Electrodynamics-II

Muhammad Amer Mustafa Lecturer UOS Sub Campus Bhakkar

7.3 ■ MAXWELL'S EQUATIONS

7.3.1 ■ Electrodynamics Before Maxwell

So far, we have encountered the following laws, specifying the divergence and curl of electric and magnetic fields:

(i)
$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho$$
 (Gauss's law),

(ii)
$$\nabla \cdot \mathbf{B} = 0$$
 (no name),

(iii)
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 (Faraday's law),

(iv)
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 (Ampère's law).

7.3.3 ■ Maxwell's Equations

In the last section we put the finishing touches on Maxwell's equations:

(i)
$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho$$
 (Gauss's law),

(ii)
$$\nabla \cdot \mathbf{B} = 0$$
 (no name),

(iii)
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 (Faraday's law),

(iv)
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 (Ampère's law with Maxwell's correction).

7.3.5 ■ Maxwell's Equations in Matter

(i)
$$\nabla \cdot \mathbf{D} = \rho_f$$
, (iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$,

(ii)
$$\nabla \cdot \mathbf{B} = 0$$
, (iv) $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$.

(7.56)