or negative, depending on whether the economy is a lender or borrower in world financial markets.

To see how this CF function relates to our previous models, consider Figure 5-16. This figure shows two special cases: a vertical CF function and a horizontal CF function.

The closed economy is the special case shown in panel (a) of Figure 5-16. In the closed economy, there is no international borrowing or lending, and the interest rate adjusts to equilibrate domestic saving and investment. This means that CF = 0 at all interest rates. This situation would arise if investors here and abroad were unwilling to hold foreign assets, regardless of the return. It might also arise if the government prohibited its citizens from transacting in foreign financial markets, as some governments do.

The small open economy with perfect capital mobility is the special case shown in panel (b) of Figure 5–16. In this case, capital flows freely into and out of the country at the fixed world interest rate r^* . This situation would arise if investors here and abroad bought whatever asset yielded the highest return and if this economy were

too small to affect the world interest rate. The economy's interest rate would be fixed at the interest rate prevailing in world financial markets.

Why isn't the interest rate of a large open economy such as the United States fixed by the world interest rate? There are two reasons. The first is that the United States is large enough to influence world financial markets. The more the United States lends abroad, the greater is the supply of loans in the world economy, and the lower interest rates become around the world. The more the United States borrows from abroad (that is, the more negative *CF* becomes), the higher are world interest rates. We use the label "large open economy" because this model applies to an economy large enough to affect world interest rates.

There is, however, a second reason the interest rate in an economy may not be fixed by the world interest rate: capital may not be perfectly mobile. That is, investors here and abroad may prefer to hold their wealth in domestic rather than foreign assets. Such a preference for domestic assets could arise because of imperfect information about foreign assets or because of government impediments to international borrowing and lending. In either case, funds for capital accumulation will not flow freely to equalize interest rates in all countries. Instead, the net capital outflow will depend on domestic interest rates relative to foreign interest rates. U.S. investors will lend abroad only if U.S. interest rates are comparatively low, and foreign investors will lend in the United States only if U.S. interest rates are comparatively high. The large-open-economy model, therefore, may apply even to a small economy if capital does not flow freely into and out of the economy.

Hence, either because the large open economy affects world interest rates, or because capital is imperfectly mobile, or perhaps for both reasons, the *CF* function slopes downward. Except for this new downward-sloping *CF* function, the model of the large open economy resembles the model of the small open economy. We put all the pieces together in the next section.

The Model

To understand how the large open economy works, we need to consider two key markets: the market for loanable funds (where the interest rate is determined) and the market for foreign exchange (where the exchange rate is determined). The interest rate and the exchange rate are two prices that guide the allocation of resources.

The Market for Loanable Funds An open economy's saving S is used in two ways: to finance domestic investment I and to finance the net capital outflow *CF*. We can write

$$S = I + CF.$$

Consider how these three variables are determined. National saving is fixed by the level of output, fiscal policy, and the consumption function. Investment and net capital outflow both depend on the domestic real interest rate. We can write

$$\overline{S} = I(r) + CF(r)$$

Figure 5-17 shows the market for loanable funds. The supply of loanable funds is national saving. The demand for loanable funds is the sum of the demand for domestic investment and the demand for foreign investment (net capital outflow). The interest rate adjusts to equilibrate supply and demand.

The Market for Foreign Exchange Next, consider the relationship between the net capital outflow and the trade balance. The national income accounts identity tells us

$$NX = S - I.$$

Because *NX* is a function of the real exchange rate, and because CF = S - I, we can write

$$NX(\epsilon) = CE$$

Figure 5-18 shows the equilibrium in the market for foreign exchange. Once again, the real exchange rate is the price that equilibrates the trade balance and the net capital outflow.

The last variable we should consider is the nominal exchange rate. As before, the nominal exchange rate is the real exchange rate times the ratio of the price levels:

$$e = \epsilon \times (P^*/P).$$

The Market for Foreign-Currency Exchange in the Large Open Economy At the equilibrium exchange rate, the supply of dollars from the net capital outflow, *CF*, balances the demand for dollars from our net exports of goods and services, *NX*. The real exchange rate is determined as in Figure 5–18, and the price levels are determined by monetary policies here and abroad, as we discussed in Chapter 4. Forces that move the real exchange rate or the price levels also move the nominal exchange rate.

Policies in the Large Open Economy

We can now consider how economic policies influence the large open economy. Figure 5-19 shows the three diagrams we need for the analysis. Panel (a) shows the equilibrium in the market for loanable funds; panel (b) shows the relationship between the equilibrium interest rate and the net capital outflow; and panel (c) shows the equilibrium in the market for foreign exchange.

Fiscal Policy at Home Consider the effects of expansionary fiscal policy an increase in government purchases or a decrease in taxes. Figure 5-20 shows what happens. The policy reduces national saving S, thereby reducing the supply of loanable funds and raising the equilibrium interest rate r. The higher interest rate reduces both domestic investment I and the net capital outflow *CF*. The fall in the net capital outflow reduces the supply of dollars to be exchanged into foreign currency. The exchange rate appreciates, and net exports fall.

Note that the impact of fiscal policy in this model combines its impact in the closed economy and its impact in the small open economy. As in the closed economy, a fiscal expansion in a large open economy raises the interest rate and crowds out investment. As in the small open economy, a fiscal expansion causes a trade deficit and an appreciation in the exchange rate.

One way to see how the three types of economy are related is to consider the identity

$$S = I + NX.$$

In all three cases, expansionary fiscal policy reduces national saving S. In the closed economy, the fall in S coincides with an equal fall in I, and NX stays constant at zero. In the small open economy, the fall in S coincides with an equal fall in NX, and I remains constant at the level fixed by the world interest rate. The large open economy is the intermediate case: both I and NX fall, each by less than the fall in S.

Shifts in Investment Demand Suppose that the investment demand schedule shifts outward, perhaps because Congress passes an investment tax credit. Figure 5-21 shows the effect. The demand for loanable funds rises, raising the equilibrium interest rate. The higher interest rate reduces the net capital outflow: Americans make fewer loans abroad, and foreigners make more loans to Americans. The fall in the net capital outflow reduces the supply of dollars in the market for foreign exchange. The exchange rate appreciates, and net exports fall.

Trade Policies Figure 5-22 shows the effect of a trade restriction, such as an import quota. The reduced demand for imports shifts the net exports schedule outward in panel (c). Because nothing has changed in the market for loanable funds, the interest rate remains the same, which in turn implies that the net capital outflow remains the same. The shift in the net-exports schedule causes the exchange rate to appreciate. The rise in the exchange rate makes U.S. goods expensive relative to foreign goods, which depresses exports and stimulates imports. In the end, the trade restriction does not affect the trade balance.

Shifts in Net Capital Outflow There are various reasons that the *CF* schedule might shift. One reason is fiscal policy abroad. For example, suppose that Germany pursues a fiscal policy that raises German saving. This policy reduces the German interest rate. The lower German interest rate discourages American investors from lending in Germany and encourages German investors to lend in the United States. For any given U.S. interest rate, the U.S. net capital outflow falls.

Another reason the *CF* schedule might shift is political instability abroad. Suppose that a war or revolution breaks out in another country. Investors around the world will try to withdraw their assets from that country and seek a "safe haven" in a stable country such as the United States. The result is a reduction in the U.S. net capital outflow.

Figure 5-23 shows the impact of a leftward shift in the CF schedule. The reduced demand for loanable funds lowers the equilibrium interest rate. The lower interest rate tends to raise net capital outflow, but because this only partly

mitigates the shift in the *CF* schedule, *CF* still falls. The reduced level of net capital outflow reduces the supply of dollars in the market for foreign exchange. The exchange rate appreciates, and net exports fall.

Conclusion

How different are large and small open economies? Certainly, policies affect the interest rate in a large open economy, unlike in a small open economy. But, in other ways, the two models yield similar conclusions. In both large and small open economies, policies that raise saving or lower investment lead to trade surpluses. Similarly, policies that lower saving or raise investment lead to trade deficits. In both economies, protectionist trade policies cause the exchange rate to appreciate and do not influence the trade balance. Because the results are so similar, for most questions one can use the simpler model of the small open economy, even if the economy being examined is not really small.

The Key Assumption: Small Open Economy With Perfect Capital Mobility

Let's begin with the assumption of a small open economy with perfect capital mobility. As we saw in Chapter 5, this assumption means that the interest rate in this economy r is determined by the world interest rate r^* . Mathematically, we can write this assumption as

 $r = r^*$.

This world interest rate is assumed to be exogenously fixed because the economy is sufficiently small relative to the world economy that it can borrow or lend as much as it wants in world financial markets without affecting the world interest rate.

Although the idea of perfect capital mobility is expressed with a simple equation, it is important not to lose sight of the sophisticated process that this equation represents. Imagine that some event occurred that would normally raise the interest rate (such as a decline in domestic saving). In a small open economy, the domestic interest rate might rise by a little bit for a short time, but as soon as it did, foreigners would see the higher interest rate and start lending to this country (by, for instance, buying this country's bonds). The capital inflow would drive the domestic interest rate back toward r^* . Similarly, if any event started to drive the domestic interest rate downward, capital would flow out of the country to earn a higher return abroad, and this capital outflow would drive the domestic interest rate back up to r^* . Hence, the $r = r^*$ equation represents the assumption that the international flow of capital is rapid enough to keep the domestic interest rate equal to the world interest rate.

The Goods Market and the IS* Curve

The Mundell–Fleming model describes the market for goods and services much as the *IS–LM* model does, but it adds a new term for net exports. In particular, the goods market is represented with the following equation:

$$Y = C(Y - T) + I(r) + G + NX(e).$$

This equation states that aggregate income Y is the sum of consumption C, investment I, government purchases G, and net exports NX. Consumption depends positively on disposable income Y - T. Investment depends negatively on the interest rate. Net exports depend negatively on the exchange rate e. As before, we define the exchange rate e as the amount of foreign currency per unit of domestic currency—for example, e might be 100 yen per dollar.

You may recall that in Chapter 5 we related net exports to the real exchange rate (the relative price of goods at home and abroad) rather than the nominal exchange rate (the relative price of domestic and foreign currencies). If *e* is the nominal exchange rate, then the real exchange rate ϵ equals eP/P^* , where *P* is the domestic price level and P^* is the foreign price level. The Mundell–Fleming model, however, assumes that the price levels at home and abroad are fixed, so the real exchange rate is proportional to the nominal exchange rate. That is, when the domestic currency appreciates (and the nominal exchange rate rises from, say, 100 to 120 yen per dollar), foreign goods

become cheaper compared to domestic goods, and this causes exports to fall and imports to rise.

The goods-market equilibrium condition above has two financial variables affecting expenditure on goods and services (the interest rate and the exchange rate), but the situation can be simplified using the assumption of perfect capital mobility, so $r = r^*$. We obtain

$$Y = C(Y - T) + I(r^*) + G + NX(e)$$

Let's call this the IS^* equation. (The asterisk reminds us that the equation holds the interest rate constant at the world interest rate r^* .) We can illustrate this equation on a graph in which income is on the horizontal axis and the exchange rate is on the vertical axis. This curve is shown in panel (c) of Figure 12-1.

Expenditure

4. ... and

(b) The Keynesian Cross

3. ... which

shifts planned

expenditure

downward ..

Actual

expenditure

 ΔNX

Planned

expenditure

FIGURE 12-1

The *IS** **Curve** The *IS** curve is derived from the net-exports schedule and the Keynesian cross. Panel (a) shows the net-exports schedule: an increase in the exchange rate from e_1 to e_2 lowers net exports from $NX(e_1)$ to $NX(e_2)$. Panel (b) shows the Keynesian cross: a decrease in net exports from $NX(e_1)$ to $NX(e_2)$ shifts the planned-expenditure schedule downward and reduces income from Y_1 to Y_2 . Panel (c) shows the *IS** curve summarizing this relationship between the exchange rate and income: the higher the exchange rate, the lower the level of income.

The IS^* curve slopes downward because a higher exchange rate reduces net exports, which in turn lowers aggregate income. To show how this works, the other panels of Figure 12-1 combine the net-exports schedule and the Keynesian cross to derive the IS^* curve. In panel (a), an increase in the exchange rate from e_1 to e_2 lowers net exports from $NX(e_1)$ to $NX(e_2)$. In panel (b), the reduction in net exports shifts the planned-expenditure schedule downward and thus lowers income from Y_1 to Y_2 . The IS^* curve summarizes this relationship between the exchange rate e and income Y.

The Money Market and the LM* Curve

The Mundell–Fleming model represents the money market with an equation that should be familiar from the *IS–LM* model:

$$M/P = L(r, Y).$$

This equation states that the supply of real money balances M/P equals the demand L(r, Y). The demand for real balances depends negatively on the interest rate and positively on income Y. The money supply M is an exogenous variable controlled by the central bank, and because the Mundell–Fleming model is designed to analyze short-run fluctuations, the price level P is also assumed to be exogenously fixed.

Once again, we add the assumption that the domestic interest rate equals the world interest rate, so $r = r^*$:

$$M/P = L(r^*, Y).$$

Let's call this the LM^* equation. We can represent it graphically with a vertical line, as in panel (b) of Figure 12-2. The LM^* curve is vertical because the exchange rate does not enter into the LM^* equation. Given the world interest rate, the LM^* equation determines aggregate income, regardless of the exchange rate. Figure 12-2 shows how the LM^* curve arises from the world interest rate and the LM curve, which relates the interest rate and income.

Putting the Pieces Together

According to the Mundell–Fleming model, a small open economy with perfect capital mobility can be described by two equations:

$$Y = C(Y - T) + I(r^*) + G + NX(e)$$
 IS*,
 $M/P = L(r^*, Y)$ LM*.

The first equation describes equilibrium in the goods market; the second describes equilibrium in the money market. The exogenous variables are

fiscal policy G and T, monetary policy M, the price level P, and the world interest rate r^* . The endogenous variables are income Y and the exchange rate e.

Figure 12-3 illustrates these two relationships. The equilibrium for the economy is found where the IS^* curve and the LM^* curve intersect. This intersection shows the exchange rate and the level of income at which the goods market and the money market are both in equilibrium. With this diagram, we can use the Mundell–Fleming model to show how aggregate income Y and the exchange rate *e* respond to changes in policy.